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Abstract. The calculus of Mobile Ambients has been proposed by Cardelli and Gordon as a
foundational model for mobile computing. Since its introduction, the computational strength
as well as the decidability of properties have been investigated for several fragments and
variants of the standard calculus. We tackle the problem of reachability and we characterize
a maximal public (i.e., restriction free) fragment for which it is decidable. This fragment is
obtained by removing the open capability and restricting the use of replication to guarded
processes. Quite surprisingly, this fragment has been shown to be Turing complete by Maffeis
and Phillips.

1 Introduction

Mobile Ambients (MA) [5] is a well known formalism exploited to describe distributed and mobile
systems in terms of ambients. An ambient is a named collection of active processes and nested sub-
ambients. In the pure (i.e., without communication) version of MA only three mobility primitives
are used to permit ambient and process interaction: in and out for ambient movement, and open
to dissolve ambient boundaries.

Since its introduction, the calculus of Mobile Ambients has attracted widespread interest,
and it has been used as a starting point for investigating the foundations of a great variety of
mobile computing models. Consider, e.g., the Mobile Safe Ambients [7] used to investigate security
issues in mobile systems, the Push and Pull Ambient Calculus [13] that formalizes objective
instead of subjective mobility and the Boxed Ambients [2] used to model systems in which ambient
boundaries cannot be dissolved and a direct communication between parent and child ambients is
permitted.

Following the tradition of process calculi, Mobile Ambients and its dialects have been equipped
with a rich variety of formal tools useful for reasoning about and verifying properties of systems
specified with these calculi. Just to mention few of these tools, consider the behavioural seman-
tics investigated in [9] or the type system [4] and the logics [6] used to reason about both the
behaviour and the spatial structure of ambients. Another line of research regards the analysis of
the expressiveness of these calculi in order to investigate the boundary between redundant and
necessary features as well as the decidability of properties. For example, the Turing completeness
of several variants and fragments of Mobile Ambients is investigated in [8], while the decidability
of process termination (i.e. the existence of a finite computation) is investigated for fragments of
the pure version of Mobile Ambients in [3].

Besides termination, an even more interesting property is process reachability: the reachability
problem consists of verifying whether a target process can be reached from a source process. As
an example of the relevance of reachability analysis, consider the system

intruder[P ] | firewall[Q]

where an intruder running the program P attacks a firewall executing the program Q. It is
relevant to check whether the system

firewall[ intruder[P ′] | Q′]

can be reached, where the intruder has succeeded.



The unique work, to the best of our knowledge, devoted to the investigation of reachability in
Mobile Ambients is by Boneva and Talbot [1]. They prove that reachability is undecidable even
in a minimal fragment of pure Mobile Ambients in which both the restriction operator (used to
limit the scope of ambient names) and the open capability are removed.

Let us consider the above example of the intruder and the firewall. Traditional reachability
consists of checking whether the target process is reachable for some instantiated processes P ′ and
Q′. In general, one may be interested in concentrating only on the structure of the target process
(i.e. the intruder is inside the firewall) abstracting away from the specific programs that run inside
the ambients (i.e. abstracting away from P ′ and Q′). Exploiting classical reachability one should
universally quantify on every possible processes P ′ and Q′.

To solve this problem we introduce spatial reachability permitting to specify a class of target
processes. This class is characterized by a common structure of ambient nesting and a minimal
number of processes that should be hosted inside those ambients.

As an example of the use of spatial reachability consider the system

trojan[virus|P ]|notebook[Q]

in which a trojan containing a virus program, and running program P , attacks a notebook running
the program Q. One may be interested in checking whether the process

notebook[ trojan[virus|P ′] | Q′]

can be reached for any possible P ′ and Q′. Observe that virus is a program for which it is necessary
to check the actual presence inside the ambient trojan in the target process (a trojan that does
not contain a virus is not dangerous).

We investigate the decidability of (spatial) reachability for fragments of the public, i.e. restric-
tion free, version of the ambient calculus. We focus our analysis on calculi without restriction in
order to concentrate on ambient nesting as the unique way for structuring processes. The rele-
vance of restriction, as a mechanism for organizing processes inside name scopes, has been deeply
investigated in the context of other process calculi such as the π–calculus [10].

The maximal fragment that we characterize does not contain the open capability and limits
the use of replication to guarded processes only (e.g., !n[] is not a valid process for this fragment).
This decidability result is proved by reducing reachability of processes to reachability in Petri nets
(and spatial reachability to coverability). We prove the minimality of this fragment by showing
that reachability becomes undecidable when relaxing at least one of the two restrictions imposed
on the fragment. The undecidability for the open -free fragment has been proved by Boneva and
Talbot [1]. For the fragment with guarded replication, we show how to reduce the halting problem
for Random Access Machines [16] (a well known Turing powerful formalism) to the (spatial)
reachability problem.

2 Pure Public Mobile Ambients

Pure public mobile ambients, that we denote with pMA, corresponds to the restriction-free frag-
ment of the version of Mobile Ambients without communication defined by Cardelli and Gordon
in [5].

Definition 1. – pMA – Let Name, ranged over by n, m, . . ., be a denumerable set of ambient
names. The terms of pMA are defined by the following grammar:

P ::= 0 | M.P | n[P ] | P |P | !P
M ::= inn | outn | openn

We use
∏
k P to denote the parallel composition of k instances of the process P , while

∏
i∈1...k Pk

denotes the parallel composition of the indexed processes Pi.



The term 0 represents the inactive process (and it is usually omitted). M.P is a process guarded
by one of the three mobility primitives (already discussed in the Introduction): after the execution
of the primitive the process behaves like P . The processes M.P are referred to as guarded processes
in the following. The term n[P ] denotes an ambient named n containing process P . A process may
be also the parallel composition P |P of two subprocesses. Finally, the replication operator !P is
used to put in parallel an unbounded number of instances of the process P .

The operational semantics is defined in terms of a structural congruence plus a reduction
relation.

Definition 2. – Structural congruence – The structural congruence ≡ is the smallest congru-
ence relation satisfying:

P | 0 ≡ P P | Q ≡ Q | P
P | (Q | R) ≡ (P | Q) | R !P ≡ P | !P

Definition 3. – Reduction relation – The reduction relation is the smallest relation → satis-
fying the following axioms and rules:

(1) n[inm.P | Q] | m[R] → m[n[P | Q] | R]

(2) m[n[outm.P | Q] | R] → n[P | Q] | m[R]

(3) openn.P | n[Q] → P | Q

(4)
P → Q

P | R → Q | R

(5)
P → Q

n[P ] → n[Q]

(6)
P ′ ≡ P P → Q Q′ ≡ Q

P ′ → Q′

As usual, we use→+ to denote the transitive closure and→∗ for the reflexive and transitive closure
of →. If P →∗ Q we say that Q is a derivative of P . The reachability problem consists in checking,
given two processes P and Q, whether Q is a derivative of P , i.e. checking if P →∗ Q.

Axioms (1), (2) and (3) describe the semantics of the three primitives in , out and open ,
respectively. A process inside an ambient n can perform an inm operation in presence of a sibling
ambient m; if the operation is executed then the ambient n moves inside m. If inside an ambient
m there is an ambient n with a process performing an outm action, this results in moving the
ambient n outside the ambient m. Finally, a process performing an openn operation has the ability
to remove the boundary of an ambient n[Q] composed in parallel with it.

Rules (4) and (5) are the contextual rules that respectively indicate that a process can move
also when it is in parallel with another process and when it is inside an ambient. Finally, rule (6)
is used to ensure that two structurally congruent terms have the same reductions.

In the paper we consider three fragments of pMA; pMAg! and pMA−open for which we show
that reachability is undecidable and pMA−openg! for which it turns out to be decidable.

Definition 4.
pMAg! permits only guarded replication, i.e. it restricts the application of the replication operator
to guarded processes:

P ::= 0 | M.P | n[P ] | P |P | !M.P
M ::= inn | outn | openn

pMA−open removes the open capability:

P ::= 0 | M.P | n[P ] | P |P | !P
M ::= inn | outn



pMA−openg! combines the restrictions imposed by the previous fragments:

P ::= 0 | M.P | n[P ] | P |P | !M.P
M ::= inn | outn

3 Deciding Reachability in pMA
−open
g!

In this Section we show that reachability is decidable in pMA−openg! . We reduce reachability on
pMA−openg! to reachability on Place/Transition Petri nets. As reachability is decidable on such class
of Petri nets [14], we get the decidability result for reachability on pMA−openg! .

Another interesting property is spatial reachability. Given two processes, P and R, the spatial
reachability problem roughly consists in checking if, starting from P , it is possible to reach a
process R′ “greater” than R, in the following sense: the ambients in R and R′ have the same
structure of ambient nesting, and the (sequential and replicated) active subprocesses inside an R
ambient are a subset of the subprocesses inside the corresponding ambient in R′. The Petri net
constructed for the solution of the reachability problem can be exploited to reduce the spatial
reachability problem for pMA−openg! processes to the coverability problem for Petri nets, which is a
decidable problem [15].

We start recalling some basic definitions on Petri nets, then we show the construction of the
Petri net that can be used to solve the (spatial) reachability problem.

3.1 P/T Nets

We recall Place/Transition nets with unweigthed flow arcs (see, e.g., [15]). Here we provide a
characterization of this model which is convenient for our aims.

Definition 5. Given a set S, a finite multiset over S is a function m : S → IN such that the
set dom(m) = {s ∈ S |m(s) 6= 0} is finite. The multiplicity of an element s in m is given by the
natural number m(s). The set of all finite multisets over S, denoted by Mfin(S), is ranged over
by m. A multiset m such that dom(m) = ∅ is called empty. The set of all finite sets over S is
denoted by ℘fin(S).

Given the multiset m and m′, we write m ⊆ m′ if m(s) ≤ m′(s) for all s ∈ S while ⊕ denotes
their multiset union: m ⊕ m′(s) = m(s) + m′(s). The operator \ denotes multiset difference:
(m \m′)(s) = if m(s) ≥ m′(s) then m(s)−m′(s) else 0. The scalar product, j ·m, of a number j
with m is (j ·m)(s) = j · (m(s)).

To lighten the notation, we sometimes use the following abbreviation. If m is a multiset containing
only one occurrence of an element s (i.e., dom(m) = {s} and m(s) = 1) we denote m by only s.
Multiset union is represented also by comma, i.e., m,m′ = m ⊕m′. Let m be a multiset over S
and m′ a multiset over S′ ⊇ S, such that (m′(s′) = 0) for each s′ ∈ S′ \S; with abuse of notation,
we sometimes use m in place of m′, and vice versa.

Definition 6. A P/T net is a pair (S, T ) where S is the set of places and T ⊆Mfin(S)×Mfin(S)
is the set of transitions.

Finite multisets over the set S of places are called markings. Given a marking m and a place
s, we say that the place s contains m(s) tokens.

A P/T net is finite if both S and T are finite.
A P/T system is a triple N = (S, T,m0) where (S, T ) is a P/T net and m0 is the initial

marking.
A transition t = (c, p) is usually written in the form c → p. The marking c, usually denoted

by •t, is called the preset of t and represents the tokens to be consumed; the marking p, usually
denoted by t•, is called the postset of t and represents the tokens to be produced.



A transition t is enabled at m if •t ⊆ m. The execution of a transition t enabled at m produces
the marking m′ = (m \ •t)⊕ t•. This is written as m t→ m′ or simply m→ m′ when the transition
t is not relevant. We use σ, τ to range over sequences of transitions; the empty sequence is denoted
by ε; let σ = t1, . . . , tn, we write m σ→ m′ to mean the firing sequence m t1→ · · · tn→ m′.

We say that m′ is reachable from m if there exists σ such that m σ→ m′.
We say that m′ covers m if m ⊆ m′.

Definition 7. Let N = (S, T,m0) be a P/T system.
The reachability problem for marking m consists of checking if m0 →∗ m.
The coverability problem for marking m consists of checking if there exists m′ such that m0 →∗

m′ and m′ covers m.

3.2 Reducing reachability on processes to reachability on Petri nets

Given two processes P and R, we show how to construct a (finite) Petri system SysP,R satisfying
the following property: the check of P →∗ R is equivalent to check reachability of a finite set of
markings on SysP,R.

The intuition behind this result relies on a monotonicity property of pMA−openg! : because of
the absence of the open capability, the number of “active” ambients in a process (i.e., ambients
that are not guarded by any capability) cannot decrease during the computation. Moreover, as
the applicability of replication is restricted to guarded processes, the number of “active” ambients
in a set of structurally equivalent processes is finite (while this is not the case in , e.g., the pMA
process !n[0]). Thanks to the property explained above, in order to check if R is reachable from
P it is sufficient to take into account a subset of the derivatives of P : namely, the P -derivatives
whose number of active ambients is not greater than the number of active ambients in R.

Unfortunately, this subset of P -derivatives is, in general, not finite, as the processes inside an
ambient can grow unlimitedly. Consider, e.g., the process P = m[!inn.outn.Q] | n[]: it is easy to
see that, for any k, m[

∏
kQ | !inn.outn.Q] | n[] is a derivative of P .

On the other hand, we note that the set of sequential and replicated terms that can occur as
subprocesses of (the derivatives of) a process P (namely, the subterms of kind M.P or !M.P ) is
finite. The idea is to borrow a technique used to map (the public fragment of) a process algebra
on Petri nets. A process P is decomposed in the (finite) multiset of its sequential subprocesses
that appear at top-level (i.e., occur unguarded in P ); this multiset is then considered as the
marking of a Place/Transition Petri net. The execution of a computational step in a process will
correspond to the firing (execution) of a transition in the corresponding net. Thus, we reduce
the reachability problem for pMA−openg! processes to reachability of a finite set of markings in a
Place/Transition Petri net, which is a decidable problem. However, differently from what happens
in process algebras, where processes can be faithfully represented by a multiset of subprocesses,
pMA−openg! processes have a tree-like structure that hardly fits in a flat model such as a multiset.

The solution is to consider pMA−openg! processes as composed of two kinds of components; the
tree-like structure of ambients and the family of multisets of sequential subterms contained in each
ambient. As an example, consider the process

inn.P | m[inn.P | outn.Q | n[0] | k[0] | inn.P ] | n[inn.P ]

having the tree-like structure m[n[] | k[]] | n[]. Moreover, there is a multiset corresponding to
each “node” of the tree: the multiset {inn.P} is associated to the root, the same multiset is
associated to the n-labelled son of the root, the multiset {inn.P, inn.P, outn.Q} is associated to
the n-labelled son of the m-labelled son of the root, and so on.

The Petri net we construct is composed of the following two parts: the first part is basically
a finite state automaton, where the marked place represents the current tree-like structure of the
process; the second part is a set of identical subnets: the marking of each subnet represents the
multiset associated to a particular node of the tree. To keep the correspondence between the nodes
of the tree and the multiset associated to that node, we make use of labels. A distinct label is



l0

n

m

l1

l2

l3

k

l0

n m

l1 l2

l3: out m l3: out k l3: !out kl3: in n.k[!out k] l3: unused

l2: out m l2: out k l2: !out k l2: unusedl2: in n.k[!out k]

t

Fig. 1. A portion of the net corresponding to process n[outm] | m[inn.k[!out k]].

associated to each subnet; this label will be used in the tree-like structure to label the node whose
contents (i.e., the set of sequential subprocesses contained in the ambient corresponding to the
node) is represented by the subnet.

The set of possible tree-like structures we need to consider is finite, for the following reasons.
First of all, the set of ambient names in a process is finite. Moreover, to verify reachability we
need to take into account only those processes whose number of active ambients is limited by the
number of ambients in the process we want to reach.

The upper bound on the number of nodes in the tree-like structures also provides an upper
bound to the number of identical subnets we need to decide reachability (at most one for each
active ambient). In general, the number of active ambients grows during the computation; hence,
we need a mechanism to remember which subnets are currently in use and which ones are not
used. When a new ambient is created, a correspondence between the node representing such a new
ambient in the tree-like structure and a not yet used subnet is established, and the places of the
“fresh” subnet are filled with the marking corresponding to the sequential subprocesses contained
in the newly created ambient. To this aim, each subnet is equipped with a place called unused, that
contains a token as long as the subnet does not correspond to any node in the tree-like structure.

For example, consider the process n[outm] | m[inn.k[!out k]]. The relevant part of the net
is depicted in Figure 1: a subset of the places, representing the tree-like structure, is depicted in
the left-hand part of the figure, while the subnets are depicted in the right-hand part. We only
report the subnets labelled with l2 and l3, and omit the two subnets labelled with l0 (with empty
marking) and with l1 (whose marking consists of a token in place l1 : outm). The computation
step n[outm] | m[inn.k[!out k]] → n[outm | m[k[!out k]]] corresponds to the firing of transition
t in the net.

A last remark is concerned with structural congruence: because of the structural congruence
rule (6), the reachability of a process R actually correspond to decide if it is possible to reach a
process that is structurally congruent to R. As we are reducing the reachability in pMA−openg! to
marking reachability in Petri nets, it is necessary that the set of markings, corresponding to
the set of processes structurally congruent to R, is finite. We concentrate on the markings of
the subnets. The top-level applications of the monoidal laws for parallel composition are au-
tomatically dealt with, as processes that are structurally congruent because of such laws are
mapped on the same marking. Unfortunately, the application of the replication law permits to
produce an infinite set of markings corresponding to structurally congruent processes. Take, e.g.,
!inn.P ≡ inn.P | !inn.P ≡ inn.P | inn.P | !inn.P ≡ . . . and the corresponding set of markings
{!inn.P}, {inn.P, !inn.P}, {inn.P, inn.P, !inn.P} . . ..

To solve this problem, we make use of the following two techniques.



The top-level application of the law for replication can be easily dealt with by adding the
transitions !inn.P → !inn.P | inn.P and !inn.P | inn.P →!inn.P , respectively permitting to
spawn a new copy of a replicated process and to absorbe a process that also appears in a replicated
form in the marking. An instance of such transitions is depicted in the subnet l2 of Figure 1.

The last problem to be dealt with is the application of the laws in combination with the congru-
ence law for prefix and ambient. Consider, e.g., the reachability of process R = m[!inn.!inm.0];
concerning the subnet corresponding to the m-labelled son of the root, we must check reachability
of an infinite set of markings, namely,

{!inn.!inm.0}, {!inn.(inm.0 | !inm.0)}, {!inn.(inm.0 | inm.0 | !inm.0)}, . . . .

To this aim, we introduce canonical representations of the equivalence classes of structural congru-
ence, roughly consisting in nested multisets where the presence of a replicated version of a sequen-
tial term forbids the presence of any occurrence of the nonreplicated version of the same term. For
example, the normal form of process inn.(!outm.0) | !inn.(outm.0 | !outm.0) | n[inn.0] is the
nested multiset !inn.(!outm.0) | n[inn.0].

Now we are ready to desribe the net that will be used to decide reachability of a process R
starting from a process P .

The set of places of the net is constructed as follows. The part of the net representing the tree-
like structure contains a place for each tree of size not greater than the number of active ambients
in R. Each of the subnets contains a place for each sequential and replicated subprocess of process
P , and a place named “unused”, that remains filled until the subnet does not correspond to any
node in the tree-like structure. Moreover, we associate a distinct label to each subnet, and all the
places of the subnet will be decorated with such a label.

The net has two sets of transitions: the first set permits to model the execution of the in
and out capabilities, while the second set is used to cope with the structural congruence rule for
replication.

We concentrate on the first set of transitions. A capability, say, e.g., inn, can be executed
when the following conditions are fulfilled: the tree-like structure must have a specific structure
and a place corresponding to a sequential subprocess inn.Q is marked in a subnet whose label
appears in the right position in the tree-like structure. Moreover, the number of active ambients
created by the execution of the capability, added to the number of currently active ambients, must
not exceed the number of active ambients in the process R we want to reach. This condition is
checked by requiring that there exist a sufficient number of “unused” places that are currently
marked. The execution of the capability causes the following changes to the marking of the net:
the place corresponding to the new tree-like structure is now filled and the marking of the subnet
performing the inn operation is updated (by adding the tokens in the places corresponding to
the active sequential and replicated subprocesses in the continuation Q). Moreover, a number of
subnets equal to the number of active ambients in the continuation Q become active: their places
will be filled with the tokens corresponding to the active sequential and replicated subprocesses
contained in the corresponding ambient, and the tree-like structure is updated accordingly.

We start the technical part providing a definition of ambient multisets – that are the canonical
representations of the equivalence classes of the structural congruence relation – and of the function
α that maps a process in its canonical representation. The function α behaves as an homomorphism
for all process operations but the parallel composition, where some care has to be taken to avoid
the presence of both the replicated and the unreplicated versions of a guarded process.

Definition 8. An index set is a set I ⊆ ω such that I = {1, 2, . . . , k} for some natural number k.
The set A of ambient multisets is the least set closed w.r.t. the following equation:

a =
⊕
i∈I

Mi.ai ⊕
⊕
j∈J

!M ′j .a
′
j ⊕

⊕
k∈K

nk[a′′k ]

where I, J,K are index sets, ai, a′j , a
′′
k ∈ A and Mi = M ′j implies ai 6= a′j for all i ∈ I, j ∈ J and

k ∈ K.



The function α : pMA−openg! → A maps a process in the corresponding ambient multiset and it
is defined inductively as follows:

α(0) = ∅
α(M.P ) = M.α(P )
α(!M.P ) =!M.α(P )
α(n[P ]) = n[α(P )]

Let
α(Ph) =

⊕
i∈Ih

Mih.aih ⊕
⊕
j∈Jh

!M ′jh.a
′
jh ⊕

⊕
k∈Kh

nkh[a′′kh]

for h = 1, 2. We define

α(P1 | P2) =
⊕
h=1,2

(
⊕
i∈Ih

µih ⊕
⊕
j∈Jh

!M ′jh.a
′
jh ⊕

⊕
k∈Kh

nkh[a′′kh])

where

µi1 =


Mi1.ai1 if ∀j ∈ J2 : Mi1 = M ′j2 ⇒

ai1 6= a′j2
∅ otherwise

and the µi2 are defined in a symmetrically.

The tree-like structure of the ambients of a process is represented by an ambient tree, that is
basically a tree with edges labelled by ambient names and nodes decorated with labels. We also
define the set of ambients trees whose number of ambients is bounded by an upper limit.

Definition 9. Let L be a denumerable set of labels, i.e., L = l0, l1, l2, . . .. L is ranged over by
l, l′, l′1, . . .; sequences of labels, i.e., elements of L∗, are ranged over by λ, λ′, . . .. Let λ = l′1 . . . l

′
n;

the length of λ is |λ| = n; with the notation l ∈ λ we mean l ∈ {l′1, . . . , l′n}.
The set T of ambient trees is the least set closed w.r.t. the following equation:

t = l ·
⊕
i∈I

ni[ti]

where I is an index set and ti ∈ T for all i ∈ I.
The number of ambients in an ambient tree t = l ·

⊕
i∈I ni[ti] is defined as

#amb(t) = |I|+
∑
i∈I

#amb(ti)

The set of labels in an ambient tree t = l ·
⊕

i∈I ni[ti] is defined as

labels(t) = {l} ∪
⋃
i∈I

labels(ti)

The set of ambient trees of size not greater than h is

Th = {t ∈ T | #amb(t) ≤ h ∧ labels(t) ∈ {l0 . . . , lh}}

In the following we will consider ambient trees containing distinct labels.

Now we are almost ready to construct the net that will permit to decide the reachability of a
process R starting from a process P .

To properly define the set of transitions of the net, we need some auxiliary definitions.
Ambient tree contexts will be used to model the requirement that the tree-like structure has

a specific form, and to update such structure. An ambient tree context is essentially an ambient
tree with a hole, that can be fulfilled with a set of trees, each one labelled with an ambient name.
The set of ambient tree contexts is generated as follows:

C[] = l · []⊕
⊕
ni[ti]⊕

⊕
i∈I ni[ti] | l · n[l′ · C[]⊕

⊕
j∈J n

′
j [t
′
j ]]

We introduce some notions relative to the features of ambient multisets.



(in)

C[m[lm · µm]⊕ n[ln · µn]], lm : inn.a,
⋃
l∈λ l : unused

↓
C[n[ln · µn ⊕m[lm · µm ⊕ tree(a, λ)]], lm : actproc(a), proc(a, λ)

(out)

C[n[ln · µn ⊕m[lm · µm]], lm : outn.a,
⋃
l∈λ l : unused

↓
C[m[lm · µm ⊕ tree(a, λ)]⊕ n[ln · µn]], lm : actproc(a), proc(a, λ)

(fold)
l : M.a, l :!M.a

↓
l :!M.a

(unfold)
l :!M.a
↓

l : M.a, l :!M.a

Table 1. The transitions schemata. Regarding axioms (in) and (out), we assume that λ is a sequence
of distinct labels such that |λ| = #amb(a).

Definition 10. Let
a =

⊕
i∈I

Mi.ai ⊕
⊕
j∈J

!M ′j .a
′
j ⊕

⊕
k∈K

nk[a′′k ]

be an ambient multiset.
The set of sequential and replicated subprocesses of a is defined as follows:

sub(a) = {Mi.ai | i ∈ I}∪
{M ′j .a′j , !M ′j .a′j | j ∈ J} ∪

⋃
i∈I sub(ai)∪⋃

j∈j sub(a
′
j) ∪

⋃
k∈K sub(a

′′
k)

The number of active ambients in a is defined as

#amb(a) = |K|+
∑
k∈K

#amb(a′′k)

The number of active ambients in a process P is defined as #amb(P ) = #amb(α(P )).

To define the set of transitions we need some preliminary definitions, permitting to construct
the new part of the ambient tree (generated by the active ambients in the continuation) and the
marking of the newly activated subnets.

Definition 11. Let
a =

⊕
i∈I

Mi.ai ⊕
⊕
j∈J

!M ′j .a
′
j ⊕

⊕
k∈K

nk[a′′k ]

be an ambient multiset.1

Take a sequence of labels λ = l′1 . . . l
′
|K|λ1 . . . λ|K| such that |λi| = #amb(a′′i ) for all i ∈ K.

The function tree(a, λ) constructs a portion of ambient tree representing the active ambients
in a, where nodes are labelled with the elements of λ taken in breadth first, left-to-right order:

tree(a, λ) =
⊕
k∈K

nk[l′k · tree(a′′k , λk)]

1 To be precise, at this point we have to fix an order on the elements of the multiset a, i.e., instead of a
we must consider the sequence a = M1.a1 . . .M|I|.a|I|!M

′
1.a
′
1 . . .!M|J|.a

′
|J|n1[a′′1 ] . . . n|K|[a

′′
|K|]. We need

to fix the ordering of the elements to obtain the right correspondence between the labels in the ambient
tree and the labels of the active nets.



The function actproc(a) gives the portion of the ambient multiset a corresponding to the active
(unguarded) sequential and replicated subprocesses:

actproc(a) =
⊕
i∈I

Mi.ai ⊕
⊕
j∈J

!M ′j .a
′
j

For each active ambient in a, the function proc(a, λ) constructs the marking for the places of
the corresponding subnet:

proc(a, λ) =
⊕
k∈K

l′k : actproc(a′′k)⊕
⊕
k∈K

proc(a′′k , λk)

The set Trans contains all the instances of the transition schemata reported in Table 1: axioms
(in) and (out) deal with the execution of a capability, whereas axioms (fold) and (unfold)
permit to cope with the structural congruence law for replication when applied to unguarded
processes.

The P/T net used to decide P →∗ R is constructed as follows:

Definition 12. Let P,R be pMA−openg! processes such that #amb(P ) ≤ #amb(R). We define the
net Net(P,R) = (S, T ), where

S =
⋃#amb(R)
i=0 ({li : Q | Q ∈ sub(P )} ∪ {li : unused}) ∪ T#amb(R)

T = {(c, p) ∈ Trans | c, p ⊆ S}

Note that Net(P,R) is a finite P/T net.
The following definition explains how to map a derivative of P to a marking of the net.

Definition 13. Let P,R be pMA−openg! processes such that #amb(P ) ≤ #amb(R). Let Q be a
process such that #amb(Q) ≤ #amb(R) and P →∗ Q.

Let l0 be a label and λ be a sequence of distinct labels in {l0, . . . , l#amb(R)} such that l0 6∈ λ and
|λ| = #amb(Q). Let the set of labels not in l0λ defined as Cl0λ = {li | i = 0, . . . ,#amb(R) ∧ li 6=
l0 ∧ li 6∈ λ}.

The decomposition of Q w.r.t. λ is defined as2

dec(Q, l0λ) = l0 · tree(α(Q), λ),
l0 : actproc(α(Q)),
proc(α(Q), λ),⋃
l∈Cl0λ

l : unused

The decomposition of Q turns out to be a marking of Net(P,R), because the following property
holds: if P →∗ Q then sub(α(Q)) ⊆ sub(α(P )), i.e., no new sequential or replicated subprocess
can be produced during the computation.

Now we are ready to define the P/T system used to solve the reachability problem:

Definition 14. Let P,R be pMA−openg! processes such that #amb(P ) ≤ #amb(R). We define the
net Sys(P,R) = (S, T,m0), where (S, T ) = Net(P,R) and the initial marking is

m0 = dec(P, l0 . . . l#amb(P ))

The following lemma permits to reduce the reachability problem P →∗ R on processes, to
check the reachability of a finite set of markings, corresponding to decompositions of R, in the
P/T system Sys(P,R).

Lemma 1. Let P,R be pMA−openg! processes such that #amb(P ) ≤ #amb(R).
P →∗ R iff the following holds: there exists a sequence λ of distinct labels in {l0, . . . , l#amb(R)}

such that |λ| = #amb(R) + 1 and dec(R, λ) is a marking of Sys(P,R) that is reachable.

Theorem 1. Let P,R be pMA−openg! processes. The reachability problem P →∗ R is decidable.

2 To be precise, also in this case we have to fix an order on the elements of the ambient multiset α(Q),
as in Definition 11.



3.3 Spatial reachability

The spatial reachability problem for processes P and R roughly consists in checking if, starting
from P , it is possible to reach a process R′ “greater than” R, in the following sense:

– R′ has the same spatial ambient structure of R, and
– the sequential and replicated active subprocesses contained in each ambient of R are also

present in the corresponding ambient of R′.

The �s relation is a formalization of the “greater than” concept:

Definition 15. Let P and Q be pMA−openg! processes.
P �s Q iff

– either Q ≡ P |
∏
iMi.Pi |

∏
j !M

′
j .P
′
j,

– or P ≡ P1 | n[P2], Q ≡ Q1 | n[Q2] and Pi �s Qi for i = 1, 2

The spatial reachability problem for processes P and R consists in checking if there exists R′

such that P →∗ R′ and R �s R′.
We exploit the Petri net constructed in the previous section to reduce the spatial reachability

problem for processes P and R to the coverability problem for a set of markings of the P/T system
Sys(P,R).

To this aim, we need the following lemma, ensuring that if Q2 is “greater than” Q1 then the
decomposition of Q1 is contained in the decomposition of Q2.

Lemma 2. Let P,R be pMA−openg! processes such that #amb(P ) ≤ #amb(R). Let Q1, Q2 be two
pMA−openg! processes s.t. P →∗ Qi and #amb(Qi) ≤ #amb(R) for i = 1, 2.

Q1 �s Q2 iff there exist two sequences λ1 and λ2 of distinct labels in {l0, . . . , l#amb(R)} such
that λ1 ∩ λ2 = ∅, |λi| = #amb(Qi) for i = 1, 2 and dec(Q1, λ1) ⊆ dec(Q2, λ2).

Lemma 3. Let P,R be pMA−openg! processes such that #amb(P ) ≤ #amb(R).
Checking spatial reachability for P and R is equivalent to check the following: there exists a

sequence λ of distinct labels in {l0, . . . , l#amb(R)} such that |λ| = #amb(R) + 1, dec(R, λ) is a
marking of Sys(P,R) and there exists a reachable marking of Sys(P,R) that covers dec(R, λ).

Theorem 2. Let P,R be pMA−openg! processes. The spatial reachability problem for P and R is
decidable.

4 Undecidability Results

In this section we discuss the undecidability of reachability for the two fragments pMA−open and
pMAg!.

As far as pMA−open is concerned, we resort to an equivalent result proved by Boneva and Talbot
for a slightly different calculus [1]. That calculus differs from pMA−open only for three extra rules
in the definition of the structural congruence relation: 0 ≡ 0, !!P ≡ !P , !(P | Q) ≡ !P | !Q. These
rules are added by Boneva and Talbot to guarantee that the congruence relation is confluent, thus
decidable.

The undecidability of reachability is proved by Boneva and Talbot showing how to encode
two-counters machines [11], a well known Turing powerful formalism. The encoding preserves the
one-step property: if the two-counters machine 2CM moves in one step to 2CM ′ then [[2CM ]]→∗
[[2CM ′]], where [[ ]] is the considered encoding. Even if the calculus in [1] is slightly different from
pMA−open , the encoding of two-counters presented in that paper applies also to our calculus; this
because the encoding does not apply the replication operator to the empty process, to replicated
processes and to parallel composition of processes (i.e. the cases in which the three extra structural
congruence rules come into play, respectively).



As far as pMAg! is concerned, we present a modeling of Random Access Machines (RAMs) [16],
a formalism similar to two-counters machines. The encoding that we present is inspired by a RAM
modeling that we have already discussed in [3].

One of the main novelties of the new encoding is that it does not apply replication to ambi-
ents; this modification is necessary because in pMAg! replication is guarded. A more significant
difference concerns the production of garbage, i.e. processes that do not play any further role in
the computation. The encoding in [3] produces garbage whose shape depends on the number and
type of executed instructions. The production of garbage was not problematic in [3] because the
RAM modeling was used there to prove the undecidability of process termination, i.e., the reach-
ability of any deadlocked process independently of the garbage it contains. Here, we need a more
sophisticated RAM modeling that keeps control over the produced garbage in order to prove the
undecidability of reachability for a specific process.

The new encoding presents the following characteristic; at the end of the RAM computation
an activity is started which is responsible for formatting the garbage in a predefined form. Thus,
we can conclude that a RAM terminates if and only if the encoding of the final state of the RAM
plus the formatted garbage is reachable from the encoding of the initial state of the RAM. This
is enough for concluding that reachability is undecidable.

The remainder of this section is divided in two parts; we start by recalling what RAMs are,
then we discuss the modeling of RAMs.

4.1 Random Access Machines

RAMs are a computational model based on finite programs acting on a finite set of registers. More
precisely, a RAM R is composed of the registers r1, . . . , rn, that can hold arbitrary large natural
numbers, and by a sequence of indexed instructions (1 : I1), . . . , (m : Im). In [12] it is shown that
the following two instructions are sufficient to model every recursive function:

– (i : Succ(rj)): adds 1 to the contents of register rj and goes to the next instruction;
– (i : DecJump(rj , s)): if the contents of the register rj is not zero, then decreases it by 1 and

goes to the next instruction, otherwise jumps to the instruction s.

The computation starts from the first instruction and it continues by executing the other
instructions in sequence, unless a jump instruction is encountered. The execution stops when an
instruction number higher than the length of the program is reached. It is not restrictive to assume
that the instruction number reached at the end of the computation is always m+1, and to assume
that the computation starts and terminates with all the registers empty.

4.2 Modelling RAMs in pMAg!

We model instructions and registers independently. As far as the instructions and the program
counter are concerned, we model the program counter i with an ambient pci[]. Each instruction
Ii is represented with a replicated process guarded by the capability open pci able to open the
corresponding program counter ambient pci[]. The processes modeling the instructions are repli-
cated because each instruction could be performed an unbounded amount of times during the
computation.

The key idea underlying the modeling of the registers is to represent natural numbers with a
corresponding nesting of ambients. We use an ambient named zj to represent the register rj when
it is empty; when the register is incremented we move the ambient zj inside an ambient named sj ,
while on register decrement we dissolve the outer sj ambient boundary. In this way, for instance,
the resister rj with content 2 is modeled by the nesting sj [sj [zj []]] (plus other processes hosted in
these ambients that are discussed in the following).

Definition 16. Given the RAM R with instructions (1 : I1), . . . , (m : Im) and registers r1, . . . , rn
we define [[R]] as the following process

pc1[] |
∏
i∈1...m open pci.Ci |

∏
j∈1...nR

0
j |

open pcm+1.GC | !openmsg | garbage[open gc]



where Ci (modeling the i − th instruction), R0
j (modeling the empty register rj) and GC (the

garbage collector which is started at the end of the computation) are shorthand notations defined
in the following.

Note the use of two extra processes: !openmsg used to open ambients containing messages
produced during the computation and the ambient garbage[open gc] which is a container for the
produced garbage. The process open gc is used at the end of the computation to allow the garbage
collector to act inside the ambient garbage as detailed in the following.

The register rj with content l is represented by the process Rlj defined inductively as follows

R0
j = zj [ !open incj .

( msg[ out zj .sj [ REGj ] ] |
in sj .ackij [ out zj .!out sj ] ) |

!open zeroj .ackzj [ out zj .in djj ] |
open gc ]

Rl+1
j = sj [ REGj | Rlj ]

where REGj is a shorthand notation defined as follows

REGj = open decj .ackdj [ out sj .in djj ] | !openmsg

Also in this case, the process open gc is used to allow the garbage collector to act inside the ambient
zj . We will discuss the behaviour of the term REGj , and of the other processes inside the ambient
zj , after having discussed the encoding for the instructions.

Before formalizing the modeling of the instructions we anticipate that the names incj , zeroj
and decj are used to model requests for increment, test for zero and decrement of register rj ,
respectively; the names ackij , ackzj and ackdj models the corresponding acknowledgements pro-
duced by the registers to notify that a request has been managed.

The instructions are modeled as follows. If the i-th instruction is Succ(rj), its encoding is

Ci = increqj [ !in sj | in zj .incj [out increqj ] ] |
open ackij .pci+1[]

This modeling is based on two processes. The first one is the ambient increqj that represents a
request for increment of the register rj . The second process blocks waiting for an acknowledgement
that will be produced after the actual increment of the register; when the acknowledgement is
received, this process increments the program counter spawning pci+1[].

The ambient increqj has the ability to enter the boundary of the ambient modelling the register
rj , to move through the nesting of ambients, and finally to enter the inner ambient zj . After that, a
new ambient incj exits the ambient increqj becoming in parallel with the processes of the ambient
zj . One of these processes (see the definition of R0

j ) detects the arrival of the new ambient and
reacts by producing sj [REGj ]; the ambient zj then moves inside this new ambient. In this way the
nesting of ambients sj is incremented by one. After, the acknowledgement is produced in terms of
an ambient named ackij that moves outside the register boundary.

If the i-th instruction is DecJump(rj , s) the encoding is as follows

Ci = zeroj [in zj ] | decj [in sj ] |
djj [ ACKZjs | ACKDji ]

where
ACKZjs =
open ackzj .in garbage.
msg[ out djj .out garbage.open decj .pcs[] ]

ACKDji =
open ackdj .in garbage.
msg[ out djj .out garbage.open zeroj.open sj .pci+1[] ]



This modeling is based on three processes. The first process is an ambient named zeroj which
represents a request for a test for zero of the register rj ; the second process is an ambient named
decj representing a request for decrement of the register rj ; the third process is an ambient
named djj which is in charge to manage the acknowledgement produced by the register rj . The
acknowledgement indicates whether the decrement, or the test for zero request, has succeeded.

Let us consider the test for zero request. The ambient zeroj [in zj ] has the ability to move
inside the ambient zj . This can occur only if the register rj is currently empty; in fact, if rj is not
empty, the ambient zj is not at the outer level. If the request enters the zj ambient boundary, the
processes inside the ambient zj (see the definition of R0

j ) react by producing an acknowledgement
modelled by an ambient named ackzj which moves inside the ambient djj .

Now, consider the request for decrement. The ambient decj [in sj ] has the ability to enter the
boundary of the process modelling the register rj ; this can occur only if the register is not empty
(otherwise there is no ambient sj). Inside the ambient sj , the process REGj reacts by producing
an acknowledgement modelled by an ambient named ackdj which moves inside the ambient djj .

The processes inside the ambient djj have the ability to detect which kind of acknowledgement
has been produced, and react accordingly. In case of ackzj , the reaction is to move the ambient
djj inside the ambient garbage, and to dissolve the boundary of the outer ambient decj . This
is necessary to remove the decrement request that has failed. In case of ackdj , the process also
dissolves one of the boundaries sj , in order to actually decrement the register. In both cases, the
program counter is finally updated by either jumping to instruction s, or by activating the next
instruction i+ 1, respectively.

This way of modeling RAMs does not guarantee the one-step preservation property because of
the production of garbage, that is processes that are no more involved in the subsequent compu-
tation. More precisely, the following garbage is produced:

– each increment operation leaves an ambient increqj [!in sj ] inside the ambient zj , plus the
process !out sj at the outer level;

– each decrement operation leaves an ambient djj inside the ambient garbage, plus the two
processes in zj and !openmsg at the outer level;

– each test for zero operation leaves an ambient djj inside the ambient garbage, plus the process
in sj at the outer level.

Clearly, the exact shape of the garbage at the end of the modeling of the RAM computation
is unpredictable because it depends on the exact number of instructions that are executed. Nev-
ertheless, we use the garbage collector process GC, activated on program termination, in order to
reshape the garbage in a predefined format.

The key idea underlying the garbage collection process is to exploit the structural congruence
rule !P ≡ P |!P used to unfold (and fold) replication. Consider an unpredictable amount of pro-
cesses P in parallel, i.e.

∏
n P with n unknown. If we add in parallel the process !P we have that∏

n P | !P ≡ !P , thus reshaping the process in a known format.
We are now in place for defining the garbage collector process formally

GC = !!out sj | !in zj | !!openmsg | !in sj |∏
j∈1...n gc[ in zj .(!open increq | !!in sj) ] |

gc[ in garbage |∏
j∈1...n( !open djj |

∏
i∈1...m!ACKDji |∏

s∈1...m+1!ACKZjs ) ]

The undecidability of reachability and spatial reachability is a trivial corollary of the following
theorem. In the statement of the theorem we use the notation REG0

j which is the same as R0
j with

the difference that the process open gc, initially available in the ambient zj (see the definition of
R0
j ), is replaced by the two processes !open increq | !!in sj left by the garbage collector.



Theorem 3. Given the RAM R with instructions (1 : I1), . . . , (m : Im) and registers r1, . . . , rn
we have that R terminates if and only if∏

i∈1...m open pci.Ci |∏
j∈1...nREG

0
j |

!!out sj | !in zj | !!openmsg | !in sj |
garbage[

∏
i∈1...n( !open djj |

∏
i∈1...m!ACKDji |∏

s∈1...m+1!ACKZjs ) ]

is reachable from the process [[R]] (as defined in Definition 16).
Moreover, we have that the RAM R terminates if and only if the process

pm+1[] |
∏
j∈1...n zj [] | garbage[]

is spatially reachable from the process [[R]].

5 Conclusion

We have discussed the decidability of reachability in Mobile Ambients. We have characterized a
maximal fragment of the pure and public Mobile Ambients, namely the open -free fragment with
guarded replication, for which reachability is decidable. We call this fragment pMA−openg! . Our
decidability result also holds for a variant of reachability, called spatial reachability, that permits
to specify a class of target processes characterized by a common structure of ambient nesting.

The fragment pMA−openg! has been already investigated by Maffeis and Phillips [8] (called Lio
in that paper). They show that such a small fragment is indeed Turing complete, by providing
an encoding of RAMs. The encoding they present permits to conclude that the existence of a
terminating computation is an undecidable problem, while the decidability of reachability is raised
as an open problem. Our decidability result provides a positive answer to this problem.

In order to prove the minimality of pMA−openg! we make use of (a slight adaptation of) the
undecidability result by Boneva and Talbot [1]. They prove that reachability is undecidable for the
open -free fragment, equipped with a structural congruence slightly different from the standard one
(see the discussion in Section 4). Instead of getting decidability by imposing syntactical restrictions
(as we do for pMA−openg! ), they move to a weaker version of the operational semantics. In particular,
they show that reachability becomes decidable when the structural congruence law !P ≡ P | !P is
replaced by the reduction axiom !P → P | !P .

As future work, we plan to investigate the decidability of (spatial) reachability also in Mobile
Calculi extended with communication. In particular, we intend to consider Boxed Ambients [2] as
the most relevant variant of Mobile Ambients in which ambient boundaries cannot be dissolved (i.e.
the open capability is not present). In Boxed Ambients the impossibility to dissolve boundaries
is compensated with a direct form of communication (that permits to communicate both ambient
names and sequences of capabilities) between parent and child processes. We claim that rechability
is decidable for the public fragment of Boxed Ambients, provided that replication is guarded and
that the maximal length of the sequences of capabilities that can be communicated is fixed.

Acknowledgements We thank Jean-Marc Talbot and Iain Phillips for their insightful comments
on a preliminary version of this paper.
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