Introduction to Wireless Networks: protocols and performance analysis

Luciano Bononi

<u>bononi@cs.unibo.it</u>

Cumulative credits: some figures have been taken from slides found on the web, by the following authors (in alfabethical order):

J.J. Garcia Luna Aceves (ucsc), James F. Kurose & Keith W. Ross, Jochen Schiller (fub), Nitin Vaidya (uiuc)

© 2002 Luciano Bononi

PHY modelling issues

- Usually the PHY layer is considered a Black box in the simulation model (e.g. when studying higher layers)
- Many PHY parameters can have a deep effect on higher layers' behavior (and are inherently "continuous"...)
 - a modeler needs to know what is required to be modeled for obtaining significant results (e.g. mapping to "discrete"...)
 - simplifying assumptions can lead to wrong results
 - Warning: more analysis?
- Usually the choice is to model only few parameters of the PHY layer, describing the aggregate effect of main parameters (see later) and their values' distributions.
 - Trace driven simulation? Regression data from logged trace results?
 - e.g. channel states \rightarrow Bit error rate \rightarrow prob. of packet error?
 - e.g. network topology \rightarrow interference \rightarrow bit error rate?
 - e.g. coding and trasmission technique \rightarrow data rate?

PHY modelling issues

- Homework: analitical analysis of a PHY system
 - a given channel is DSSS with 8 chips/bit
 - maximum chipping rate = 2.000.000 chip/sec
 - can recover up to 2 chip errors/bit
 - probability of chip error = Pce
 - probability of a bit error?
 - frame length (constant) = 1500 Bytes
 - probability of frame error?

will be used as the PHY (black box) reliability parameter...

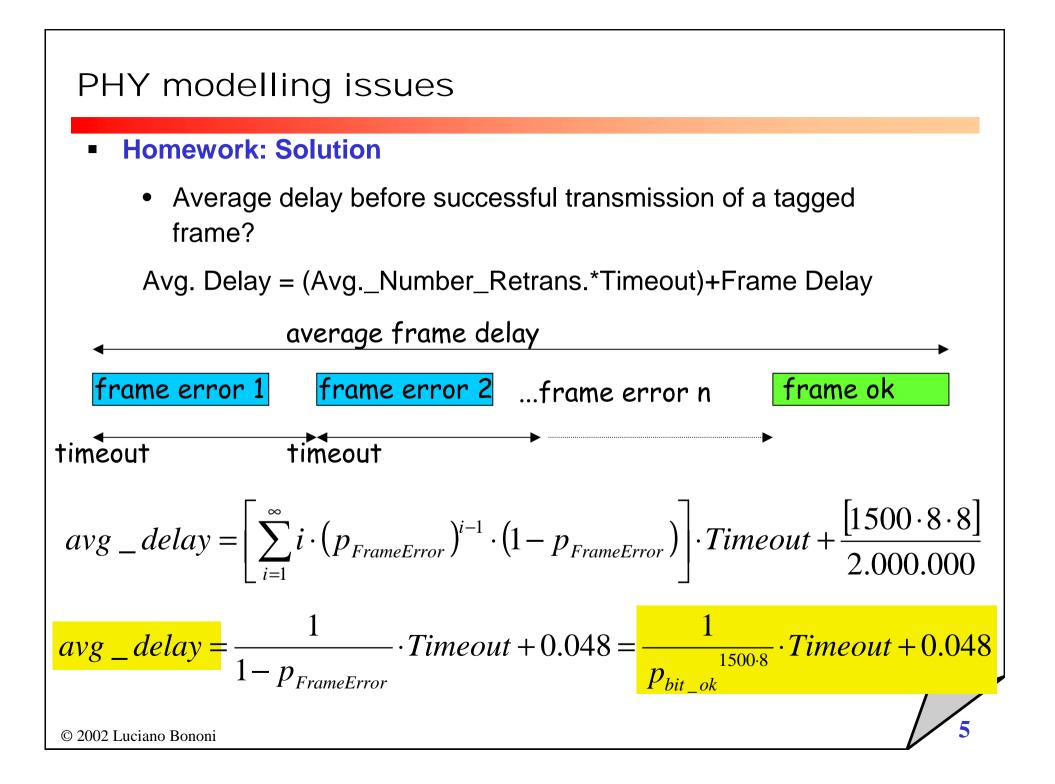
• timeout delay before packet retransmission attempt = 1 sec average delay before tagged frame's successful transmission?

PHY modelling issues

- Homework: Solution
 - Probability of a bit error?

$$p_{bit_ok} = (1 - p_{ce})^8 + 8 \cdot p_{ce} \cdot (1 - p_{ce})^7 + {\binom{8}{2}} \cdot p_{ce}^2 \cdot (1 - p_{ce})^6$$

 $\langle a \rangle$


$$p_{bit_error} = 1 - p_{bit_ok}$$

• Probability of frame error?

1 Frame = 1500 Byte = 1500*8 bit = 1500*8*8 chip

 $P_{FrameError} = P\{at_least_one_bit_error\} = 1 - p\{all_bits_ok\}$ $p_{FrameError} = 1 - p_{bit_ok}^{(1500\cdot8)}$

© 2002 Luciano Bononi

- Fixed (static) topology
 - fixed (static) model
- Ad Hoc topologies
 - many hosts with topology parameters
 - 2D position (X,Y) or 3D position (X,Y,Z)
 - Links: related to mutual reachability (mono, bi-directional)
 - TX Power (Coverage area)
 - » circular (multiple coverage sub-areas)
 - » exagonal (approximation for regular infrastructure models, e.g. cellular AP)
 - » square (highly approximated)
 - Rx sensitivity (reception threshold)
 - » Interference model?
 - » asymmetric coverage area
 - Obstacles?

- Ad Hoc mobility
 - mobility dinamically affects network topology
 - many hosts with mobility parameters
 - (assume 2D position (X,Y) for simplicity)
 - host state: fixed or mobile
 - two-state model: probability distribution
 - fixed-position state : zero mobility
 - mobile state : non-zero mobility
 - » various mobility models define the mobility parameters
 - » Velocity is a vector (speed, direction, orientation)
 - » position shift is vector (Velocity*time)
 - Problem: mobility is a continuous process
 - how to model mobility effects in discrete event simulation?
 - discrete quantization? -> approximation of effects
 - fine quantization -> many events -> slow simulation

- Random Waypoint model
 - is completely random (pattern-less)
 - This model is less affected by the initial position of hosts
 - Host N
 - step i = 1..I starting at time Tn_i
 - » Host N selects random target position (x,y) in the plane
 - » host N moves with constant velocity Vn_i (randomly generated)
 - » Step duration is a function of distance and velocity
 - node mobility is not correlated -> link failures are independent.

- Random Direction model
 - is completely random (pattern-less)
 - host mobility characterized by a sequence of "epoch"
 - Host N
 - epoch i = 1..I starting at time Tn_i with duration DTn_i
 - » epoch duration DTn_i is a stochastic variable, esponentially distributed, average 1/An (consecutive duration independent)
 - » host N moves with constant velocity Vn_i
 - » host N moves in constant direction Dn_i (in polar coordinates)
 - » Number of epochs in a time interval t is a discrete stochastic process Nn(t)
 - for each host n, and for each epoch i, DTn, Vn, Dn are NOT correlated -> node mobility is not correlated -> link failures are independent.

- Random Direction model
 - implementation 1:
 - given pos(n,i) the position of node n in epoch i, and Rn(i) the vector defining the movement in epoch i for node n (constant speed and direction for the time DTn_i)

pos(n,i+1)=pos(n,i)+Rn(i)

- Implementation 2:
 - DTn_i is constant (epoch duration is constant)
 - randomly generated pos(n,0), pos(n,1)...pos(n,I)
 - » Rn(i) is derived from pos(n.i)
- Variation:
 - a node after each movement wait for a constant time

- Random Direction model
 - how to evaluate the presence of a link between node a and b in a time interval [t0,t1]?
 - evaluate mobility of node a in [t0,t1]
 - evaluate mobility of node b in [t0,t1]
 - evaluate relative mobility of nodes a,b in [t0,t1]
 - compare with the model assumption about Tx range, etc.
 - N.B. given the model assumption, and given the model parameters, Prob (link from a to b) can be defined analitically
 - N.B. since the model assumptions make the node mobility not correlated, a route between multiple nodes (multi-hop) can be defined analitically with the joint probabilities P(a to b)*P(b to c)...
 - This is interesting property: can validate simulation results?

- Random Direction model
 - is the discrete counterpart of the Brownian motion
 - e.g. see <u>http://www.phys.virginia.edu/classes/109N/more_stuff/App</u> <u>lets/brownian/applet.html</u>
 - e.g. see Project MFR (credits Quadalti, Massera, Capece)
 - it is not much realistic for network scenarios
 - can be used sometimes as "worst case" analysis because it describes the most "unpredictable" mobility pattern
 - it can be described and validated analitically

- Reference Point Group Mobility (RPGM)
 - it relates to group mobility in ad hoc networks
 - each "group" of hosts has a "logic centre"
 - the "logic centre" mobility defines the global mobility parameters of the group
 - mobile hosts are uniformly distributed inside the "domain area" of the "logic center" of the group
 - each host has a random mobility around a "reference point" (RP) which moves relative to the "logic center" mobility

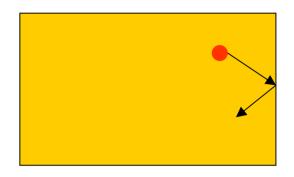
- Reference Point Group Mobility (RPGM)
 - implementation is based on
 - Vgi: vector for group motion (logic center)
 - Vhi: vector for host motion around RP
 - check points define discrete time advance Dt
 - at check point time t the group moves to current position
 - Advantage
 - can be used to model realistic scenarios
 - can be used for modelling "logged traces" of real mobility pattern (snapshot recorded as vectors Vgi, Vhi for each checkpoint

- Natural Random Model (NRM)
 - a model for highly predictable paths
 - assumes low variation of mobility vector vs. time
 - for a given host h:
 - mobility vector M(xv,yv) = the sum of
 - Base Vector Bh(bx,by)
 - » main (group) mobility component
 - Variance Vector Vh(vx,vy)
 - » models the variation from the base vector of a single host
 - maybe MIN(xv,yv) < M(xv,yv) < MAX(xv,yv) to model realistic range of variation for node speed
 - by using polar coordinates, MIN and MAX variation of direction can be defined
 - finally, acceleration/deceleration can be controlled

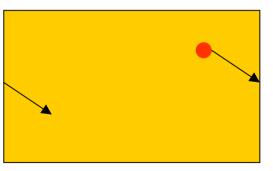
- Exponentially correlated random mobility (ECRM)
 - host partitioned in G groups: Si hosts in group i

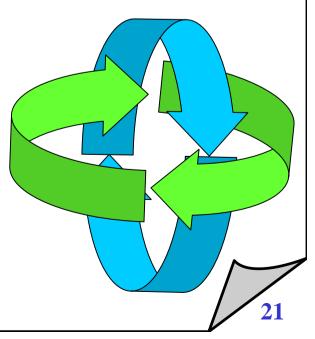
$$b(t+1) = b(t) \cdot e^{-\frac{1}{\tau}} + s \cdot \sigma \cdot \sqrt{1 - e^{-\frac{1}{\tau}}} \cdot r$$

- b(t) is the position (polar coordinates) at time t
- au is a time constant (position-change rate)
- σ is the variance for the position-changes
- s is the host speed
- r is a gaussian variable


- Exponentially correlated random mobility (ECRM)
 - motion of each group is independent
 - from other groups' motion
 - from motion of hosts in the group

- Restricted random waypoint
 - based on random waypoint
 - applied to large ad hoc networks
 - towns, highways...
 - Ordinary hosts
 - follow random waypoint modelling of towns
 - towns are geographic areas (grid)
 - commuter hosts
 - after a single motion in town, they move to another town, becoming Ordinary hosts
 - they run (constant speed and direction) over highways


- Column model
 - model characterized by "leader" host and a set of related hosts following the leader
 - each host i has a reference point RPi(x,y)
 - each host i has a random motion component vector RVi with respect to its reference point RPi
 - each reference point RP has a global motion component vector AV
 - position of node i at time t+Dt:
 - pos(t+Dt) = RP(t+Dt)+RV(t)
 - where RP(t+Dt) = RP(t)*AV(t)


- Pursue Model
 - model similar to set of nodes following a target host
 - non-target hosts are limited in the amount of distance they run towards the target in a given time by A(target_pos(t)) (their pursue of the target is approximated)
 - non-target hosts motions are biased by the random component vector RV
 - position of host i at time t+Dt : pos(t+Dt)=pos(t)+A(target_pos(t))+RV(t)

- The area boundary policy
 - reflection (concentrate host distribution in the middle of the area)

toroidal (uniform distribution)

