



































Wireless Systems and Networks





























| owe    | r measuremen                               | t                                                                                                                                   |       |
|--------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------|
| - Adva | antage of dB: what is I                    | better?                                                                                                                             |       |
| •      | E.g.: A signal transmitted a               | it [TX] 100 mW is received at [RX] 0.000005 mW                                                                                      |       |
|        | Power Difference (dB                       | ) = 10 * log([RX] /[TX]) = 10 * log(0.00005mW/100mW)                                                                                | = -73 |
|        | <ul> <li>A signal transmitted a</li> </ul> | at 100 mW is received with gain (loss) –73 dB                                                                                       |       |
| • Adva | antage of dB: what is I                    | better?                                                                                                                             |       |
| •      | A signal transmitted at                    | 15 mW ???<br>100 mW is received with gain (loss) -73+20= -53                                                                        | dB    |
|        |                                            |                                                                                                                                     |       |
|        |                                            |                                                                                                                                     |       |
|        | TJUD                                       | 2x power in mW (* 2)                                                                                                                |       |
|        | -10 dB                                     | 2x power in mW (* 2)           1/10 power in mW (/ 10)                                                                              |       |
|        | -10 dB<br>+10 dB                           | 2x power in mW (* 2)           1/10 power in mW (/ 10)           10x power in mW (* 10)                                             |       |
| Арг    | -10 dB<br>+10 dB<br>proximated table (vo   | 2x power in mW (* 2)         1/10 power in mW (/ 10)         10x power in mW (* 10)         alues defined for ease of calculations) | Γ     |



















- Illustration of general issues
  - Convert electrical energy in RF waves (transmission), and RF waves in eletrical energy (reception)
  - Size of antenna is related to RF frequency of transmission and reception
  - Shape (structure) of the antenna is related to RF radiation pattern
- Radiation patterns of different antenna types
- Positioning antennas
  - Maximum coverage of workspace
  - Security issues
- Real antenna types: omni-directional, semi-directional, highly-directional

Wireless Systems and Networks













| highly-directional antennas                                                        |             |             |          |                  |           |  |  |  |  |
|------------------------------------------------------------------------------------|-------------|-------------|----------|------------------|-----------|--|--|--|--|
| <ul> <li>Parabolic Dish</li> <li>grid</li> <li>top view (xz-plane) dish</li> </ul> |             |             |          |                  |           |  |  |  |  |
| Antenna type                                                                       | H beamwidth | V beamwidth | Se<br>an | Semi-directional |           |  |  |  |  |
| Omni-dir.                                                                          | 360°        | 7° 80°      |          | Reamwidth        |           |  |  |  |  |
| Patch/panel                                                                        | 30° 180°    | 6° 90°      |          | cone:            |           |  |  |  |  |
| Yagi                                                                               | 30° 78°     | 14º 64º     |          | -3dB signal      |           |  |  |  |  |
| Parabolic dish                                                                     | 4° 25°      | 4º 21º      |          | boundary         | $\square$ |  |  |  |  |
| © Luciano Bononi 2016 Wireless Systems and Networks 07T-0XIS                       |             |             |          |                  |           |  |  |  |  |

















| Path Loss                                                                                                                                                  |                                 |                     |              |     |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------|--------------|-----|--|--|--|--|--|
| <ul> <li>Path Loss: RF sign<br/>function of distance</li> </ul>                                                                                            | al "dispersion'<br>e            | ' (attenuation) a   | as a         |     |  |  |  |  |  |
| <ul> <li>E.g. Possible formulas (36.6 or 32.4)</li> <li>Free space: Loss (in dB) = 36.6+(20*log10(F))+(20*log10(D))</li> <li>F (Mhz), D (miles)</li> </ul> |                                 |                     |              |     |  |  |  |  |  |
| <ul> <li>Link budget issue:</li> <li>Each 6 dB increa</li> </ul>                                                                                           | 6 dB rule<br>ase in EIRP (signa | l x 4) implies dout | ole Tx range |     |  |  |  |  |  |
| (e.g. see table be                                                                                                                                         | elow: 2.4Ghz Path               | Loss vs distance    | )            |     |  |  |  |  |  |
|                                                                                                                                                            | 100 meters                      | - 80.23 dB          |              |     |  |  |  |  |  |
|                                                                                                                                                            | 200 meters                      | - 86.25 dB          | ↓ -6 dB      |     |  |  |  |  |  |
|                                                                                                                                                            | 500 meters                      | - 94.21 dB          |              |     |  |  |  |  |  |
|                                                                                                                                                            | 1000 meters                     | - 100.23 dB         | ↔ -0 aB      |     |  |  |  |  |  |
|                                                                                                                                                            | 2000 meters                     | - 106.25 dB         | 🖌 -6 dB      |     |  |  |  |  |  |
|                                                                                                                                                            | 5000 meters                     | - 114.21 dB         | <b>1</b>     | 1   |  |  |  |  |  |
|                                                                                                                                                            | 10000 meters                    | - 120.23 dB         | I ↓ -0 aB    |     |  |  |  |  |  |
| © Luciano Bononi 2016 W                                                                                                                                    | ireless Systems and Netw        | orks                |              | /58 |  |  |  |  |  |



