
CS193p!
Winter 2015

Stanford CS193p
Developing Applications for iOS

Winter 2015

CS193p!
Winter 2015

Today
Multiple MVCs

Split View Controllers & Navigation Controllers & Tab Bar Controllers
Segues
Demo: Psychologist
Popovers (time permitting)

CS193p!
Winter 2015

Multiple MVCs
Time to build more powerful applications

To do this, we must combine MVCs …

Examples:
UITabBarController !
UISplitViewController
UINavigationController

iOS provides some Controllers
whose View is “other MVCs”

CS193p!
Winter 2015

UITabBarController
It lets the user choose between different MVCs …

CS193p!
Winter 2015

Puts two MVCs side-by-side …

UISplitViewController

Master Detail

CS193p!
Winter 2015

Pushes and pops MVCs off of a stack (like a stack of cards) …

UINavigationController

An “All Settings” MVC

This top area is drawn by the
UINavigationController

But the contents of the top
area (like the title or any
buttons on the right) are
determined by the MVC
currently showing (in this case,
the “All Settings” MVC)

Each MVC communicates these
contents via its
UIViewController’s
navigationItem property

CS193p!
Winter 2015

Pushes and pops MVCs off of a stack (like a stack of cards) …

UINavigationController

CS193p!
Winter 2015

Pushes and pops MVCs off of a stack (like a stack of cards) …

UINavigationController

A “General Settings” MVC

It’s possible to add MVC-
specific buttons here too via
the UIViewController’s
toolbarItems property

CS193p!
Winter 2015

Pushes and pops MVCs off of a stack (like a stack of cards) …

UINavigationController

A “General Settings” MVC

Notice this “back" button has
appeared. This is placed here
automatically by the
UINavigationController.

CS193p!
Winter 2015

Pushes and pops MVCs off of a stack (like a stack of cards) …

UINavigationController

CS193p!
Winter 2015

Pushes and pops MVCs off of a stack (like a stack of cards) …

UINavigationController

An “Accessibility” MVC

CS193p!
Winter 2015

Pushes and pops MVCs off of a stack (like a stack of cards) …

UINavigationController

CS193p!
Winter 2015

Pushes and pops MVCs off of a stack (like a stack of cards) …

UINavigationController

A “Larger Text” MVC

CS193p!
Winter 2015

Pushes and pops MVCs off of a stack (like a stack of cards) …

UINavigationController

CS193p!
Winter 2015

Pushes and pops MVCs off of a stack (like a stack of cards) …

UINavigationController

CS193p!
Winter 2015

Pushes and pops MVCs off of a stack (like a stack of cards) …

UINavigationController

CS193p!
Winter 2015

Pushes and pops MVCs off of a stack (like a stack of cards) …

UINavigationController

CS193p!
Winter 2015

Pushes and pops MVCs off of a stack (like a stack of cards) …

UINavigationController

CS193p!
Winter 2015

Pushes and pops MVCs off of a stack (like a stack of cards) …

UINavigationController

CS193p!
Winter 2015

UINavigationController

I want more features, but it doesn’t make
sense to put them all in one MVC!

CS193p!
Winter 2015

UINavigationController

So I design a new MVC to
encapsulate that functionality.

CS193p!
Winter 2015

UINavigationController

We can use a UINavigationController
to let them share the screen.

CS193p!
Winter 2015

UINavigationController

UINavigationController
The UINavigationController is a

Controller whose View looks like this.

CS193p!
Winter 2015

UINavigationController

UINavigationController

rootViewController
But it’s special because we can set its

rootViewController outlet to another MVC ...

CS193p!
Winter 2015

UINavigationController

UINavigationController
... and it will embed that MVC’s

View inside its own View.

CS193p!
Winter 2015

UINavigationController

UINavigationController

When a UI element in this View (e.g. a UIButton) is activated,!
it will segue to create a new MVC …

CS193p!
Winter 2015

UINavigationController

UINavigationController

And replace the Navigation Controller’s View with that new MVC’s View.!
We call this kind of segue a “Show (push) segue”.

CS193p!
Winter 2015

UINavigationController

UINavigationController

Notice this Back button
automatically appears.

CS193p!
Winter 2015

UINavigationController

UINavigationController

When we click it, we’ll
go back to the first MVC.

CS193p!
Winter 2015

UINavigationController

UINavigationController

Notice that the other MVC is completely gone.

CS193p!
Winter 2015

Accessing the sub-MVCs
You can get the sub-MVCs via the viewControllers property!
var viewControllers: [UIViewController] { get set } // possibly an optional
// for a tab bar, they are in order, left to right, in the array!
// for a split view, [0] is the master and [1] is the detail!
// for a navigation controller, [0] is the root and the rest are in order on the stack!
// even though this is settable, usually setting happens via storyboard, segues, or other!
// for example, navigation controller’s push and pop methods

But how do you get ahold of the SVC, TBC or NC itself?!
Every UIViewController knows the Split View, Tab Bar or Navigation Controller it is currently in!
These are UIViewController properties …!
var tabBarController: UITabBarController? { get }
var splitViewController: UISplitViewController? { get }
var navigationController: UINavigationController? { get } !
So, for example, to get the detail of the split view controller you are in …!
if let detailVC: UIViewController = splitViewController?.viewControllers[1] { … }

CS193p!
Winter 2015

Wiring up MVCs
How do we wire all this stuff up?

Let’s say we have a Calculator MVC and a Calculator Graphing MVC
How do we hook them up to be the two sides of a Split View?

(and delete all the extra VCs it brings with it)Just drag out a

Then ctrl-drag from the UISplitViewController to the master and detail MVCs …

CS193p!
Winter 2015

Wiring up MVCs

CS193p!
Winter 2015

Wiring up MVCs

CS193p!
Winter 2015

Wiring up MVCs

CS193p!
Winter 2015

Wiring up MVCs

CS193p!
Winter 2015

Wiring up MVCs

CS193p!
Winter 2015

Wiring up MVCs
But split view can only do its thing properly on iPad

So we need to put some Navigation Controllers in there so it will work on iPhone
The Navigation Controllers will be good for iPad too because the MVCs will get titles
The simplest way to wrap a Navigation Controller around an MVC is with Editor->Embed In

This MVC is selected

CS193p!
Winter 2015

Wiring up MVCs
But split view can only do its thing properly on iPad

So we need to put some Navigation Controllers in there so it will work on iPhone
The Navigation Controllers will be good for iPad too because the MVCs will get titles
The simplest way to wrap a Navigation Controller around an MVC is with Editor->Embed In

Now that MVC is part of!
the View of this UINavigationController!

(it’s the rootViewController)

CS193p!
Winter 2015

Wiring up MVCs
But split view can only do its thing properly on iPad

So we need to put some Navigation Controllers in there so it will work on iPhone
The Navigation Controllers will be good for iPad too because the MVCs will get titles
The simplest way to wrap a Navigation Controller around an MVC is with Editor->Embed In

Now that MVC is part of!
the View of this UINavigationController!

(it’s the rootViewController)

And the UINavigationController is part of!
the View of this UISplitViewController!

(it’s the Master, viewControllers[0])

CS193p!
Winter 2015

Wiring up MVCs
But split view can only do its thing properly on iPad

So we need to put some Navigation Controllers in there so it will work on iPhone
The Navigation Controllers will be good for iPad too because the MVCs will get titles
The simplest way to wrap a Navigation Controller around an MVC is with Editor->Embed In

You can put this MVC in a UINavigationController too!
(to give it a title, for example),!

but be careful because the Detail of the UISplitViewController!
would now be a UINavigationController!

(so you’d have to get the UINavigationController’s rootViewController!
if you wanted to talk to the graphing MVC inside)

CS193p!
Winter 2015

Segues
We’ve built up our Controllers of Controllers, now what?

Now we need to make it so that one MVC can cause another to appear
We call that a “segue”

Kinds of segues (they will adapt to their environment)
Show Segue (will push in a Navigation Controller, else Modal)
Show Detail Segue (will show in Detail of a Split View or will push in a Navigation Controller)
Modal Segue (take over the entire screen while the MVC is up)
Popover Segue (make the MVC appear in a little popover window)

Segues always create a new instance of an MVC
This is important to understand
The Detail of a Split View will get replaced with a new instance of that MVC
When you segue in a Navigation Controller it will not segue to some old instance, it’ll be new

CS193p!
Winter 2015

Segues
How do we make these segues happen?

Ctrl-drag in a storyboard from an instigator (like a button) to the MVC to segue to
Can be done in code as well

CS193p!
Winter 2015

Segues

Ctrl-drag from the button!
that causes the graph to appear!

to the MVC of the graph.

CS193p!
Winter 2015

Segues

Select the kind of segue you want.!
Usually Show or Show Detail.

CS193p!
Winter 2015

Segues

Now click on the segue!
and open the Attributes Inspector

CS193p!
Winter 2015

Segues
Give the segue a unique identifier here.!
It should describe what the segue does.

CS193p!
Winter 2015

Segues
What’s that identifier all about?

You would need it to invoke this segue from code using this UIViewController method
func performSegueWithIdentifier(identifier: String, sender: AnyObject?)
(but we almost never do this because we set usually ctrl-drag from the instigator)
The sender can be whatever you want (you’ll see where it shows up in a moment)
You can ctrl-drag from the Controller itself to another Controller if you’re segueing via code
(because in that case, you’ll be specifying the sender above)

More important use of the identifier: preparing for a segue
When a segue happens, the View Controller containing the instigator gets a chance

to prepare the destination View Controller to be segued to
Usually this means setting up the segued-to MVC’s Model and display characteristics
Remember that the MVC segued to is always a fresh instance (never a reused one)

CS193p!
Winter 2015

func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
 if let identifier = segue.identifier {
 switch identifier {
 case “Show Graph”:
 if let vc = segue.destinationViewController as? MyController {
 vc.property1 = …
 vc.callMethodToSetItUp(…)
 }
 default: break
 }
 }
}

The method that is called in the instigator’s Controller

Preparing for a Segue

CS193p!
Winter 2015

func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
 if let identifier = segue.identifier {
 switch identifier {
 case “Show Graph”:
 if let vc = segue.destinationViewController as? MyController {
 vc.property1 = …
 vc.callMethodToSetItUp(…)
 }
 default: break
 }
 }
}

The method that is called in the instigator’s Controller

Preparing for a Segue

The segue passed in contains important information about this segue:!
1. the identifier from the storyboard!
2. the Controller of the MVC you are segueing to (which was just created for you)

CS193p!
Winter 2015

func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
 if let identifier = segue.identifier {
 switch identifier {
 case “Show Graph”:
 if let vc = segue.destinationViewController as? MyController {
 vc.property1 = …
 vc.callMethodToSetItUp(…)
 }
 default: break
 }
 }
}

The method that is called in the instigator’s Controller

Preparing for a Segue

The sender is either the instigating object from a storyboard (e.g. a UIButton)!
 or the sender you provided (see last slide) if you invoked the segue manually in code

CS193p!
Winter 2015

The method that is called in the instigator’s Controller
func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
 if let identifier = segue.identifier {
 switch identifier {
 case “Show Graph”:
 if let vc = segue.destinationViewController as? MyController {
 vc.property1 = …
 vc.callMethodToSetItUp(…)
 }
 default: break
 }
 }
}

Preparing for a Segue

Here is the identifier from the storyboard (it can be nil, so be sure to check for that case)!
Your Controller might support preparing for lots of different segues from different instigators!
 so this identifier is how you’ll know which one you’re preparing for

CS193p!
Winter 2015

For this example, we’ll assume we entered “Show Graph” in the Attributes Inspector!
 when we had the segue selected in the storyboard

func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
 if let identifier = segue.identifier {
 switch identifier {
 case “Show Graph”:
 if let vc = segue.destinationViewController as? CalcGraphController {
 vc.property1 = …
 vc.callMethodToSetItUp(…)
 }
 default: break
 }
 }
}

The method that is called in the instigator’s Controller

Preparing for a Segue

CS193p!
Winter 2015

Here we are looking at the Controller of the MVC we’re segueing to!
It is AnyObject, so we must cast it to the Controller we (should) know it to be

func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
 if let identifier = segue.identifier {
 switch identifier {
 case “Show Graph”:
 if let vc = segue.destinationViewController as? CalcGraphController {
 vc.property1 = …
 vc.callMethodToSetItUp(…)
 }
 default: break
 }
 }
}

The method that is called in the instigator’s Controller

Preparing for a Segue

CS193p!
Winter 2015

This is where the actual preparation of the segued-to MVC occurs!
Hopefully the MVC has a clear public API that it wants you to use to prepare it!
Once the MVC is prepared, it should run on its own power (only using delegation to talk back)

func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
 if let identifier = segue.identifier {
 switch identifier {
 case “Show Graph”:
 if let vc = segue.destinationViewController as? CalcGraphController {
 vc.property1 = …
 vc.callMethodToSetItUp(…)
 }
 default: break
 }
 }
}

The method that is called in the instigator’s Controller

Preparing for a Segue

CS193p!
Winter 2015

func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
 if let identifier = segue.identifier {
 switch identifier {
 case “Show Graph”:
 if let vc = segue.destinationViewController as? CalcGraphController {
 vc.property1 = …
 vc.callMethodToSetItUp(…)
 }
 default: break
 }
 }
}

The method that is called in the instigator’s Controller

Preparing for a Segue

It is crucial to understand that this preparation is happening BEFORE outlets get set!!
It is a very common bug to prepare an MVC thinking its outlets are set.

CS193p!
Winter 2015

Preventing Segues
You can prevent a segue from happening too

Just implement this in your UIViewController …
func shouldPerformSegueWithIdentifier(identifier: String?, sender: AnyObject?) -> Bool
The identifier is the one in the storyboard.
The sender is the instigating object (e.g. the button that is causing the segue).

CS193p!
Winter 2015

Demo
Psychologist

This is all best understood via demonstration
We will create a new Psychologist MVC
The Psychologist will reveal his diagnosis by segueing to the Happiness MVC
We’ll put the MVCs into navigation controllers inside split view controllers
That way, it will work on both iPad and iPhone devices

CS193p!
Winter 2015

Popover
Popovers pop an entire MVC over the rest of the screen

CS193p!
Winter 2015

Popover
Popovers pop an entire MVC over the rest of the screen

A “Search for Appointment” MVC

CS193p!
Winter 2015

Popover
Popovers pop an entire MVC over the rest of the screen

Popover’s arrow!
pointing to what!

caused it to appear

CS193p!
Winter 2015

Popover
Popovers pop an entire MVC over the rest of the screen

The grayed out area here is inactive.!
Touching in it will dismiss the popover.

CS193p!
Winter 2015

Popover
Popovers are not quite the same as these other combiners

Tab Bar, Split View and Navigation Controllers are UIViewControllers, popovers are not

Seguing to a popover works almost exactly the same though
You still ctrl-drag, you still have an identifier, you still get to prepare

Things to note when preparing for a popover segue
All segues are managed via a UIPresentationController (but we’re not going to cover that)
But we are going to talk about a popover’s UIPresentationController
It can tell you what caused the popover to appear (a bar button item or just a rectangle)
And it can let you control how the popover is presented
For example, you can control what direction the popover’s arrow is allowed to point
Or you can control how a popover adapts to different sizes classes (e.g. iPad vs iPhone)

CS193p!
Winter 2015

Here’s a prepareForSegue that prepares for a Popover segue
func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
 if let identifier = segue.identifier {
 switch identifier {
 case “Do Something in a Popover Segue”:
 if let vc = segue.destinationViewController as? MyController {
 if let ppc = vc.popoverPresentationController {
 ppc.permittedArrowDirections = UIPopoverArrowDirection.Any
 ppc.delegate = self
 }

 // more preparation here
 }
 default: break
 }
 }
}

Popover Prepare

One thing that is different is that we are retrieving the popover’s presentation controller

CS193p!
Winter 2015

Here’s a prepareForSegue that prepares for a Popover segue
func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
 if let identifier = segue.identifier {
 switch identifier {
 case “Do Something in a Popover Segue”:
 if let vc = segue.destinationViewController as? MyController {
 if let ppc = vc.popoverPresentationController {
 ppc.permittedArrowDirections = UIPopoverArrowDirection.Any
 ppc.delegate = self
 }

 // more preparation here
 }
 default: break
 }
 }
}

Popover Prepare

We can use it to set some properties that will control how the popover pops up

CS193p!
Winter 2015

Here’s a prepareForSegue that prepares for a Popover segue
func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
 if let identifier = segue.identifier {
 switch identifier {
 case “Do Something in a Popover Segue”:
 if let vc = segue.destinationViewController as? MyController {
 if let ppc = vc.popoverPresentationController {
 ppc.permittedArrowDirections = UIPopoverArrowDirection.Any
 ppc.delegate = self
 }

 // more preparation here
 }
 default: break
 }
 }
}

Popover Prepare

And we can control the presentation by setting ourself (the Controller) as the delegate

CS193p!
Winter 2015

Popover Presentation Controller
What can we control as the presentation controller’s delegate?

One very interesting thing is how a popover “adapts” to different sizes
By default, it will present on compact sizes Modally (i.e. take over the whole screen)
But the delegate can control this “adaptation” behavior, either by preventing it …
func adaptivePresentationStyleForPresentationController(UIPresentationController)

-> UIModalPresentationStyle
{

return UIModalPresentationStyle.None // don’t adapt (default is .FullScreen)
}
… or by allowing the full screen presentation to happen, but modifying the MVC that is put up …
func presentationController(UIPresentationController,

viewControllerForAdaptivePresentationStyle: UIModalPresentatinoStyle)
-> UIViewController?

{
// return a UIViewController to use (e.g. wrap a Navigation Controller around your MVC)

}

CS193p!
Winter 2015

Popover Size
Important Popover Issue: Size

A popover will be made pretty large unless someone tells it otherwise.
The MVC being presented knows best what it’s “preferred” size inside a popover would be.
It expresses that via this property in itself (i.e. in the Controller of the MVC being presented) …
var preferredContentSize: CGSize
The MVC is not guaranteed to be that size, but the system will try its best.

CS193p!
Winter 2015

Demo
Popover in Psychologist

Add a popover that shows the patient’s diagnostic history

