
CS193p!
Winter 2015

Stanford CS193p
Developing Applications for iOS

Winter 2015

CS193p!
Winter 2015

Today
Interface Builder

Demo: Viewing and Editing your custom UIViews in your storyboard (FaceView)

The Happiness MVC’s Model
It’s happiness, of course! (which is different from smiliness)

Protocols and Delegation
How can generic UIViews not “own their data” and still draw that data?
Demo: Showing the Happiness MVC’s Model using generic FaceView in its View

Gestures
Demo: Happiness pinch and pan

Multiple MVCs (time permitting)
Split View Controllers & Navigation Controllers & Tab Bar Controllers
Segues
Popovers

CS193p!
Winter 2015

Extensions
Miscellaneous topic!

You can add methods and properties to a class (even if you don’t have the source).

There are some restrictions
You can’t re-implement methods or properties that are already there (only add new ones).
The properties you add can have no storage associated with them.

This feature is easily abused
It should be used to add clarity to readability not obfuscation!
Don’t use it as a substitute for good object-oriented design technique.
Best used (at least for beginners) for very small, well-contained helper functions.
Can actually be used well to organize code but requires architectural commitment.
When in doubt (for now), don’t do it.

CS193p!
Winter 2015

Protocols
A way to express an API minimally

Instead of forcing the caller to pass a class/struct, we can ask for specifically what we want
We just specify the properties and methods needed

A protocol is a TYPE just like any other type, except …
It has no storage or implementation associated with it
Any storage or implementation required to implement the protocol is in an implementing type
An implementing type can be any class, struct or enum
Otherwise, a protocol can be used as a type to declare variables, as a function parameter, etc.

There are three aspects to a protocol
1. the protocol declaration (what properties and methods are in the protocol)
2. the declaration where a class, struct or enum says that it implements a protocol
3. the actual implementation of the protocol in said class, struct or enum

CS193p!
Winter 2015

Declaration of the protocol itself

Protocols
protocol SomeProtocol : InheritedProtocol1, InheritedProtocol2 {
 var someProperty: Int { get set }
 func aMethod(arg1: Double, anotherArgument: String) -> SomeType
 mutating func changeIt() !
 init(arg: Type)
}

CS193p!
Winter 2015

Declaration of the protocol itself

Protocols

Anyone that implements SomeProtocol must also implement InheritedProtocol1 and 2

protocol SomeProtocol : InheritedProtocol1, InheritedProtocol2 {
 var someProperty: Int { get set }
 func aMethod(arg1: Double, anotherArgument: String) -> SomeType
 mutating func changeIt() !
 init(arg: Type)
}

CS193p!
Winter 2015

Declaration of the protocol itself

Protocols

Anyone that implements SomeProtocol must also implement InheritedProtocol1 and 2
You must specify whether a property is get only or both get and set

protocol SomeProtocol : InheritedProtocol1, InheritedProtocol2 {
 var someProperty: Int { get set }
 func aMethod(arg1: Double, anotherArgument: String) -> SomeType
 mutating func changeIt() !
 init(arg: Type)
}

CS193p!
Winter 2015

Declaration of the protocol itself

Protocols

Anyone that implements SomeProtocol must also implement InheritedProtocol1 and 2
You must specify whether a property is get only or both get and set
Any functions that are expected to mutate the receiver should be marked mutating

protocol SomeProtocol : InheritedProtocol1, InheritedProtocol2 {
 var someProperty: Int { get set }
 func aMethod(arg1: Double, anotherArgument: String) -> SomeType
 mutating func changeIt() !
 init(arg: Type)
}

CS193p!
Winter 2015

Declaration of the protocol itself

Protocols

Anyone that implements SomeProtocol must also implement InheritedProtocol1 and 2
You must specify whether a property is get only or both get and set
Any functions that are expected to mutate the receiver should be marked mutating
(unless you are going to restrict your protocol to class implementers only with class keyword)

protocol SomeProtocol : class, InheritedProtocol1, InheritedProtocol2 {
 var someProperty: Int { get set }
 func aMethod(arg1: Double, anotherArgument: String) -> SomeType
 mutating func changeIt() !
 init(arg: Type)
}

CS193p!
Winter 2015

Declaration of the protocol itself

Protocols

Anyone that implements SomeProtocol must also implement InheritedProtocol1 and 2
You must specify whether a property is get only or both get and set
Any functions that are expected to mutate the receiver should be marked mutating
(unless you are going to restrict your protocol to class implementers only with class keyword)
You can even specify that implementers must implement a given initializer

protocol SomeProtocol : InheritedProtocol1, InheritedProtocol2 {
 var someProperty: Int { get set }
 func aMethod(arg1: Double, anotherArgument: String) -> SomeType
 mutating func changeIt() !
 init(arg: Type)
}

CS193p!
Winter 2015

How an implementer says “I implement that protocol”
class SomeClass : SuperclassOfSomeClass, SomeProtocol, AnotherProtocol { !
 // implementation of SomeClass here!
 // which must include all the properties and methods in SomeProtocol & AnotherProtocol
}

Protocols

Claims of conformance to protocols are listed after the superclass for a class

CS193p!
Winter 2015

enum SomeEnum : SomeProtocol, AnotherProtocol { !
 // implementation of SomeEnum here!
 // which must include all the properties and methods in SomeProtocol & AnotherProtocol
}

How an implementer says “I implement that protocol”

Protocols

Claims of conformance to protocols are listed after the superclass for a class
Obviously, enums and structs would not have the superclass part

CS193p!
Winter 2015

struct SomeStruct : SomeProtocol, AnotherProtocol { !
 // implementation of SomeStruct here!
 // which must include all the properties and methods in SomeProtocol & AnotherProtocol
}

How an implementer says “I implement that protocol”

Protocols

Claims of conformance to protocols are listed after the superclass for a class
Obviously, enums and structs would not have the superclass part

CS193p!
Winter 2015

struct SomeStruct : SomeProtocol, AnotherProtocol { !
 // implementation of SomeStruct here!
 // which must include all the properties and methods in SomeProtocol & AnotherProtocol
}

How an implementer says “I implement that protocol”

Protocols

Claims of conformance to protocols are listed after the superclass for a class
Obviously, enums and structs would not have the superclass part
Any number of protocols can be implemented by a given class, struct or enum

CS193p!
Winter 2015

How an implementer says “I implement that protocol”
class SomeClass : SuperclassOfSomeClass, SomeProtocol, AnotherProtocol { !
 // implementation of SomeClass here, including …!
 required init(…)
}

Protocols

Claims of conformance to protocols are listed after the superclass for a class
Obviously, enums and structs would not have the superclass part
Any number of protocols can be implemented by a given class, struct or enum
In a class, inits must be marked required (or otherwise a subclass might not conform)

CS193p!
Winter 2015

How an implementer says “I implement that protocol”
extension Something : SomeProtocol { !
 // implementation of SomeProtocol here!
 // no stored properties though!
}

Protocols

Claims of conformance to protocols are listed after the superclass for a class
Obviously, enums and structs would not have the superclass part
Any number of protocols can be implemented by a given class, struct or enum
In a class, inits must be marked required (or otherwise a subclass might not conform)
You are allowed to add protocol conformance via an extension

CS193p!
Winter 2015

Using protocols like the type that they are!

Protocols
var thingToMove: Moveable = prius
thingToMove.moveTo(…)
thingToMove.changeOil()
thingToMove = square
let thingsToMove: [Moveable] = [prius, square]

func slide(slider: Moveable) {
 let positionToSlideTo = …
 slider.moveTo(positionToSlideTo)
}
slide(prius)
slide(square)
func slipAndSlide(x: protocol<Slippery,Moveable>)
slipAndSlide(prius)

protocol Moveable {
 mutating func moveTo(p: CGPoint)
}
class Car : Moveable {
 func moveTo(p: CGPoint) { … }
 func changeOil()
}
struct Shape : Moveable {
 mutating func moveTo(p: CGPoint) { … }
 func draw()
}

let prius: Car = Car()
let square: Shape = Shape()

CS193p!
Winter 2015

Controller

View
delegate

data source

should

will did

countdata
at

Delegation
A very important use of protocols

It’s how we can implement “blind communication” between a View and its Controller

CS193p!
Winter 2015

Delegation
A very important use of protocols

It’s how we can implement “blind communication” between a View and its Controller

How it plays out …
1. Create a delegation protocol (defines what the View wants the Controller to take care of)
2. Create a delegate property in the View whose type is that delegation protocol
3. Use the delegate property in the View to get/do things it can’t own or control
4. Controller declares that it implements the protocol
5. Controller sets self as the delegate of the View by setting the property in #2 above
6. Implement the protocol in the Controller

Now the View is hooked up to the Controller
But the View still has no idea what the Controller is, so the View remains generic/reusable

CS193p!
Winter 2015

Demo
Let’s see FaceView delegate its “data”

That way FaceView can stay generic
It won’t be tied to HappinessViewController, so it can be used by other Controllers
Since it’s doing this to get its data (its smiliness), we’ll call our delegate property dataSource

CS193p!
Winter 2015

Gestures
We’ve seen how to draw in a UIView, how do we get touches?

We can get notified of the raw touch events (touch down, moved, up, etc.)
Or we can react to certain, predefined “gestures.” The latter is the way to go!

Gestures are recognized by instances of UIGestureRecognizer
The base class is “abstract.” We only actually use concrete subclasses to recognize.

There are two sides to using a gesture recognizer
1. Adding a gesture recognizer to a UIView (asking the UIView to “recognize” that gesture)
2. Providing a method to “handle” that gesture (not necessarily handled by the UIView)

Usually the first is done by a Controller
Though occasionally a UIView will do this itself if the gesture is integral to its existence

The second is provided either by the UIView or a Controller
Depending on the situation. We’ll see an example of both in our demo.

CS193p!
Winter 2015

Adding a gesture recognizer to a UIView
Imagine we wanted a UIView in our Controller’s View to recognize a “pan” gesture …
@IBOutlet weak var pannableView: UIView {
 didSet {
 let recognizer = UIPanGestureRecognizer(target: self, action: “pan:”)
 pannableView.addGestureRecognizer(recognizer)
 }
}

Gestures

This is just a normal outlet to the UIView we want to recognize the gesture

CS193p!
Winter 2015

Adding a gesture recognizer to a UIView
Imagine we wanted a UIView in our Controller’s View to recognize a “pan” gesture …
@IBOutlet weak var pannableView: UIView {
 didSet {
 let recognizer = UIPanGestureRecognizer(target: self, action: “pan:”)
 pannableView.addGestureRecognizer(recognizer)
 }
}

Gestures

This is just a normal outlet to the UIView we want to recognize the gesture
We use its property observer to get involved when the outlet gets hooked up by iOS

CS193p!
Winter 2015

Adding a gesture recognizer to a UIView
Imagine we wanted a UIView in our Controller’s View to recognize a “pan” gesture …
@IBOutlet weak var pannableView: UIView {
 didSet {
 let recognizer = UIPanGestureRecognizer(target: self, action: “pan:”)
 pannableView.addGestureRecognizer(recognizer)
 }
}

Gestures

This is just a normal outlet to the UIView we want to recognize the gesture
We use its property observer to get involved when the outlet gets hooked up by iOS
Here we are creating an instance of a concrete subclass of UIGestureRecognizer (for pans)

CS193p!
Winter 2015

Adding a gesture recognizer to a UIView
Imagine we wanted a UIView in our Controller’s View to recognize a “pan” gesture …
@IBOutlet weak var pannableView: UIView {
 didSet {
 let recognizer = UIPanGestureRecognizer(target: self, action: “pan:”)
 pannableView.addGestureRecognizer(recognizer)
 }
}

Gestures

This is just a normal outlet to the UIView we want to recognize the gesture
We use its property observer to get involved when the outlet gets hooked up by iOS
Here we are creating an instance of a concrete subclass of UIGestureRecognizer (for pans)
The target gets notified when the gesture is recognized (in this case, the Controller itself)

CS193p!
Winter 2015

Adding a gesture recognizer to a UIView
Imagine we wanted a UIView in our Controller’s View to recognize a “pan” gesture …
@IBOutlet weak var pannableView: UIView {
 didSet {
 let recognizer = UIPanGestureRecognizer(target: self, action: “pan:”)
 pannableView.addGestureRecognizer(recognizer)
 }
}

Gestures

This is just a normal outlet to the UIView we want to recognize the gesture
We use its property observer to get involved when the outlet gets hooked up by iOS
Here we are creating an instance of a concrete subclass of UIGestureRecognizer (for pans)
The target gets notified when the gesture is recognized (in this case, the Controller itself)
The action is the method invoked on recognition (the : means it has an argument)

CS193p!
Winter 2015

Adding a gesture recognizer to a UIView
Imagine we wanted a UIView in our Controller’s View to recognize a “pan” gesture …
@IBOutlet weak var pannableView: UIView {
 didSet {
 let recognizer = UIPanGestureRecognizer(target: self, action: “pan:”)
 pannableView.addGestureRecognizer(recognizer)
 }
}

Gestures

This is just a normal outlet to the UIView we want to recognize the gesture
We use its property observer to get involved when the outlet gets hooked up by iOS
Here we are creating an instance of a concrete subclass of UIGestureRecognizer (for pans)
The target gets notified when the gesture is recognized (in this case, the Controller itself)
The action is the method invoked on recognition (the : means it has an argument)
Here we ask the UIView to actually start trying to recognize this gesture in its bounds

CS193p!
Winter 2015

Adding a gesture recognizer to a UIView
Imagine we wanted a UIView in our Controller’s View to recognize a “pan” gesture …
@IBOutlet weak var pannableView: UIView {
 didSet {
 let recognizer = UIPanGestureRecognizer(target: self, action: “pan:”)
 pannableView.addGestureRecognizer(recognizer)
 }
}

Gestures

This is just a normal outlet to the UIView we want to recognize the gesture
We use its property observer to get involved when the outlet gets hooked up by iOS
Here we are creating an instance of a concrete subclass of UIGestureRecognizer (for pans)
The target gets notified when the gesture is recognized (in this case, the Controller itself)
The action is the method invoked on recognition (the : means it has an argument)
Here we ask the UIView to actually start trying to recognize this gesture in its bounds
Let’s talk about how we implement the handler …

@IBOutlet weak var pannableView: UIView {
 didSet {
 let recognizer = UIPanGestureRecognizer(target: self, action: “pan:”)
 pannableView.addGestureRecognizer(recognizer)
 }
}

CS193p!
Winter 2015

Gestures
A handler for a gesture needs gesture-specific information

So each concrete subclass provides special methods for handling that type of gesture

For example, UIPanGestureRecognizer provides 3 methods
func translationInView(view: UIView) -> CGPoint // cumulative since start of recognition
func velocityInView(view: UIView) -> CGPoint // how fast the finger is moving (points/s)
func setTranslation(translation: CGPoint, inView: UIView)
This last one is interesting because it allows you to reset the translation so far
By resetting the translation to zero all the time, you end up getting “incremental” translation

The abstract superclass also provides state information
var state: UIGestureRecognizerState { get }
This sits around in .Possible until recognition starts
For a discrete gesture (e.g. a Swipe), it changes to .Recognized (Tap is not a normal discrete)
For a continues gesture (e.g. a Pan), it moves from .Began thru repeated .Changed to .Ended
It can go to .Failed or .Cancelled too, so watch out for those!

CS193p!
Winter 2015

So, given this information, what would the pan handler look like?
func pan(gesture: UIPanGestureRecognizer) {
 switch gesture.state {
 case .Changed: fallthrough
 case .Ended:
 let translation = gesture.translationInView(pannableView)
 // update anything that depends on the pan gesture using translation.x and .y
 gesture.setTranslation(CGPointZero, inView: pannableView)
 default: break
 }
}

Gestures

Remember that the action was “pan:” (if no colon, we would not get the gesture argument)

CS193p!
Winter 2015

So, given this information, what would the pan handler look like?
func pan(gesture: UIPanGestureRecognizer) {
 switch gesture.state {
 case .Changed: fallthrough
 case .Ended:
 let translation = gesture.translationInView(pannableView)
 // update anything that depends on the pan gesture using translation.x and .y
 gesture.setTranslation(CGPointZero, inView: pannableView)
 default: break
 }
}

Gestures

Remember that the action was “pan:” (if no colon, we would not get the gesture argument)
We are only going to do anything when the finger moves or lifts up off the device’s surface

CS193p!
Winter 2015

So, given this information, what would the pan handler look like?
func pan(gesture: UIPanGestureRecognizer) {
 switch gesture.state {
 case .Changed: fallthrough
 case .Ended:
 let translation = gesture.translationInView(pannableView)
 // update anything that depends on the pan gesture using translation.x and .y
 gesture.setTranslation(CGPointZero, inView: pannableView)
 default: break
 }
}

Gestures

Remember that the action was “pan:” (if no colon, we would not get the gesture argument)
We are only going to do anything when the finger moves or lifts up off the device’s surface
fallthrough means “execute the code for the next case down”

CS193p!
Winter 2015

So, given this information, what would the pan handler look like?
func pan(gesture: UIPanGestureRecognizer) {
 switch gesture.state {
 case .Changed: fallthrough
 case .Ended:
 let translation = gesture.translationInView(pannableView)
 // update anything that depends on the pan gesture using translation.x and .y
 gesture.setTranslation(CGPointZero, inView: pannableView)
 default: break
 }
}

Gestures

Remember that the action was “pan:” (if no colon, we would not get the gesture argument)
We are only going to do anything when the finger moves or lifts up off the device’s surface
fallthrough means “execute the code for the next case down”
Here we get the location of the pan in the pannableView’s coordinate system

CS193p!
Winter 2015

So, given this information, what would the pan handler look like?
func pan(gesture: UIPanGestureRecognizer) {
 switch gesture.state {
 case .Changed: fallthrough
 case .Ended:
 let translation = gesture.translationInView(pannableView)
 // update anything that depends on the pan gesture using translation.x and .y
 gesture.setTranslation(CGPointZero, inView: pannableView)
 default: break
 }
}

Gestures

Remember that the action was “pan:” (if no colon, we would not get the gesture argument)
We are only going to do anything when the finger moves or lifts up off the device’s surface
fallthrough means “execute the code for the next case down”
Here we get the location of the pan in the pannableView’s coordinate system
Now we do whatever we want with that information

CS193p!
Winter 2015

So, given this information, what would the pan handler look like?
func pan(gesture: UIPanGestureRecognizer) {
 switch gesture.state {
 case .Changed: fallthrough
 case .Ended:
 let translation = gesture.translationInView(pannableView)
 // update anything that depends on the pan gesture using translation.x and .y
 gesture.setTranslation(CGPointZero, inView: pannableView)
 default: break
 }
}

Gestures

Remember that the action was “pan:” (if no colon, we would not get the gesture argument)
We are only going to do anything when the finger moves or lifts up off the device’s surface
fallthrough means “execute the code for the next case down”
Here we get the location of the pan in the pannableView’s coordinate system
Now we do whatever we want with that information
By resetting the translation, the next one we get will be how much it moved since this one

CS193p!
Winter 2015

Gestures
UIPinchGestureRecognizer
var scale: CGFloat // not read-only (can reset)
var velocity: CGFloat { get } // scale factor per second

UIRotationGestureRecognizer
var rotation: CGFloat // not read-only (can reset); in radians
var velocity: CGFloat { get } // radians per second

UISwipeGestureRecognizer
Set up the direction and number of fingers you want, then look for .Recognized
var direction: UISwipeGestureRecoginzerDirection // which swipes you want
var numberOfTouchesRequired: Int // finger count

UITapGestureRecognizer
Set up the number of taps and fingers you want, then look for .Ended
var numberOfTapsRequired: Int // single tap, double tap, etc.
var numberOfTouchesRequired: Int // finger count

CS193p!
Winter 2015

Demo
FaceView Gestures

Add a gesture recognizer (pinch) to the FaceView to zoom in and out (control its own scale)
Add a gesture recognizer (pan) to the FaceView to control happiness (Model) in the Controller

