
CS193p!
Winter 2015

Stanford CS193p
Developing Applications for iOS 

Winter 2015



CS193p!
Winter 2015

Today
Objective-C Compatibility

Bridging

Property List
NSUserDefaults
Demo: var program in CalculatorBrain

Views
Custom Drawing

Demo
FaceView



CS193p!
Winter 2015

Objective-C Compatibility
Bridging

iOS was developed in a language called Objective-C.
Virtually all of the iOS API is accessible seamlessly from Swift.
A few special data types are handled specially (and powerfully) via bridging.
Bridging means that you can use the interchangeably.

NSString is bridged to String

NSArray is bridged to Array<AnyObject>

NSDictionary is bridged to Dictionary<NSObject, AnyObject>

Int, Float, Double, Bool are all bridged to NSNumber (but not vice-versa)
To get from NSNumber to these types use doubleValue, intValue, etc.
Int, Float, Double also bridged to the C types int, float, double



CS193p!
Winter 2015

Objective-C Compatibility
Casting to/from bridged types

You can also “cast” (reliably, i.e. no need for as?) to/from a bridged type
let length = (aString as NSString).length // length is an NSString method (be careful!)
(anArray as NSArray).componentsJoinedByString(NSString) // cjbs is a NSArray method

String, Array and Dictionary are structs, not objects (classes)
But they can still be an AnyObject
That’s because they are bridged to these NS versions which are objects

The keys in an NSDictionary are NSObject subclasses (Dictionary<NSObject, AnyObject>)
But that does not prevent a Swift String from being a key in an NSDictionary
That’s because it is bridged to NSString which does inherit from NSObject

You won’t even notice this bridging 99% of the time



CS193p!
Winter 2015

Property List
What is a Property List?

Property List is really just the definition of a term
It means an AnyObject which is known to be a collection of objects which are ONLY one of …

NSString, NSArray, NSDictionary, NSNumber, NSData, NSDate
e.g. an NSDictionary whose keys were NSString and values were NSArray of NSDate is one

In Swift, the definition of Property List is exactly the same and the bridging all works
Handling Property Lists usually requires a fair amount of casting (i.e. is and as)
That’s because it’s an AnyObject, so you have to figure out if it’s what you expect

Property Lists are used to pass around data “blindly”
The semantics of the contents of a Property List are known only to its creator

Property Lists are also used as a “generic data structure”
And so can be passed to API that reads/writes generic data …



CS193p!
Winter 2015

NSUserDefaults
A storage mechanism for Property List data

It’s essentially a very tiny database that stores Propery List data.
It persists between launchings of your application!
Great for things like “settings” and such.
Do not use it for anything big!

It can store/retrieve entire Property Lists by name (keys) …
setObject(AnyObject, forKey: String) // the AnyObject must be a Property List
objectForKey(String) -> AnyObject?
arrayForKey(String) -> Array<AnyObject>? // returns nil if value is not set or not an array

It can also store/retrieve little pieces of data …
setDouble(Double, forKey: String)
doubleForKey(String) -> Double // not an optional, returns 0 if no such key



CS193p!
Winter 2015

NSUserDefaults
Using NSUserDefaults

Get the defaults reader/writer …
let defaults = NSUserDefaults.standardUserDefaults()

Then read and write …
let plist: AnyObject = defaults.objectForKey(String)
defaults.setObject(AnyObject, forKey: String) // AnyObject must be a PropertyList

Your changes will be automatically saved.
But you can be sure they are saved at any time by synchronizing …
if !defaults.synchronize() { /* failed! not much you can do about it */ }
(it’s not “free” to synchronize, but it’s not that expensive either)



CS193p!
Winter 2015

Demo
Add a public property, program, to CalculatorBrain

It sets or gets the CalculatorBrain’s “program”.
It will be a Property List (i.e. AnyObject, but built from known pieces).
Callers won’t have any idea what kind of object it is!
The value is only good for saving/resetting the CalculatorBrain’s program.



CS193p!
Winter 2015

Views
A view (i.e. UIView subclass) represents a rectangular area

Defines a coordinate space
For drawing
And for handling touch events

Hierarchical
A view has only one superview … var superview: UIView?
But it can have many (or zero) subviews … var subviews: [UIView] *

* aside: it’s actually [AnyObject], but on slides, I’ll note what is actually in an array
The order in the subviews array matters: those later in the array are on top of those earlier
A view can clip its subviews to its own bounds or not (the default is not to)

UIWindow
The UIView at the very, very top of the view hierarchy (even includes status bar)
Usually only one UIWindow in an entire iOS application … it’s all about views, not windows



CS193p!
Winter 2015

Views
The hierarchy is most often constructed in Xcode graphically

Even custom views are usually added to the view hierarchy using Xcode

But it can be done in code as well
addSubview(aView: UIView) // sent to aView’s (soon to be) superview
removeFromSuperview() // this is sent to the view you want to remove (not its superview)

Where does the view hierarchy start?
The top of the (useable) view hierarchy is the Controller’s var view: UIView.
This simple property is a very important thing to understand!
This view is the one whose bounds will change on rotation, for example.
This view is likely the one you will programmatically add subviews to (if you ever do that).
All of your MVC’s View’s UIViews will have this view as an ancestor.
It’s automatically hooked up for you when you create an MVC in Xcode.



CS193p!
Winter 2015

Initializing a UIView
As always, try to avoid an initializer if possible

But having one in UIView is slightly more common than having a UIViewController initializer

A UIView’s initializer is different if it comes out of a storyboard
init(frame: CGRect) // initializer if the UIView is created in code
init(coder: NSCoder) // initializer if the UIView comes out of a storyboard

If you need an initializer, implement them both …
func setup() { … }

override init(frame: CGRect) { // a designed initializer
super.init(frame: frame)
setup()

}
required init(coder aDecoder: NSCoder) { // a required initializer

super.init(coder: aDecoder)
setup()

}



CS193p!
Winter 2015

Initializing a UIView
Another alternative to initializers in UIView …
awakeFromNib() // this is only called if the UIView came out of a storyboard
This is not an initializer (it’s called immediately after initialization is complete)
All objects that inherit from NSObject in a storyboard are sent this (if they implement it)
Order is not guaranteed, so you cannot message any other objects in the storyboard here



CS193p!
Winter 2015

Coordinate System Data Structures
CGFloat
Always use this instead of Double or Float for anything to do with a UIView’s coordinate system
You can convert from a Double or Float using let cfg = CGFloat(aDouble)

CGPoint
Simply a struct with two CGFloats in it: x and y.
var point = CGPoint(x: 37.0, y: 55.2)
point.y -= 30
point.x += 20.0

CGSize
Also a struct with two CGFloats in it: width and height.
var size = CGSize(width: 100.0, height: 50.0)
size.width += 42.5
size.height += 75



CS193p!
Winter 2015

Coordinate System Data Structures
CGRect
A struct with a CGPoint and a CGSize in it …
struct CGRect {

var origin: CGPoint
var size: CGSize

}
let rect = CGRect(origin: aCGPoint, size: aCGSize) // there are other inits as well

Lots of convenient properties and functions on CGRect like …
var minX: CGFloat // left edge
var midY: CGFloat // midpoint vertically
intersects(CGRect) -> Bool // does this CGRect intersect this other one?
intersect(CGRect) // clip the CGRect to the intersection with the other one
contains(CGPoint) -> Bool // does the CGRect contain the given CGPoint?
… and many more (make yourself a CGRect and type . after it to see more)



CS193p!
Winter 2015

View Coordinate System
Origin is upper left
Units are points, not pixels

Pixels are the minimum-sized unit of drawing your device is capable of
Points are the units in the coordinate system
Most of the time there are 2 pixels per point, but it could be only 1 or something else
How many pixels per point are there? UIView’s var contentScaleFactor: CGFloat

The boundaries of where drawing happens
var bounds: CGRect // a view’s internal drawing space’s origin and size
This is the rectangle containing the drawing space in its own coordinate system
It is up to your view’s implementation to interpret what bounds.origin means (often nothing)

Where is the UIView?
var center: CGPoint // the center of a UIView in its superview’s coordinate system
var frame: CGRect // the rect containing a UIView in its superview’s coordinate system

(0,0) increasing x

increasing y

(500, 35)



CS193p!
Winter 2015

bounds vs frame
Use frame and/or center to position a UIView

These are never used to draw inside a view’s coordinate system (i.e. for positioning only)
You might think frame.size is always equal to bounds.size, but you’d be wrong …

View A

View B

300, 225 20025
0 0, 0

320

320

140, 65 Views can be rotated (and scaled and translated)

View B’s bounds = ((0,0),(200,250))
View B’s frame = ((140,65),(320,320))
View B’s center = (300,225)

View B’s middle in its own coordinates is …
(bounds.midX, bounds.midY) = (100, 125)

Views are rarely rotated, but don’t misuse
frame or center anyway by assuming that.



CS193p!
Winter 2015

// assuming this code is in a UIViewController

view.addSubview(label)

Creating Views
Most often your views are created via your storyboard

Xcode’s Object Palette has a generic UIView you can drag out
After you do that, you must use the Identity Inspector to changes its class to your subclass

On rare occasion, you will create a UIView via code
You can use the frame initializer … let newView = UIView(frame: myViewFrame)
Or you can just use let newView = UIView() (frame will be CGRectZero)

Example
let labelRect = CGRect(x: 20, y: 20, width: 100, height: 50)
let label = UILabel(frame: labelRect) // UILabel is a subclass of UIView
label.text = “Hello”

Hello



CS193p!
Winter 2015

Custom Views
When would I create my own UIView subclass?

I want to do some custom drawing on screen
I need to handle touch events in a special way (i.e. different than a button or slider does)
We’ll talk about handling touch events in a bit. First we’ll focus on drawing.

To draw, just create a UIView subclass and override drawRect:
override func drawRect(regionThatNeedsToBeDrawn: CGRect)
You can draw outside the regionThatNeedsToBeDrawn, but it’s never required
The regionThatNeedsToBeDrawn is purely an optimization

NEVER call drawRect!! EVER! Or else!
Instead, if you view needs to be redrawn, let the system know that by calling …
setNeedsDisplay()
setNeedsDisplayInRect(regionThatNeedsToBeRedrawn: CGRect)
iOS will then call your drawRect at an appropriate time



CS193p!
Winter 2015

Custom Views
So how do I implement my drawRect?

You can use a C-like (non object-oriented) API called Core Graphics
Or you can use the object-oriented UIBezierPath class (which is how we’ll do it)

Core Graphics Concepts
You get a context to draw into (could be printing context, drawing context, etc.)
The function UIGraphicsGetCurrentContext() gives a context you can use in drawRect
Create paths (out of lines, arcs, etc.)
Set drawing attributes like colors, fonts, textures, linewidths, linecaps, etc.
Stroke or fill the above-created paths with the given attributes

UIBezierPath
Same as above, but captures all the drawing with a UIBezierPath instance
UIBezierPath automatically draws in the “current” context (drawRect sets this up for you)
Methods for adding to the UIBezierPath (lineto, arcs, etc.) and setting linewidth, etc.
Methods to stroke or fill the UIBezierPath



CS193p!
Winter 2015

Create a UIBezierPath
let path = UIBezierPath()

Move around, add lines or arcs to the path
path.moveToPoint(CGPoint(80, 50)) // assume screen is 160x250
path.addLineToPoint(CGPoint(140, 150))

Defining a Path



CS193p!
Winter 2015

Create a UIBezierPath
let path = UIBezierPath()

Move around, add lines or arcs to the path
path.moveToPoint(CGPoint(80, 50)) // assume screen is 160x250
path.addLineToPoint(CGPoint(140, 150))
path.addLineToPoint(CGPoint(10, 150))

Defining a Path



CS193p!
Winter 2015

Create a UIBezierPath
let path = UIBezierPath()

Move around, add lines or arcs to the path
path.moveToPoint(CGPoint(80, 50)) // assume screen is 160x250
path.addLineToPoint(CGPoint(140, 150))
path.addLineToPoint(CGPoint(10, 150))

Close the path (if you want)
path.closePath()

Defining a Path



CS193p!
Winter 2015

Create a UIBezierPath
let path = UIBezierPath()

Move around, add lines or arcs to the path
path.moveToPoint(CGPoint(80, 50)) // assume screen is 160x250
path.addLineToPoint(CGPoint(140, 150))
path.addLineToPoint(CGPoint(10, 150))

Close the path (if you want)
path.closePath()

Now that you have a path, set attributes and stroke/fill
UIColor.greenColor().setFill() // note this is a method in UIColor, not UIBezierPath
UIColor.redColor().setStroke() // note this is a method in UIColor, not UIBezierPath
path.linewidth = 3.0 // note this is a property in UIBezierPath, not UIColor

Defining a Path



CS193p!
Winter 2015

Create a UIBezierPath
let path = UIBezierPath()

Move around, add lines or arcs to the path
path.moveToPoint(CGPoint(80, 50)) // assume screen is 160x250
path.addLineToPoint(CGPoint(140, 150))
path.addLineToPoint(CGPoint(10, 150))

Close the path (if you want)
path.closePath()

Now that you have a path, set attributes and stroke/fill
UIColor.greenColor().setFill() // note this is a method in UIColor, not UIBezierPath
UIColor.redColor().setStroke() // note this is a method in UIColor, not UIBezierPath
path.linewidth = 3.0 // note this is a property in UIBezierPath, not UIColor
path.fill()

Defining a Path



CS193p!
Winter 2015

Create a UIBezierPath
let path = UIBezierPath()

Move around, add lines or arcs to the path
path.moveToPoint(CGPoint(80, 50)) // assume screen is 160x250
path.addLineToPoint(CGPoint(140, 150))
path.addLineToPoint(CGPoint(10, 150))

Close the path (if you want)
path.closePath()

Now that you have a path, set attributes and stroke/fill
UIColor.greenColor().setFill() // note this is a method in UIColor, not UIBezierPath
UIColor.redColor().setStroke() // note this is a method in UIColor, not UIBezierPath
path.linewidth = 3.0 // note this is a property in UIBezierPath, not UIColor
path.fill()
path.stroke()

Defining a Path



CS193p!
Winter 2015

Drawing
You can also draw common shapes with UIBezierPath
let roundRect = UIBezierPath(roundedRect: aCGRect, cornerRadius: aCGFloat)
let oval = UIBezierPath(ovalInRect: aCGRect)
… and others

Clipping your drawing to a UIBezierPath’s path
addClip()
For example, you could clip to a rounded rect to enforce the edges of a playing card

Hit detection
func containsPoint(CGPoint) -> Bool // returns whether the point is inside the path
The path must be closed. The winding rule can be set with usesEvenOddFillRule property.

Etc.
Lots of other stuff. Check out the documentation.



CS193p!
Winter 2015

UIColor
Colors are set using UIColor

There are type methods for standard colors, e.g. let green = UIColor.greenColor()
You can also create them from RGB, HSB or even a pattern (using UIImage)

Background color of a UIView
var backgroundColor: UIColor

Colors can have alpha (transparency)
let transparentYellow = UIColor.yellowColor().colorWithAlphaComponent(0.5)
Alpha is between 0.0 (fully transparent) and 1.0 (fully opaque)

If you want to draw in your view with transparency …
You must let the system know by setting the UIView var opaque = false

You can make your entire UIView transparent …
var alpha: CGFloat



CS193p!
Winter 2015

View Transparency
What happens when views overlap and have transparency?

As mentioned before, subviews list order determines who is in front
Lower ones (earlier in the array) can “show through” transparent views on top of them
Transparency is not cheap, by the way, so use it wisely

Completely hiding a view without removing it from hierarchy
var hidden: Bool
A hidden view will draw nothing on screen and get no events either
Not as uncommon as you might think to temporarily hide a view



CS193p!
Winter 2015

Drawing Text
Usually we use a UILabel to put text on screen

But there are certainly occasions where we want to draw text in our drawRect

To draw in drawRect, use NSAttributedString
let text = NSAttributedString(“hello”)
text.drawAtPoint(aCGPoint)
let textSize: CGSize = text.size // how much space the string will take up

Mutability is done with NSMutableAttributedString
It is not like String (i.e. where let means immutable and var means mutable)
You use a different class if you want to make a mutable attributed string …
let mutableText = NSMutableAttributedString(“some string”)

NSAttributedString is not a String, nor an NSString
You can get its contents as an NSString with its string or mutableString property



CS193p!
Winter 2015

Attributed String
Setting attributes on an attributed string
func setAttributes(attributes: Dictionary, range: NSRange)
func addAttributes(attributes: Dictionary, range: NSRange)
Warning! This is a pre-Swift API. NSRange is not a Range.
And indexing into the string is using old-style indexing (not String.Index).

Attributes
NSForegroundColorAttributeName : UIColor
NSStrokeWidthAttributeName : CGFloat
NSFontAttributeName : UIFont
See the documentation under NSAttributedString(NSStringDrawing) for (many) more.



CS193p!
Winter 2015

Fonts
Fonts in iOS 7 and later are very important to get right!

They are fundamental to the look and feel of the UI



CS193p!
Winter 2015

Fonts
The absolutely best way to get a font in code

Get preferred font for a given text style (e.g. body, etc.) using this UIFont type method …
class func preferredFontForTextStyle(UIFontTextStyle) -> UIFont
Some of the styles (see UIFontDescriptor documentation for more) …
UIFontTextStyle.Headline
UIFontTextStyle.Body
UIFontTextStyle.Footnote

There are also “system fonts”
These appear usually on things like buttons
class func systemFontOfSize(pointSize: CGFloat) -> UIFont
class func boldSystemFontOfSize(pointSize: CGFloat) -> UIFont
Don’t use these for your user’s content. Use preferred fonts for that.

Other ways to get fonts
Check out UIFont and UIFontDescriptor for more, but you should not need that very often



CS193p!
Winter 2015

Drawing Images
There is a UILabel-equivalent for images
UIImageView
But, again, you might want to draw the image inside your drawRect …

Creating a UIImage object
let image: UIImage? = UIImage(named: “foo”) // note that its optional
You add foo.jpg to your project in the Images.xcassets file (we’ve ignored this so far)
Images will have different resolutions for different devices (all managed in Images.xcassets)

You can also create one from files in the file system
(But we haven’t talked about getting at files in the file system … anyway …)
let image: UIImage? = UIImage(contentsOfFile: aString)
let image: UIImage? = UIImage(data: anNSData) // raw jpg, png, tiff, etc. image data

You can even create one by drawing with Core Graphics
See documentation for UIGraphicsBeginImageContext(CGSize)



CS193p!
Winter 2015

Drawing Images
Once you have a UIImage, you can blast its bits on screen
let image: UIImage = …
image.drawAtPoint(aCGPoint) // the upper left corner of the image put at aCGPoint
image.drawInRect(aCGRect) // scales the image to fit aCGRect
image.drawAsPatternInRect(aCGRect) // tiles the image into aCGRect



CS193p!
Winter 2015

Redraw on bounds change?
By default, when a UIView’s bounds changes, there is no redraw

Instead, the “bits” of the existing image are scaled to the new bounds size

This is often not what you want …
Luckily, there is a UIView property to control this! It can be set in Xcode too.
var contentMode: UIViewContentMode

UIViewContentMode
Don’t scale the view, just place it somewhere …
.Left/.Right/.Top/.Bottom/.TopRight/.TopLeft/.BottomRight/.BottomLeft/.Center
Scale the “bits” of the view …
.ScaleToFill/.ScaleAspectFill/.ScaleAspectFit // .ScaleToFill is the default
Redraw by calling drawRect again
.Redraw



CS193p!
Winter 2015

Demo
FaceView

Create a custom UIView subclass to draw a face with a specified amount of “smiliness”


