
CS193p!
Winter 2015

Stanford CS193p
Developing Applications for iOS 

Winter 2015



CS193p!
Winter 2015

Today
View Controller Lifecycle

Tracking what is going on with your View Controller
Brief Demo

Autolayout
Review
Size Classes
Demos



CS193p!
Winter 2015

View Controller Lifecycle
View Controllers have a “Lifecycle”

A sequence of messages is sent to a View Controller as it progresses through its “lifetime”.

Why does this matter?
You very commonly override these methods to do certain work.

The start of the lifecycle …
Creation.
MVCs are most often instantiated out of a storyboard (as you’ve seen).
There are ways to do it in code (rare) as well which we may cover later in the quarter.

What then?
Preparation if being segued to.
Outlet setting.
Appearing and disappearing.
Geometry changes.
Low-memory situations.



CS193p!
Winter 2015

View Controller Lifecycle
After instantiation and outlet-setting, viewDidLoad is called

This is an exceptionally good place to put a lot of setup code.
It’s better than an init because your outlets are all set up by the time this is called.

override func viewDidLoad() {
super.viewDidLoad() // always let super have a chance in lifecycle methods
// do some setup of my MVC

}

One thing you may well want to do here is update your UI from your Model.
Because now you know all of your outlets are set.

But be careful because the geometry of your view (its bounds) is not set yet!
At this point, you can’t be sure you’re on an iPhone 5-sized screen or an iPad or ???.
So do not initialize things that are geometry-dependent here.



CS193p!
Winter 2015

View Controller Lifecycle
Just before your view appears on screen, you get notified
func viewWillAppear(animated: Bool) // animated is whether you are appearing over time

Your view will only get “loaded” once, but it might appear and disappear a lot.
So don’t put something in this method that really wants to be in viewDidLoad.
Otherwise, you might be doing something over and over unnecessarily.

Do something here if things your display is changing while your MVC is off-screen.

You could use this to optimize performance by waiting until this method is called
(as opposed to viewDidLoad) to kick off an expensive operation (probably in another thread).

Your view’s geometry is set here, but there are other places to react to geometry.

There is a “did” version of this as well
func viewDidAppear(animated: Bool)



CS193p!
Winter 2015

View Controller Lifecycle
And you get notified when you will disappear off screen too

This is where you put “remember what’s going on” and cleanup code.
override func viewWillDisappear(animated: Bool) {

super.viewWillDisappear(animated) // call super in all the viewWill/Did... methods
// do some clean up now that we’ve been removed from the screen
// but be careful not to do anything time-consuming here, or app will be sluggish
// maybe even kick off a thread to do stuff here (again, we’ll cover threads later)

}

There is a “did” version of this too
func viewDidDisappear(animated: Bool)



CS193p!
Winter 2015

View Controller Lifecycle
Geometry changed?
Most of the time this will be automatically handled with Autolayout.

You can reset the frames of your subviews here or set other geometry-related properties.

These methods might be called more often than you’d imagine
(e.g. for pre- and post- animation arrangement, etc.).

So don’t do anything in here that can’t properly (and efficiently) be done repeatedly.

Between “will” and “did”, autolayout will happen.

But you can get involved in geometry changes directly with these methods …
func viewWillLayoutSubviews()
func viewDidLayoutSubviews()
They are called any time a view’s frame changed and its subviews were thus re-layed out.
For example, autorotation (more on this in a moment).



CS193p!
Winter 2015

View Controller Lifecycle
Autorotation

Usually, the UI changes shape when the user rotates the device between portrait/landscape
You can control which orientations your app supports in the Settings of your project

But if you, for example, want to participate in the rotation animation, you can use this method …

func viewWillTransitionToSize(
size: CGSize,
withTransitionCoordinator: UIViewControllerTransitionCoordinator

)

Almost always, your UI just responds naturally to rotation with autolayout

The coordinator provides a method to animate alongside the rotation animation
We are not going to be talking about animation, though, for a couple of weeks
So this is just something to put in the back of your mind (i.e. that it exists) for now



CS193p!
Winter 2015

View Controller Lifecycle
In low-memory situations, didReceiveMemoryWarning gets called ...

This rarely happens, but well-designed code with big-ticket memory uses might anticipate it.
Examples: images and sounds.
Anything “big” that is not currently in use and can be recreated relatively easily

should probably be released (by setting any pointers to it to nil)



CS193p!
Winter 2015

View Controller Lifecycle
awakeFromNib

This method is sent to all objects that come out of a storyboard (including your Controller).
Happens before outlets are set! (i.e. before the MVC is “loaded”)
Put code somewhere else if at all possible (e.g. viewDidLoad or viewWillAppear).



CS193p!
Winter 2015

View Controller Lifecycle
Summary

Instantiated (from storyboard usually)
awakeFromNib
segue preparation happens
outlets get set
viewDidLoad
These pairs will be called each time your Controller’s view goes on/off screen …

viewWillAppear and viewDidAppear
viewWillDisappear and viewDidDisappear

These “geometry changed” methods might be called at any time after viewDidLoad …
viewWillLayoutSubviews (… then autolayout happens, then …) viewDidLayoutSubviews

If memory gets low, you might get …
didReceiveMemoryWarning



CS193p!
Winter 2015

View Controller Lifecycle
Demo

Let’s plop some println statements into the View Controller Lifecycle methods in Psychologist
Then we can watch as Psychologist and Happiness MVCs go through their lifecycle



CS193p!
Winter 2015

Autolayout
You’ve seen a lot of Autolayout already

Using the dashed blue lines to try to tell Xcode what you intend
Ctrl-Dragging between views to create relationships (spacing, etc.)
The “Pin” and “Arrange” popovers in the lower right of the storyboard
Reset to Suggested Constraints (if the blue lines were enough to unambiguously set constraints)
Document Outline (see all constraints, resolve misplacements and even conflicts)
Size Inspector (look at (and edit!) the details of the constraints on the selected view)
Clicking on a constraint to select it then bring up Attributes Inspector (to edit its details)

Mastering Autolayout requires experience
You just have to do it to learn it

Autolayout can be done from code too
Though you’re probably better off doing it in the storyboard wherever possible
The demo today will show a simple case of doing Autolayout from code



CS193p!
Winter 2015

Autolayout
What about rotation?

Sometimes rotating changes the geometry so drastically that autolayout is not enough
You actually need to reposition the views to make them fit properly

Calculator
For example, what if we had 20 buttons in a Calculator?
It might be better in Landscape to have the buttons 5 across and 4 down
Versus in Portrait have them 4 across and 5 down

View Controllers might want this in other situations too
For example, your MVC is the master of a side-by-side split view
In that case, you’d want to draw just like a Portrait iPhone does

The solution? Size Classes
Your View Controller always exists in a certain “size class” environment for width and height
Currently this is either Compact or Regular (i.e. not compact)



CS193p!
Winter 2015

Autolayout
iPhone 6+

The iPhone 6+ in Portrait orientation is Compact in width and Regular in height
In Landscape, it is Compact in height and Regular in width

iPhone
Other iPhones in Portrait are also Compact in width and Regular in height
But in Landscape, non-6+ iPhones are treated as Compact in both dimensions

iPad
Always Regular in both dimensions
An MVC that is the master in a side-by-side split view will be Compact width, Regular height

Extensible
This whole concept is extensible to any “MVC’s inside other MVC’s” situation (not just split view)
An MVC can find out its size class environment via this method in UIViewController …
let mySizeClass: UIUserInterfaceSizeClass = self.traitCollection.horizontalSizeClass
The return value is an enum .Compact or .Regular (or .Unspecified).



CS193p!
Winter 2015

Size Classes
Compact

Compact

Regular

Regular

Horizontal

Vertical



CS193p!
Winter 2015

Size Classes
Compact

Compact

Regular

Regular

Horizontal

Vertical

Any

Any



CS193p!
Winter 2015

Demos
ShowSizeClass

A trivial app to take a look at how we react to size class differences in our storyboard

Autolayout
Let’s pull it all together by building a UI that has some Autolayout challenges
Including needing to do something different in different size classes

A Challenge to You!
After watching today, see if you can make your Calculator react to size class changes
For example, change the number of rows and columns in different size class situations
Or even show more operations in one size class or another (like Apple’s Calculator app does)


