
CS193p!
Winter 2015

Stanford CS193p
Developing Applications for iOS

Winter 2015

CS193p!
Winter 2015

Today
More Swift & the Foundation Framework

Optionals and enum
Array<T>, Dictionary<K,V>, Range<T>, et. al.
Data Structures in Swift
Methods
Properties
Initialization
AnyObject, introspection and casting (is and as)
Helpful Methods and Functions
String vs. NSString, Array vs. NSArray, Dictionary vs. NSDictionary
Property List
NSUserDefaults

CS193p!
Winter 2015

Optional
An Optional is just an enum

Conceptually it is like this (the <T> is a generic like as in Array<T>) …
enum Optional<T> {

case None
case Some(T)

}

let x: String? = nil
… is …
let x = Optional<String>.None

let x: String? = “hello”
… is …
let x = Optional<String>.Some(“hello”)

var y = x!
… is …
switch x {

case Some(let value): y = value
case None: // raise an exception

}

CS193p!
Winter 2015

Array
Array
var a = Array<String>()
… is the same as …
var a = [String]()

let animals = [“Giraffe”, “Cow”, “Doggie”, “Bird”]
animals.append(“Ostrich”) // won’t compile, animals is immutable (because of let)
let animal = animals[5] // crash (array index out of bounds)

// enumerating an Array
for animal in animals {

println(“\(animal)”)
}

CS193p!
Winter 2015

Dictionary
Dictionary
var pac10teamRankings = Dictionary<String, Int>()
… is the same as …
var pac10teamRankings = [String:Int]()

pac10teamRankings = [”Stanford”:1, ”Cal”:10]
let ranking = pac10teamRankings[“Ohio State”] // ranking is an Int? (would be nil)

// use a tuple with for-in to enumerate a Dictionary
for (key, value) in pac10teamRankings {

println(“\(key) = \(value)”)
}

CS193p!
Winter 2015

Range
Range

A Range in Swift is just two end points of a sensible type (not gonna explain right now)
Range is generic (e.g. Range<T>)
This is sort of a pseudo-representation of Range:
struct Range<T> {

var startIndex: T
var endIndex: T

}
An Array’s range would be a Range<Int> (since Arrays are indexed by Int)
Warning: A String subrange is not Range<Int> (it is Range<String.Index> … we’ll talk later!)

There is special syntax for specifying a Range: either ... (inclusive) or ..< (open-ended)
let array = [“a”,”b”,”c”,”d”]
let subArray1 = array[2...3] // subArray1 will be [“c”,”d”]
let subArray2 = array[2..<3] // subArray2 will be [“c”]
for i in 27...104 { } // Range is enumeratable, like Array, String, Dictionary

CS193p!
Winter 2015

Other Classes
NSObject

Base class for all Objective-C classes
Some advanced features will require you to subclass from NSObject (and it can’t hurt to do so)

NSNumber
Generic number-holding class
let n = NSNumber(35.5)
let intversion = n.intValue // also doubleValue, boolValue, etc.

NSDate
Used to find out the date and time right now or to store past or future dates.
See also NSCalendar, NSDateFormatter, NSDateComponents
If you are displaying a date in your UI, there are localization ramifications, so check these out!

NSData
A “bag o’ bits”. Used to save/restore/transmit raw data throughout the iOS SDK.

CS193p!
Winter 2015

Classes, Structures and Enumerations
These are the 3 fundamental building blocks of data structures in Swift

Similarities
Declaration syntax …

class CalculatorBrain {

}
struct Vertex {

}
enum Op {

}

Data Structures in Swift

CS193p!
Winter 2015

Classes, Structures and Enumerations
These are the 3 fundamental building blocks of data structures in Swift

Similarities
Declaration syntax …
Properties and Functions …

func doit(argument: Type) -> ReturnValue {

}

var storedProperty = <initial value> (not enum)

var computedProperty: Type {
 get {}
 set {}
}

Data Structures in Swift

CS193p!
Winter 2015

Classes, Structures and Enumerations
These are the 3 fundamental building blocks of data structures in Swift

Similarities
Declaration syntax …
Properties and Functions …
Initializers (again, not enum) …

init(argument1: Type, argument2: Type, …) {

}

Data Structures in Swift

CS193p!
Winter 2015

Classes, Structures and Enumerations
These are the 3 fundamental building blocks of data structures in Swift

Similarities
Declaration syntax …
Properties and Functions …
Initializers (again, not enum) …

Differences
Inheritance (class only)
Introspection and casting (class only)
Value type (struct, enum) vs. Reference type (class)

Data Structures in Swift

CS193p!
Winter 2015

Value (struct and enum)
Copied when passed as an argument to a function
Copied when assigned to a different variable
Immutable if assigned to a variable with let
Remember that function parameters are, by default, constants
You can put the keyword var on an parameter, and it will be mutable, but it’s still a copy
You must note any func that can mutate a struct/enum with the keyword mutating

Reference (class)
Stored in the heap and reference counted (automatically)
Constant pointers to a class (let) still can mutate by calling methods and changing properties
When passed as an argument, does not make a copy (just passing a pointer to same instance)

Choosing which to use?
Usually you will choose class over struct. struct tends to be more for fundamental types.
Use of enum is situational (any time you have a type of data with discrete values).

Value vs. Reference

CS193p!
Winter 2015

Obviously you can override methods/properties in your superclass
Precede your func or var with the keyword override
A method can be marked final which will prevent subclasses from being able to override
Classes can also be marked final

Both types and instances can have methods/properties
For this example, lets consider the struct Double (yes, Double is a struct)
var d: Double = …
if d.isSignMinus {

d = Double.abs(d)
}

isSignMinus is an instance property of a Double (you send it to a particular Double)
abs is a type method of Double (you send it to the type itself, not to a particular Double)
You declare a type method or property with a static prefix (or class in a class) …
static func abs(d: Double) -> Double

Methods

CS193p!
Winter 2015

Parameters Names
All parameters to all functions have an internal name and an external name
The internal name is the name of the local variable you use inside the method

Methods

func foo(external internal: Int) {
 let local = internal
}

func bar() {
 let result = foo(external: 123)
}

CS193p!
Winter 2015

Parameters Names
All parameters to all functions have an internal name and an external name
The internal name is the name of the local variable you use inside the method
The external name is what callers will use to call the method

Methods

func foo(external internal: Int) {
 let local = internal
}

func bar() {
 let result = foo(external: 123)
}

CS193p!
Winter 2015

Parameters Names
All parameters to all functions have an internal name and an external name
The internal name is the name of the local variable you use inside the method
The external name is what callers will use to call the method
You can put _ if you don’t want callers to use an external name at all for a given parameter

Methods

func foo(_ internal: Int) {
 let local = internal
}

func bar() {
 let result = foo(123)
}

CS193p!
Winter 2015

Parameters Names
All parameters to all functions have an internal name and an external name
The internal name is the name of the local variable you use inside the method
The external name is what callers will use to call the method
You can put _ if you don’t want callers to use an external name at all for a given parameter
An _ is the default for the first parameter (only) in a method (but not for init methods)

Methods

func foo(internal: Int) {
 let local = internal
}

func bar() {
 let result = foo(123)
}

CS193p!
Winter 2015

Parameters Names
All parameters to all functions have an internal name and an external name
The internal name is the name of the local variable you use inside the method
The external name is what callers will use to call the method
You can put _ if you don’t want callers to use an external name at all for a given parameter
An _ is the default for the first parameter (only) in a method (but not for init methods)
You can force the first parameter’s external name to be the internal name with #

Methods

func foo(#internal: Int) {
 let local = internal
}

func bar() {
 let result = foo(internal: 123)
}

CS193p!
Winter 2015

Parameters Names
All parameters to all functions have an internal name and an external name
The internal name is the name of the local variable you use inside the method
The external name is what callers will use to call the method
You can put _ if you don’t want callers to use an external name at all for a given parameter
An _ is the default for the first parameter (only) in a method (but not for init methods)
You can force the first parameter’s external name to be the internal name with #
For other (not the first) parameters, the internal name is, by default, the external name

Methods

func foo(first: Int, second: Double) {
 let local = internal
}

func bar() {
 let result = foo(123, second: 5.5)
}

CS193p!
Winter 2015

Parameters Names
All parameters to all functions have an internal name and an external name
The internal name is the name of the local variable you use inside the method
The external name is what callers will use to call the method
You can put _ if you don’t want callers to use an external name at all for a given parameter
An _ is the default for the first parameter (only) in a method (but not for init methods)
You can force the first parameter’s external name to be the internal name with #
For other (not the first) parameters, the internal name is, by default, the external name
Any parameter’s external name can be changed

Methods

func foo(first: Int, externalSecond second: Double) {
 let local = internal
}

func bar() {
 let result = foo(123, externalSecond: 5.5)
}

CS193p!
Winter 2015

Parameters Names
All parameters to all functions have an internal name and an external name
The internal name is the name of the local variable you use inside the method
The external name is what callers will use to call the method
You can put _ if you don’t want callers to use an external name at all for a given parameter
An _ is the default for the first parameter (only) in a method (but not for init methods)
You can force the first parameter’s external name to be the internal name with #
For other (not the first) parameters, the internal name is, by default, the external name
Any parameter’s external name can be changed
Or even omitted (though this would be sort of “anti-Swift”)

Methods

func foo(first: Int, _ second: Double) {
 let local = internal
}

func bar() {
 let result = foo(123, 5.5)
}

CS193p!
Winter 2015

Property Observers
You can observe changes to any property with willSet and didSet

var someStoredProperty: Int = 42 {
 willSet { newValue is the new value }
 didSet { oldValue is the old value }
}

override var inheritedProperty {
 willSet { newValue is the new value }
 didSet { oldValue is the old value }
}

Properties

CS193p!
Winter 2015

Property Observers
You can observe changes to any property with willSet and didSet
One very common thing to do in an observer in a Controller is to update the user-interface

Lazy Initialization
A lazy property does not get initialized until someone accesses it
You can allocate an object, execute a closure, or call a method if you want

This still satisfies the “you must initialize all of your properties” rule
Unfortunately, things initialized this way can’t be constants (i.e., var ok, let not okay)
This can be used to get around some initialization dependency conundrums

lazy var brain = CalculatorBrain() // nice if CalculatorBrain used lots of resources

lazy var someProperty: Type = {
// construct the value of someProperty here
return <the constructed value>

}()

lazy var myProperty = self.initializeMyProperty()

Properties

CS193p!
Winter 2015

When is an init method needed?
init methods are not so common because properties can have their defaults set using =
Or properties might be Optionals, in which case they start out nil
You can also initialize a property by executing a closure
Or use lazy instantiation
So you only need init when a value can’t be set in any of these ways

You also get some “free” init methods
If all properties in a base class (no superclass) have defaults, you get init() for free
If a struct has no initializers, it will get a default one with all properties as arguments

Initialization

struct MyStruct {
var x: Int = 42
var y: String = “moltuae”

init(x: Int, y: String) // comes for free
}

CS193p!
Winter 2015

What can you do inside an init?
You can set any property’s value, even those with default values
Constant properties (i.e. properties declared with let) can be set
You can call other init methods in your own class using self.init(<args>)
In a class, you can of course also call super.init(<args>)
But there are some rules for calling inits from inits in a class …

Initialization

CS193p!
Winter 2015

What are you required to do inside init?
By the time any init is done, all properties must have values (optionals can have the value nil)
There are two types of inits in a class, convenience and designated (i.e. not convenience)
A designated init must (and can only) call a designated init that is in its immediate superclass
You must initialize all properties introduced by your class before calling a superclass’s init
You must call a superclass’s init before you assign a value to an inherited property
A convenience init must (and can only) call a designated init in its own class
A convenience init may call a designated init indirectly (through another convenience init)
A convenience init must call a designated init before it can set any property values
The calling of other inits must be complete before you can access properties or invoke methods

Initialization

CS193p!
Winter 2015

Inheriting init
If you do not implement any designated inits, you’ll inherit all of your superclass’s designateds
If you override all of your superclass’s designated inits, you’ll inherit all its convenience inits
If you implement no inits, you’ll inherit all of your superclass’s inits
Any init inherited by these rules qualifies to satisfy any of the rules on the previous slide

Required init
A class can mark one or more of its init methods as required
Any subclass must implement said init methods (though they can be inherited per above rules)

Initialization

CS193p!
Winter 2015

Failable init
If an init is declared with a ? (or !) after the word init, it returns an Optional
init?(arg1: Type1, …) {

// might return nil in here
}
These are rare.
Note: The documentation does not seem to properly show these inits!
But you’ll be able to tell because the compiler will warn you about the type when you access it.

let image = UIImage(named: “foo”) // image is an Optional UIImage (i.e. UIImage?)
Usually we would use if-let for these cases …
if let image = UIImage(named: “foo”) {

// image was successfully created
} else {

// couldn’t create the image
}

Initialization

CS193p!
Winter 2015

Creating Objects
Usually you create an object by calling it’s initializer via the type name …
let x = CalculatorBrain()
let y = ComplicatedObject(arg1: 42, arg2: “hello”, …)
let z = [String]()

But sometimes you create objects by calling type methods in classes …
let button = UIButton.buttonWithType(UIButtonType.System)

Or obviously sometimes other objects will create objects for you …
let commaSeparatedArrayElements: String = “,”.join(myArray)

Initialization

CS193p!
Winter 2015

Special “Type” (actually it’s a Protocol)
Used primarily for compatibility with existing Objective-C-based APIs

Where will you see it?
As properties (either singularly or as an array of them), e.g. …
var destinationViewController: AnyObject
var toolbarItems: [AnyObject]

… or as arguments to functions …
func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject)
func addConstraints(constraints: [AnyObject])
func appendDigit(sender: AnyObject)

… or even as return types from functions …
class func buttonWithType(buttonType: UIButtonType) -> AnyObject

AnyObject

CS193p!
Winter 2015

How do we use AnyObject?
We don’t usually use it directly
Instead, we convert it to another, known type

How do we convert it?
We need to create a new variable which is of a known object type (i.e. not AnyObject)
Then we assign this new variable to hold the thing that is AnyObject
Of course, that new variable has to be of a compatible type
If we try to force the AnyObject into something incompatible, crash!
But there are ways to check compatibility (either before forcing or while forcing) …

AnyObject

CS193p!
Winter 2015

Casting AnyObject
We “force” an AnyObject to be something else by “casting” it using the as keyword …

Let’s use var destinationViewController: AnyObject as an example …

let calcVC = destinationViewController as CalculatorViewController
… this would crash if dvc was not, in fact, a CalculatorViewController (or subclass thereof)

To protect against a crash, we can use if let with as? …
if let calcVC = destinationViewController as? CalculatorViewController { … }
… as? returns an Optional (calcVC = nil if dvc was not a CalculatorViewController)

Or we can check before we even try to do as with the is keyword …
if destinationViewController is CalculatorViewController { … }

AnyObject

CS193p!
Winter 2015

Casting Arrays of AnyObject
If you’re dealing with an [AnyObject], you can cast the elements or the entire array …

Let’s use var toolbarItems: [AnyObject] as an example …

for item in toolbarItems { // item’s type is AnyObject
if let toolbarItem = item as? UIBarButtonItem {

// do something with the toolbarItem (which will be a UIBarButtonItem here)
}

}

… or …
for toolbarItem in toolbarItems as [UIBarButtonItem] { // better be so, else crash!

// do something with the toolbarItem (which will be a UIBarButtonItem)
}
// can’t do as? here because then it might be “for toolbarItem in nil” (makes no sense)

AnyObject

CS193p!
Winter 2015

Another example …
Remember when we wired up our Actions in our storyboard?
The default in the dialog that popped up was AnyObject.
We changed it to UIButton.
But what if we hadn’t changed it to UIButton?
How would we have implemented appendDigit?
@IBAction func appendDigit(sender: AnyObject) {

if let sendingButton = sender as? UIButton {
let digit = sendingButton.currentTitle!
…

}
}

AnyObject

CS193p!
Winter 2015

Yet another example …
It is possible to create a button in code using a UIButton type method …
let button: AnyObject = UIButton.buttonWithType(UIButtonType.System)

The type of this button is AnyObject (for historical reasons only)
To use it, we’d have to cast button to UIButton

We can do this on the fly if we want …
let title = (button as UIButton).currentTitle
Again, this would crash if button was not, in fact, a UIButton

AnyObject

CS193p!
Winter 2015

Casting is not just for AnyObject
You can cast with as (or check with is) any object pointer that makes sense

For example …

let vc: UIViewController = CalculatorViewController()
The type of vc is UIViewController (because we explicitly typed it to be)
And the assignment is legal because a CalculatorViewController is a UIViewController
But we can’t say, for example, vc.enter()

if let calcVC = vc as? CalculatorViewController {
// in here we could say calcVC.enter() if we wanted to

}

Casting

CS193p!
Winter 2015

Functions
Some Array<T> Methods
+= [T] // not += T
first -> T? // note optional
last -> T? // note optional

var a = [a,b,c] // assume a, b, c are of some type (the same type)

append(T)
insert(T, atIndex: Int) // a.insert(d, atIndex:1), a = [a,d,b,c]
splice(Array<T>, atIndex: Int) // a.splice([d,e], atIndex:1), a = [a,d,e,b,c]

removeAtIndex(Int) // a.removeAtIndex(1), a = [a,c]
removeRange(Range) // a.removeRange(0..<2), a = [c]
replaceRange(Range, [T]) // a.replaceRange(0...1, with: [x,y,z]), a = [x,y,z,b]

sort(isOrderedBefore: (T, T) -> Bool) // e.g., a.sort { $0 < $1 }

CS193p!
Winter 2015

Functions
More Array<T> Methods

This one creates a new array with any “undesirables” filtered out
The function passed as the argument returns false if an element is undesirable
filter(includeElement: (T) -> Bool) -> [T]

Create a new array by transforming each element to something different
The thing it is transformed to can be of a different type than what is in the Array
map(transform: (T) -> U) -> [U]
let stringified: [String] = [1,2,3].map { “\($0)” }

Reduce an entire array to a single value
reduce(initial: U, combine: (U, T) -> U) -> U
let sum: Int = [1,2,3].reduce(0) { $0 + $1 } // adds up the numbers in the Array

CS193p!
Winter 2015

String
String.Index

In Unicode, a given glyph might be represented by multiple Unicode characters (accents, etc.)
As a result, you can’t index a String by Int (because it’s a collection of characters, not glyphs)

So a lot of native Swift String functions take a String.Index to specify which glyph you want
You can get a String.Index by asking the string for its startIndex then advancing forward
You advance forward with the function (not method) advance(String.Index, Int)

var s = “hello”
let index = advance(s.startIndex, 2) // index is a String.Index to the 3rd glyph, “l”
s.splice(“abc”, index) // s will now be “heabcllo” (abc inserted at 2)
let startIndex = advance(s.startIndex, 1)
let endIndex = advance(s.startIndex, 6)
let substring = s[index..<endIndex] // substring will be “eabcl”

CS193p!
Winter 2015

String
String.Index

The method rangeOfString returns an Optional Range<String.Index>
As an example, to get whole number part of a string representing a double …
let num = “56.25”
if let decimalRange = num.rangeOfString(“.”) { // decimalRange is Range<String.Index>

let wholeNumberPart = num[num.startIndex..<decimalRange.startIndex]
}

We could remove the whole number part using this method …
s.removeRange([s.startIndex..<decimalRange.startIndex])
(there are other (defaulted) arguments to removeRange, but I’m not going to cover them now)

There’s also replaceRange(Range, String)

CS193p!
Winter 2015

String
Other String Methods
description -> String // Printable
endIndex -> String.Index
hasPrefix(String) -> Bool
hasSuffix(String) -> Bool
toInt() -> Int? // no toDouble (# of sig digits? etc.)
capitalizedString -> String
lowercaseString -> String
uppercaseString -> String
join(Array) -> String // “,”.join([“1”,”2”,”3”]) = “1,2,3”
componentsSeparatedByString(String) -> [String] // “1,2,3”.csbs(“,”) = [“1”,”2”,”3”]

CS193p!
Winter 2015

Type Conversion
Conversion between types with init()

A sort of “hidden” way to convert between types is to create a new object by converting

let d: Double = 37.5
let f: Float = 37.5
let x = Int(d) // truncates
let xd = Double(x)
let cgf = CGFloat(d) // we’ll see CGFloat later in the quarter

let a = Array(“abc”) // a = [“a”,”b”,”c”], i.e. array of Character
let s = String([“a”,”b”,”c”]) // s = “abc” (the array is of Character, not String)

let s = String(52) // no floats
let s = “\(37.5)” // but don’t forget about this mechanism

CS193p!
Winter 2015

Assertions
Debugging Aid

Intentionally crash your program if some condition is not true (and give a message)
assert(() -> Bool, “message”)
The function argument is an “autoclosure” however, so you don’t need the { }

e.g. assert(validation() != nil, “the validation function returned nil”)
Will crash if validation() returns nil (because we are asserting that validation() does not)
The validation() != nil part could be any code you want

When building for release (to the AppStore or whatever), asserts are ignored completely

