Techniques for analysis of algorithms

Luciano Bononi and Moreno Marzolla

bononi@cs.unibo.it

Department of Computer Science Engineering, University of Bologna

23 aprile 2012

Copyright ©2012 Luciano Bononi and Moreno Marzolla, University of Bologna

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

Computation Model

Let's consider a computation model composed of a register-based machine as follows:

- It has a input and a output device;
- The machine has N memory locations, addressed from 1 to N; every memory location can contain a value (integer, real, etc.);
- Read or write access to each memory location requires constant time;
- The machine has a set of registers to store parameters needed for basic operations, and the pointer to current operation;
- The machine has a program composed by a finite set of instructions.

Computational Cost

Definition

Let f(n) be the amount of resources (execution time or memory requested) needed by an algorithm on a input of size n, executed on a register-based machine.

We want to study the *order of magnitude* of f(n) by ignoring the multiplicative constants and the terms of lower magnitude.

Computational cost metric

Evaluating the real execution time of a program to estimate the computational cost has a number of disadvantages:

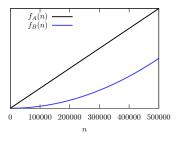
- To implement a given algorithm could be time consuming activity;
- Execution time is dependent on the given architecture used (programming language used, machine and CPU characteristics, etc.);
- We could be interested to know the computational cost metric for input size too wide for the machine available;
- To estimate the order of magnitude of the cost metric from empirical measures is nto always possible;

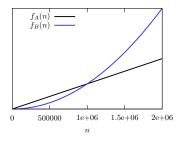
Computational Cost Example

Let's conider two algorithms *A* e *B* resolving the same problem.

- Let $f_A(n) = 10^3 n$ be the computational cost of A;
- Let $f_B(n) = 10^{-3}n^2$ be the computational cost of B.

Which one is preferable?





Asymptotic notation O(f(n))

Definition

Given a cost function f(n), we define the set O(f(n)) as the set of functions g(n) such that constants c > 0 e $n_0 \ge 0$ exist, such that the following conditions are satisfied:

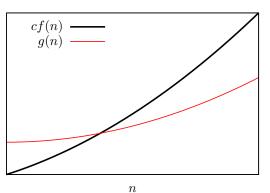
$$\forall n \geq n_0 : g(n) \leq cf(n)$$

Or synthetically:

$$O(f(n)) = \{g(n) : \exists c > 0, n_0 \ge 0 \text{ such that } \forall n \ge n_0 : g(n) \le cf(n)\}$$

Note: we use the notation (though not formally correct) g(n) = O(f(n)) to indicate $g(n) \in O(f(n))$.

Graphical representation



Example

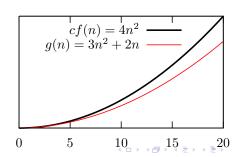
Let $g(n) = 3n^2 + 2n$ and $f(n) = n^2$. We want to prove that g(n) = O(f(n)).

We must find two constants c > 0, $n_0 \ge 0$ such that $g(n) \le cf(n)$ for each $n \ge n_0$, in other words:

$$3n^2 + 2n \le cn^2 \tag{1}$$

$$c\geq \frac{3n^2+2n}{n^2}=3+\frac{2}{n}$$

as an example, let's select $n_0 = 10$ and c = 4, and we see that relation (1) is satisfied.



Asymptotic notation $\Omega(f(n))$

Definition

Given a cost function f(n), we define the set $\Omega(f(n))$ as the set of functions g(n) such that constants c > 0 e $n_0 \ge 0$ exist, such that the following conditions are satisfied:

$$\forall n \geq n_0 : g(n) \geq cf(n)$$

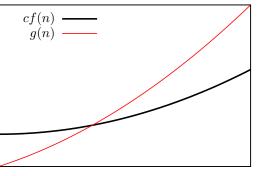
More shortly:

$$\Omega(f(n)) = \{g(n) \ : \ \exists c > 0, n_0 \geq 0 \text{ such that } \forall n \geq n_0 : g(n) \geq cf(n)\}$$

Note: we use the notation $g(n) = \Omega(f(n))$ to indicate $g(n) \in \Omega(f(n))$.

Graphical representation

$$g(n) = \Omega(f(n))$$



Example

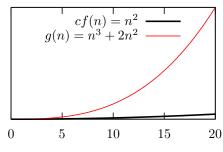
Let $g(n) = n^3 + 2n^2$ and $f(n) = n^2$, and let's prove that $g(n) = \Omega(f(n))$.

We must find two constrants c > 0, $n_0 \ge 0$ such that, for any $n \ge n_0$ then $g(n) \ge cf(n)$, in other words:

$$n^3 + 2n^2 \ge cn^2 \tag{2}$$

$$c \le \frac{n^3 + 2n^2}{n^2} = n + 2$$

as an example, by selecting $n_0 = 0$ and c = 1, the relation (2) holds.



Asymptotical notation $\Theta(f(n))$

Definition

Given a cost function f(n), we define the set $\Theta(f(n))$ as the set of functions g(n) such that constants $c_1 > 0$, $c_2 > 0$ and $n_0 \ge 0$ exist, such that the following conditions are satisfied:

$$\forall n \geq n_0 : c_1 f(n) \leq g(n) \leq c_2 f(n)$$

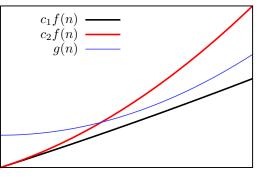
Synthetically:

$$\Theta(f(n)) = \{g(n) : \exists c_1 > 0, c_2 > 0, n_0 \ge 0 \text{ such that} \\ \forall n \ge n_0 : c_1 f(n) \le g(n) \le c_2 f(n)\}$$

Note: we use the notation $g(n) = \Theta(f(n))$ to indicate $g(n) \in \Theta(f(n))$.

Graphical representation

$$g(n) = \Theta(f(n))$$



Intuitive explanation

- If g(n) = O(f(n)) this means that the order of magnitude of g(n) is "less or equal" than f(n);
- If $g(n) = \Theta(f(n))$ this means that g(n) and f(n) have the same order of magnitude;
- Se $g(n) = \Omega(f(n))$ this means that the order of magnitude of g(n) is "greater or equal" than f(n)

Some properties of the asymptotical notation

Simmetry

$$g(n) = \Theta(f(n))$$
 if and only if $f(n) = \Theta(g(n))$

Transposed Simmetry

$$g(n) = O(f(n))$$
 iff $f(n) = \Omega(g(n))$

Transitivity

If
$$g(n) = O(f(n))$$
 and $f(n) = O(h(n))$, then $g(n) = O(h(n))$.
The same holds for Ω and Θ .

Orders of magnitude

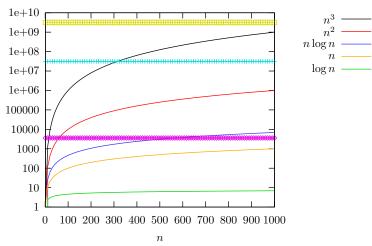
In ascending order of cost:

	Order	Example
O(1)	constant	determine if a number is even
$O(\log n)$	logaritmic	search of an element in an ordered array
O(n)	linear	search of an element in an unordered array
$O(n \log n)$	pseudolinear	Merge Sort ordering of an array
O(n ²)	quadratic	Bubble Sort ordering of an array
O(n ³)	cubic	matrix product $n \times n$ with "intuitive" algorithm
$O(c^n)$	exponential, base $c > 1$	
$\hat{O}(n!)$	factorial	Computation of matrix determinant by expansion of minor
$O(n^n)$	exponential, base n	

In general:

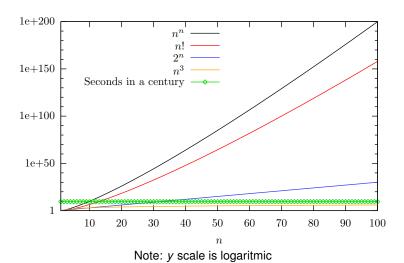
- $O(n^k)$ when k > 0 is polinomial order
- $O(c^n)$ when c > 1 is exponential order

Graphical comparison of orders of magnitude

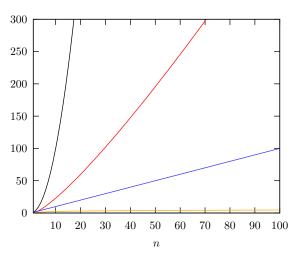


Note: *y* scale is logaritmic; horizontal lines indicate the number of seconds in an hour, a year, a century (respectively, bottom to up)

Graphical comparison of orders of magnitude



Graphical comparison of orders of magnitude



Quiz: true or false?

$$6n^2 = \Omega(n^3) ?$$

By applying the definition, we must prove that

$$\exists c>0, n_0\geq 0 \ : \ \forall n\geq n_0 \quad 6n^2\geq cn^3$$

That is, $c \le 6/n$.

Given c we can always select a value of n sufficiently large such that 6/n < c, hence the assertion is false.

Quiz: true or false?

$$10n^3 + 2n^2 + 7 = O(n^3)$$
?

By applying the definition, we must prove that

$$\exists c > 0, n_0 \ge 0 : \forall n \ge n_0 \quad 10n^3 + 2n^2 + 7 \le cn^3$$

In other words:

$$10n^3 + 2n^2 + 7 \le 10n^3 + 2n^3 + 7n^3$$
 (se $n \ge 1$)
= $19n^3$

Hence the inequality is true e.g. when $n_0 = 1$ and c = 19.

Questions

- Demonstrate $\log_2 n = O(n)$;
- What is the difference if the base of logarithm is 2?
- Demonstrate $n \log n = O(n^2)$;
- Demonstrate, for all $\alpha > 0$, log $n = O(n^{\alpha})$ (hint: see above, we can say log $n^{\alpha} = O(n^{\alpha})$, hence...)
- Find the good location for $O(\sqrt{n})$ in the table of the orders of magnitude. Why?

Cost of execution

Definition

An algorithm \mathcal{A} has execution cost O(f(n)) on an instance of the input of size n with respect to a given computation resource, if given the amount r(n) of the resource sufficient for execution of \mathcal{A} , for every instance of size n, the following relation holds: r(n) = O(f(n)).

Note Computation resources in our case means execution time or memory occupation.

Problem complexity

Definition

A problem \mathcal{P} has complexity O(f(n)), with respect to a given computation resource, if an algorithm exists which resolves \mathcal{P} , whose execution cost with respect to the resource is O(f(n)).

Some useful laws

Sum

If
$$g_1(n) = O(f_1(n))$$
 and $g_2(n) = O(f_2(n))$, then $g_1(n) + g_2(n) = O(f_1(n) + f_2(n))$

Product

If
$$g_1(n) = O(f_1(n))$$
 and $g_2(n) = O(f_2(n))$, then $g_1(n) \cdot g_2(n) = O(f_1(n) \cdot f_2(n))$

constants elimination

If
$$g(n) = O(f(n))$$
, then $a \cdot g(n) = O(f(n))$ for every constant $a > 0$

Observation

Dealing with the orders of magnitude, every basic operation (instruction) has cost O(1); a different contribute comes from conditional and iterative instructions.

if (F_test) {
 F_true
} else {
 F_false
}

Assuming:

$$\blacksquare$$
 F_test = $O(f(n))$

■
$$F_{true} = O(g(n))$$

■
$$F_{false} = O(h(n))$$

The execution cost of the if-then-else block is

$$O(\max\{f(n),g(n),h(n)\})$$

Analysis of the best, worst and average case

Let \mathcal{I}_n be the set of all possible *istances of the input* of size n. Let T(I) be the execution time of the algorithm on the intance $I \in \mathcal{I}_n$.

■ The (worst case) cost is defined as

$$T_{\text{worst}}(n) = \max_{I \in \mathcal{I}_n} T(I)$$

■ The (best case) cost is defined as

$$T_{\text{best}}(n) = \min_{I \in \mathcal{I}_n} T(I)$$

■ The (average case) cost is defined as

$$T_{\text{avg}}(n) = \sum_{I \in \mathcal{I}_n} T(I)P(I)$$

where P(I) is the probability of occurrence of the instance I.

Analyisis of non recursive algorithms

Search of min value in non-empty array

```
// Return position of minimum element in A
algorithm Minimum( A[1..n] of float ) -> int
  int m:=1; // Position of min element
  for i:=2 to n do
    if ( A[i]<A[m] ) then
        m = i;
    endif
endfor
return m;
}</pre>
```

Analysis

- Let *n* be the length of array *v*.
- the cycle body is executed n-1 times;
- Every iteration has cost O(1)
- If time cost of the execution of Minimum is O(n) (or, more precisely, $\Theta(n)$: why?).

```
// Returns the position of first occurrence of ``val''
// in the array A[1..n].
// Returns -1 if the value is not included.
algorithm Find( array A[1..n] of int, int val ) -> int
for i:=1 to n do
   if ( A[i]==val ) then
     return i;
   endif
endfor
return -1;
```

- In the best case the searched element is the first of the list. Hence $T_{\text{best}}(n) = O(1)$
- In the worst case the searched element is the last one (or it is not present). Hence $T_{worst}(n) = \Theta(n)$
- and in the average case?

We do not know the probability of occurrence of the values in the list, so we make some assumptions.

Given an array of n elements, we assume the probability P_i that the element is in position i (i = 1, 2, ... n) to be $P_i = 1/n$, for every i (we assume the element is always present in the array).

The time T(i) needed to find element in the *i*-th position is T(i) = i.

Hence we conclude that:

$$T_{\text{avg}}(n) = \sum_{i=1}^{n} P_i T(i) = \frac{1}{n} \sum_{i=1}^{n} i = \frac{1}{n} \frac{n(n-1)}{2} = \Theta(n)$$

```
public class SortingAlgo {
  // compute index of min element in the set
  // v[i], v[i+1]... v[i]
  static int Min( int v[], int i, int j )
  { /* ... /* }
  // v[] must be non-empty
  public static void Sort( int v[] )
    for ( int i=0; i< v.length-1; ++i ) {
      int m = SortingAlgo.Min(v, i, v.length-1);
      // Swap v[i] e v[m]
      int tmp = v[i];
      v[i] = v[m];
      v[m] = tmp;
```

Analysis of the sorting algorithm

- The call of Min(v,i,v.length-1) finds the min element in the array $v[i], v[i+1], \dots v[n-1]$. The time needed is proportional to n-i, $i=0,1,\dots n-1$ (why?);
- the swap operation has execution time cost O(1);
- The body of the for cycle is executed *n* times.

The time execution cost of the whole function Sort is:

$$\sum_{i=0}^{n-1} (n-i) = n^2 - \sum_{i=0}^{n-1} i = n^2 - \frac{n(n-1)}{2} = \frac{n^2 + n}{2}$$

which is $\Theta(n^2)$.

Analysis of recursive algorithms

Search an element in an ordered array

```
public class BinarySearch {
  static int FindRec( int val, int v[], int i, int j ) {
    if ( i > j ) { return -1; }
    else {
      int m = (i+i)/2:
      if ( v[m] == val ) { return m; } // found
      else {
        if (v[m] > val) {
          return FindRec( val, v, i, m-1);
        } else {
          return FindRec( val, v, m+1, j );
  // Finds the position of an element with value val in the
  // array v[], ordered in ascending order.
  public static int Find( int val, int v[] ) {
    BinarySearch.FindRec(val, v, 0, v.length-1);
```

Analysis of the binary search algorithm

Let T(n) be the execution time of function FindRec on an array of n = j - i + 1 elements.

In general, T(n) depends both on the number of elements in the array, and on the position of the searched element (or the fact that the element is missing).

- In the most favorable case (best case) the searched element is in the central position; in this case T(n) = O(1).
- In the less favorable case (worst case) the searched element does not exist. Which function is T(n) in this case?

We can define T(n) with a recurrence, as follows.

$$T(n) = \begin{cases} c_1 & \text{if } n = 0 \\ T(\lfloor n/2 \rfloor) + c_2 & \text{if } n > 0 \end{cases}$$

The iteration method consists in developing the recurrence equation and intuitively define the equation:

$$T(n) = T(n/2) + c_2 = T(n/4) + 2c_2 = T(n/8) + 3c_2 = \dots = T(n/2^i) + i \times c_2$$

Assuming that n is a power of 2, we stop when $n/2^i = 1$, that is $i = \log n$. At the end we get

$$T(n) = c_1 + c_2 \log n = O(\log n)$$

Verifying recurrence equations

Substitution method

We apply the principle of induction to verify the solution of a recurrence equation.

Example We prove that T(n) = O(n) is a solution for

$$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ T(\lfloor n/2 \rfloor) + n & \text{if } n > 1 \end{cases}$$

Proof By induction, we verify that $T(n) \leq cn$ for n sufficiently large.

- Base step: $T(1) = 1 \le c \times 1$. It is sufficient to choose $c \ge 1$.
- Inductive step:

$$T(n) = T(\lfloor n/2 \rfloor) + n$$

 $\leq c \lfloor n/2 \rfloor + n$ (inductive assumption)
 $\leq cn/2 + n = f(c)n$

with f(c) = (c/2 + 1). The proof of the inductive step works when $f(c) \le c$, that is c > 2.

Theorem

The recurrence relation:

$$T(n) = \begin{cases} aT(n/b) + f(n) & \text{if } n > 1\\ 1 & \text{if } n = 1 \end{cases}$$
 (3)

has solution:

- 1 $T(n) = \Theta(n^{\log_b a})$ if $f(n) = O(n^{\log_b a \epsilon})$ for $\epsilon > 0$;
- **7** $(n) = \Theta(n^{\log_b a} \log n) \text{ if } f(n) = \Theta(n^{\log_b a});$
- **3** $T(n) = \Theta(f(n))$ if $f(n) = \Omega(n^{\log_b a + \epsilon})$ for $\epsilon > 0$ and $af(n/b) \le cf(n)$ for c < 1 and sufficiently large n.

$$T(n) = \begin{cases} aT(n/b) + f(n) & \text{if } n > 1\\ 1 & \text{if } n = 1 \end{cases}$$

- In the binary search, we have T(n) = T(n/2) + O(1). Hence a = 1, b = 2, f(n) = O(1); this is the second case of the theorem, hence $T(n) = \Theta(\log n)$.
- 2 Considering T(n) = 9T(n/3) + n; in this case a = 9, b = 3 and f(n) = O(n). This is the first case, $f(n) = O(n^{\log_b a \epsilon})$ with $\epsilon = 1$, that is $T(n) = \Theta(n^{\log_b a}) = \Theta(n^2)$.

The Fibonacci sequence is defined as:

$$F_n = \begin{cases} 1 & \text{if } n = 1, \ 2 \\ F_{n-1} + F_{n-2} & \text{if } n > 2 \end{cases}$$

Let's consider the execution time of the trivial recursive algorithm to compute F_n , whose execution time T(n) satisfies the occurrence relation:

$$T(n) = \begin{cases} c_1 & \text{if } n = 1, \ 2 \\ T(n-1) + T(n-2) + c_2 & \text{if } n > 2 \end{cases}$$

We want to evaluate a lower and upper bound for T(n)

Upper bound. We exploit the fact that T(n) is non-decreasing function:

$$T(n) = T(n-1) + T(n-2) + c_2$$
 $\leq 2T(n-1) + c_2$
 $\leq 4T(n-2) + 2c_2 + c_2$
 $\leq 8T(n-3) + 2^2c_2 + 2c_2 + c_2$
 $\leq \dots$
 $\leq 2^kT(n-k) + c_2\sum_{i=0}^{k-1} 2^i$
 $\leq \dots$
 $\leq 2^{n-1}c_3$

for a given constant c_3 . Hence $T(n) = O(2^n)$.

Lower bounds. Again, we exploit the fact that T(n) is a non-decreasing function:

$$T(n) = T(n-1) + T(n-2) + c_2$$
 $\geq 2T(n-2) + c_2$
 $\geq 4T(n-4) + 2c_2 + c_2$
 $\geq 8T(n-6) + 2^2c_2 + 2c_2 + c_2$
 $\geq \dots$
 $\geq 2^kT(n-2k) + c_2\sum_{i=0}^{k-1} 2^i$
 $\geq \dots$
 $\geq 2^{\lfloor n/2 \rfloor}c_4$

for a given constant c_4 . Hence $T(n) = \Omega(2^{\lfloor n/2 \rfloor})$.

Note

Attention $2^{\lfloor n/2 \rfloor} = O(2^n)$, but $2^{\lfloor n/2 \rfloor} \neq \Theta(2^n)$. In other words, the two functions, both exponential, belong to different classes of complexity. (Why?).

Amortized cost

The amortized analysis studies the average cost of a sequence of operations.

Definition

Let T(n,k) be the total time needed by an algorithm, in the worst case, to execute k operation on input instances of size n. We define amortized cost a sequence of k operations

$$T_{\alpha}(n) = \frac{T(n,k)}{k}$$

Problem: given a sequence of binary digits, initialized to zero, we define a function which increments by one the decimal value represented by the binary digits.

```
// v[0] is the most significant bit
public static void increment( int[] v )
{
    for ( int i=v.length -1; i>0; --i ) {
        v[i] = 1-v[i]; // invert the bit
        if ( v[i] == 1 ) {
            break;
        }
    }
}
```

Example

value	v[0]	<i>v</i> [1]	v[2]	v[3]	v[4]	v[5]	Cost
0	0	0	0	0	0	0	
1	0	0	0	0	0	1	1
2	0	0	0	0	1	0	2
3	0	0	0	0	1	1	1
4	0	0	0	1	0	0	3
5	0	0	0	1	0	1	1
6	0	0	0	1	1	0	2
7	0	0	0	1	1	1	1
8	0	0	1	0	0	0	4
9	0	0	1	0	0	1	1
10	0	0	1	0	1	0	2

Analysis

The cost of operation invert is the number of inverted bits.

- The first bit (v[n-1]) is inverted in each call;
- The second bit (v[n-2]) is inverted every 2 calls;
- The third bit (v[n-3]) is inverted every 4 calls;
-
- The *i*-th bit (v[n-i]) is inverted every 2^{i-1} calls;

The total execution time for k operatinos is given as:

$$T(n,k) = k + \lfloor k/2 \rfloor + \lfloor k/4 \rfloor + \ldots + 2 + 1 = \sum_{i=0}^{\log_2 k} \lfloor k/2^i \rfloor \le k \sum_{i=0}^{\infty} 1/2^i = 2k$$

Hence

$$T_{\alpha}(n) = \frac{T(n,k)}{k} = O(1)$$