
Luciano Bononi
<luciano.bononi@unibo.it>

http://www.cs.unibo.it/~bononi/
(slide credits: these slides are a revised version of slides created by Dr. Gabriele D’Angelo)

International Bologna Master in
Bioinformatics

University of Bologna

14/03/2016, Bologna

Algorithms and Data Structures 2015-2016

Lesson 1: Introduction to algorithms and basic data structures

2 Algorithms and Data Structures 2015-2016 © Luciano Bononi

Outline of the lesson

!  Introduction to algorithms

!  Introduction to data structures and abstract data types

!  Abstract data type List

!  Basic data structures

!  arrays

!  linked lists

3 Algorithms and Data Structures 2015-2016 © Luciano Bononi

Algorithm: informal definition

A good “informal definition” of algorithm is the following:

!  an algorithm is any well-defined computational procedure that takes

some value (or set of values) as input and produces some value (or set

of values) as output

!  an algorithm is thus a sequence of computational steps that transforms

the input into the output

Another definition: an algorithm is a tool for solving well specific

computational problems

4 Algorithms and Data Structures 2015-2016 © Luciano Bononi

Algorithm: etymology

!  Muḥammad ibn Mūsā al-Khwārizmī

was a Persian Islamic mathematician,

astronomer, astrologer and geographer.

He was born around 780 in Khwārizm

(now Khiva, Uzbekistan) and died around

850

!  The words algorism and algorithm stem

from Algoritmi, the Latinization of his

name (source: wikipedia)

5 Algorithms and Data Structures 2015-2016 © Luciano Bononi

Example: sorting problem

!  Example: sorting problem

!  INPUT: a sequence of n numbers

!  OUTPUT: a permutation of the input sequence

such that

!  Many algorithms can be used to solve this problem, some of

them are really simple (and slow) others are very complex

(and fast)

6 Algorithms and Data Structures 2015-2016 © Luciano Bononi

The “problem” and the algorithm: definitions

!  An instance of a problem consists of all inputs needed to

compute a solution (to the problem)

!  An algorithm is said to be correct if for every input instance,

it halts with the correct output

!  A correct algorithm solves the given computational problem.

An incorrect algorithm might not halt at all on some input

instance, or it might halt with other than the desired

answer (wrong output)

7 Algorithms and Data Structures 2015-2016 © Luciano Bononi

Example: sorting of numbers

Sort

INPUT
!  sequence of numbers

!  a1, a2, a3,….,an !  b1,b2,b3,….,bn

OUTPUT
!  a permutation of the
sequence of numbers

!  2 5 4 10 7 !  2 4 5 7 10

!  Correctness

!  For any given input the algorithm halts

with the output:

•  b1 < b2 < b3 < …. < bn

•  b1, b2, b3, …., bn is a permutation of

 a1, a2, a3,….,an

!  Running time

!  Depends on

•  number of elements (n)

•  how (partially) sorted

 they are

•  algorithm

8 Algorithms and Data Structures 2015-2016 © Luciano Bononi

Example: insertion sort

 Strategy

1. Start “empty handed”

2. Insert a card in the right

position of the already sorted

hand

3. Continue until all cards are

 inserted/sorted

The insertion sort is a very

simple sorting algorithm. This

algorithm is not very efficient

9 Algorithms and Data Structures 2015-2016 © Luciano Bononi

Some problems solved by algorithms

!  The Human Genome Project: identification of all the

100,000 genes in the human DNA

!  Internet Search Engines: the Google PageRank is a link

analysis algorithm that assigns a numerical weighting to each

element of a hyperlinked set of documents, such as the World

Wide Web, with the purpose of "measuring" its relative

importance within the set (from wikipedia)

!  Electronic commerce: public-key cryptography and digital

signatures (implemented in all Internet browsers)

!  Communication and transmission protocols: routing

algorithms, encoding, data compression etc.

10 Algorithms and Data Structures 2015-2016 © Luciano Bononi

Data structures

The title of this course is “Algorithms and Data Structures”

!  Until now we have tried to define what is an algorithm, but

what is a “data structure”?

!  DEFINITION:

 A data structure is a way to store and organize data in order to facilitate

operations on them (e.g. data access and modification)

!  VERY IMPORTANT: no single data structure works well for all

purposes, and so it is important to know the strengths and

limitations of several of them

11 Algorithms and Data Structures 2015-2016 © Luciano Bononi

What is a data structure?

!  Definition: a representation and organization of data

!  representation:

!  data can be stored variously according to their type (for

example signed, unsigned, etc.)

!  example: the representation of integers in memory

!  organization:

!  the way of storing data changes according to the organization

(ordered, not ordered, list, tree, etc.)

!  example: if you have more than one integer?

12 Algorithms and Data Structures 2015-2016 © Luciano Bononi

Properties of a data structure?

!  Efficient utilization of memory and disk space

!  Efficient algorithms for:

!  creation

!  manipulation (e.g. insertion / deletion)

!  data retrieval (e.g. find)

!  A well-designed data structure uses less resources

!  computational: execution time

!  spatial: memory space

13 Algorithms and Data Structures 2015-2016 © Luciano Bononi

Data structures and algorithms: a little of terminology

!  Algorithm:

 outline, the essence of a computational procedure, step-by-

step instructions

!  Program:

 an implementation of an algorithm in some programming

language

!  Data structure:

 organization of data needed to solve the problem

!  Abstract Data Type (ADT):

is the specification of a set of data and the set of

operations that can be performed on the data

14 Algorithms and Data Structures 2015-2016 © Luciano Bononi

Overall picture

! Correctness

! Efficiency

! Robustness
! Adaptability

! Reusability

Data structure and

algorithms design goals
Implementation goals

15 Algorithms and Data Structures 2015-2016 © Luciano Bononi

Data structures

!  Example of basic data objects:

Boolean {false, true}

Digit {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Letter {A, B, …, Z, a, b, …, z}

NaturalNumber {0, 1, 2, …}

Integer {0, +1, +2, …, -1, -2, …}

String {a, b, …, aa, ab, ac, …}

!  Data structures are composed by basic data objects

!  Representation of data objects should facilitate an efficient
 implementation of the algorithms

16 Algorithms and Data Structures 2015-2016 © Luciano Bononi

Abstract data type: linear List

DEFINITION of linear list (Abstract Data Type List):

!  Instances are of the form {e1, e2, …en} where n is a finite

natural number and represents the length of the list

!  In this case the elements are viewed as atomic, it means that

their individual structure is not really relevant

!  List is empty " n=0

!  Relations:

e1 is first element and en is the last (precedence relation)

17 Algorithms and Data Structures 2015-2016 © Luciano Bononi

Abstract data type: linear List, example of operations
!  Create a list

!  Delete a list

!  Determine if a list is empty

!  Determine the length of the list

!  Find the k-th element

!  Search for a given element

!  Delete the k-th element

!  Insert a new element just after

the k-th element

!  Other useful operations could be: append, join, copy …

Create(L)

Destroy(L)

IsEmpty(L)

Length(L)

Find(L, k)

Search(L, x)

Delete(L, k)

Insert(L, x, k)

18 Algorithms and Data Structures 2015-2016 © Luciano Bononi

Data structures: arrays

Given such a definition of the linear List abstract data type,

what is a good data structure to use for its implementation?

!  Array: an array is a data structure consisting of a group of

elements that are accessed by indexing

!  Usually arrays are fixed-size, that is: their size cannot change

once their storage has been allocated (i.e. it is not possible to

insert new elements in the middle of the array)

19 Algorithms and Data Structures 2015-2016 © Luciano Bononi

Data structures: arrays

20 Algorithms and Data Structures 2015-2016 © Luciano Bononi

Linear list, array-based implementation, operations
!  Create a list

!  Delete a list

!  Determine if a list is empty

!  Determine the length of the list

!  Find the k-th element

!  Search for a given element

!  Delete the k-th element

!  Insert a new element just after

the k-th element

What is the “cost” of such operations given an array-
based implementation of the list?

Create(L)

Destroy(L)

IsEmpty(L)

Length(L)

Find(L, k)

Search(L, x)

Delete(L, k)

Insert(L, x, k)

21 Algorithms and Data Structures 2015-2016 © Luciano Bononi

Operations: Search, Delete and Insert

1.   Search(L, x)

2.   Delete(L, k)

3.   Insert(L, x, k)

!  These operations could require to scan / modify as much

elements as the length of the list!

!  Therefore, their cost is linear in size of the list

!  What is the cost of the Find(L, k) operation?

22 Algorithms and Data Structures 2015-2016 © Luciano Bononi

Arrays: inefficient use of space

!  EXAMPLE:

!  assume that we need 3 lists

!  together will never have more than 5000 elements

!  each list may have up to 5000 elements at some time or

the other

Simple implementation = 15,000 elements ! INEFFICIENT

5 2

Element [0] [1] [2] [3] MaxSize-1

Length=2

23 Algorithms and Data Structures 2015-2016 © Luciano Bononi

Arrays: a more efficient solution
!  One of the many possible solutions:

!  represents all the lists using a single array

!  use two additional arrays first and last to index into this one

!  What happens if the list 2 is empty?

!  How to add elements to list 2 when there is no additional space
between list 2 and 3?

!  One solution would to “shift” all the elements of 3, what if it is
not possible (i.e. the array boundary has been reached)?

!  " Insertions take more time (at least in the worst case)

5 2 4 3 4 8 9 1

first[1] last[1] first[2] last[2]
first[3]

last[3]

24 Algorithms and Data Structures 2015-2016 © Luciano Bononi

Limitations of the Array data structure

Advantages and disadvantages of the array data structure

!  PRO:

!  simple to use

!  fast (in the case of direct access to a defined location)

!  CONS:

!  must specify size at construction time

!  reorganizations are quite complex and costly

We need a more flexible data structure!

25 Algorithms and Data Structures 2015-2016 © Luciano Bononi

Dynamic arrays: general idea

!  A possible (and often wrong) solution is to implement a sort

of dynamic array

!  In this case, the size of the array depends on its load factor

(that is how many elements are in the array)

!  It is necessary to modify the operations used to insert and

delete elements

!  Problem: due to implementation constraints the amount of

memory allocated for the array is predefined and can not be

modified (e.g. increased or decreased) at runtime

!  Given an array of length MaxSize

26 Algorithms and Data Structures 2015-2016 © Luciano Bononi

Dynamic arrays: implementation details

!  Given an array of length MaxSize

Insert() operation

!  If we already have MaxSize elements in the list:

1.  allocate a new array of size MaxSize * 2

2.  copy the elements from old array to new one

3.  delete the old array

Delete() operation

!  If the list size drops to one-half of the current MaxSize

1.  create a smaller array of size MaxSize / 2

2.  elements are copied and the old array is deleted

27 Algorithms and Data Structures 2015-2016 © Luciano Bononi

Dynamic arrays: problems

!  What are the PRO and CONS of the dynamic array data

structure?

!  How much does it cost each Insert() or Delete() operation?

!  What happens if the number of element in the array is always

“near to MaxSize”?

We need an even more flexible data structure!

28 Algorithms and Data Structures 2015-2016 © Luciano Bononi

!  Flexible space use: dynamically allocate space for each

 element as needed

!  Linked list

! A list is a pointer to the head node

! Each node of the list contains:

1.  the data item (data)

2.  a pointer to the next node (next)

Linked lists: general idea

Data
Next Data

Next Data
Next

define type node

{

Data: integer

Next: *node

}

define type list

{

head: *node := NULL

}

Head

29 Algorithms and Data Structures 2015-2016 © Luciano Bononi

Singly linked list: definition

!  The collection structure has a pointer to the list head, that is

initially set to NULL

!  To add the (first?) new item
to the end of the list:

1.  allocate space for node

2.  set Data as required
(initialization of data)

3.  set Next to NULL

4.  set Head to point to the node

!  Be careful in case of first node

!  …but why to add to the end?

Data
Next Head

NULL

List L;

Integer x;

Function Add_item_to_end(L, x)

{

new node n

 n.Data = x

 n.Next = NULL

If (L.Head == NULL) {

 L.Head = *n

}

Else {

 pointer = L.Head

 while (pointer <> NULL) {

 Prev_pointer = pointer

 pointer = pointer.Next

 }

 Prev_pointer.Next = *n

 }

}

30 Algorithms and Data Structures 2015-2016 © Luciano Bononi

Singly linked list: definition

!  Check this equivalent solution adding new nodes to the front:

!  To add any new item:

1.  allocate space for node

2.  set Data as required
(initialization of data)

3.  set Next to (previous) Head

4.  set Head to new node

Data
Next Head

NULL

List L;

Integer x;

Function Add_item_to_front (L, x)

{

new node n

 n.Data = x

 n.Next = L.Head

L.Head = *n

}

List L : insertion of first item

31 Algorithms and Data Structures 2015-2016 © Luciano Bononi

Singly linked list: implementation
!  To add a second item (in front of the list):

1.  allocate space for node

2.  set Data as required (initialization of data)

3.  set Next to current Head

4.  set Head to point to new node

Data
Next Head

Data Next

32 Algorithms and Data Structures 2015-2016 © Luciano Bononi

Unsorted singly linked list

!  If we suppose that the elements in the list are unsorted, the

time required to add a new element to the list is constant,

that is independent of n (the size of the existing list)

!  In this case, the time required to search an element in the

unsorted list depends on the size of the list. In the worst

case all elements in the list have to be checked (that is, n)

27
Next 3

Next 99
Next

NULL

Head

33 Algorithms and Data Structures 2015-2016 © Luciano Bononi

Unsorted singly linked list: Search() operation

Function Search(L, x)

{

pointer = L.Head

while (pointer <> NULL) {

 if (pointer.Data == x) then

 return(pointer)

 pointer = pointer.Next

}

 return(NULL)

}

!  This version of the Search() function is iterative, also a

recursive version can be designed

!  L = list

!  x = value to find

in the list

!  return value =

the pointer to the

element or NULL if

missing

34 Algorithms and Data Structures 2015-2016 © Luciano Bononi

!  What happens when an element of the list has to be deleted?

!  IMPORTANT: the deletion of the first and the last element are

special cases that have to be managed very carefully

Unsorted singly linked list: Delete() operation

Data
Next Data

Next Data
Next

Head

NULL

35 Algorithms and Data Structures 2015-2016 © Luciano Bononi

Circular list: definition

!  In the case of a circular list the Next pointer of the last

element is not NULL: it points to the first element of the list

!  Without the NULL pointer as a trailer, how is it possible to

check the end of list?

27
Next 3

Next 99
Next

Head

36 Algorithms and Data Structures 2015-2016 © Luciano Bononi

Doubly linked lists: definition

Doubly linked lists, each element is composed by:

1.  a pointer (Prev) to the previous element in the list

2.  a field to contain the Data

3.  a pointer (Next) to the next element in the list

Data
Next Prev

37 Algorithms and Data Structures 2015-2016 © Luciano Bononi

Doubly linked lists

Data Prev
Next Data Prev

Next Data Prev
Next Head

Tail

38 Algorithms and Data Structures 2015-2016 © Luciano Bononi

References

!  Part of this material is inspired / taken by the following freely

available resources:

!  http://www.cs.rutgers.edu/~vchinni/dsa/

!  http://www.cs.aau.dk/~luhua/courses/ad07/

!  http://www.cs.aau.dk/~simas/ad01/index.html

!  http://140.113.241.130/course/

2006_introduction_to_algorithms/courseindex.htm

Luciano Bononi
<luciano.bononi@unibo.it>

http://www.cs.unibo.it/~bononi/

International Bologna Master in
Bioinformatics

University of Bologna

14/03/2016, Bologna

Algorithms and Data Structures 2015 - 2016

Lesson 1: Introduction to algorithms and basic data structures

