
1

AlgorithmsAlgorithmsAlgorithms
MIS, KUAS, 2007MIS, KUAS, 2007

JenJen--WenWen DingDing



2



3

2 What is Divide-and-Conquer?
• Divide-and-Conquer divides an instance of a 

problem into two or more smaller instances. 
– The smaller instances are usually instances of the 

original problem. 
• If solutions to the smaller instances can be 

obtained readily, the solution to the original 
instance can be obtained by combining these 
solutions. 

• If the smaller instances are still too large to be 
solved readily, they can be divided into still 
smaller instances. 
– This process of dividing the instances continues until 

they are so small that a solution is readily obtainable.



4

Overview of Divide-and-Conquer
• The divide-and-conquer approach is a top-down

approach.
– That is, the solution to a top-level instance of a problem 

is obtained by going down and obtaining solutions to 
smaller instances. 

• The reader may recognize this as the method 
used by recursive routines. 

• Recall that when writing recursion, one thinks at 
the problem-solving level and lets the system 
handle the details of obtaining the solution (by 
means of stack manipulations).

• When developing a divide-and-conquer algorithm, 
we usually think at this level and write it as a 
recursive routine. 
– After this, we can sometimes create a more efficient 

iterative version of the algorithm.



5

2.1 Binary Search
• The divide-and-conquer steps of Binary Search: 
• If x equals the middle item, quit. 
• Otherwise:

– (1) Divide the array into two subarrays about half as 
large. If x is smaller than the middle item, choose the 
left subarray. If x is larger than the middle item, choose 
the right subarray.

– (2) Conquer (solve) the subarray by determining whether 
x is in that subarray. Unless the subarray is sufficiently 
small, use recursion to do this.

– (3) Obtain the solution to the array from the solution to 
the subarray.



6

Example of Binary Search



7



8

gda
Rectangle

gda
Rectangle

gda
Text Box
<



9

Comment for Algorithm 2.1
• Notice that n, S, and x are not parameters to 

function location.
• Because they remain unchanged in each recursive 

call, there is no need to make them parameters. 
• There are two reasons for doing this. 

– First, it makes the expression of recursive routines less 
cluttered. 

– Second, in an actual implementation of a recursive 
routine, a new copy of any variable passed to the routine 
is made in each recursive call. If a variable's value does 
not change, the copy is unnecessary. This waste could be 
costly if the variable is an array. 



10

Analysis of Algorithm 2.1
Worst-Case Time Complexity 

(Binary Search, Recursive)
• Basic operation

– the comparison of x with S[mid]
• Input size: n

– the number of items in the array
• There are two comparisons of x with S[mid]

in any call to function location in which x
does not equal S[mid].
– we can assume that there is only one 

comparison, because this would be the case in 
an efficient assembler language implementation



11

Analysis of Algorithm 2.1
Worst-Case Time Complexity 

(Binary Search, Recursive)



12

2.2 Mergesort
• The divide-and-conquer steps of 

Mergesort
– (1) Divide the array into two subarrays each 

with n/2 items.
– (2) Conquer (solve) each subarray by sorting it. 

Unless the array is sufficiently small, use 
recursion to do this.

– (3) Combine the solutions to the subarrays by 
merging them into a single sorted array.



13

Example of Mergesort



14



15



16



17

Table 2.1: An example of merging two arrays U and V into one array S[*]

[*]Items compared are in boldface. Items just exchanged appear in squares.

10 12 13 15 20 22 25 27 Final values13 15 22 2510 12 20 27—

10 12 13 15 20 22 2513 15 22 2510 12 20 277

10 12 13 15 20 2213 15 22 2510 12 20 276

10 12 13 15 2013 15 22 2510 12 20 275

10 12 13 1513 15 22 25 10 12 20 274

10 12 1313 15 22 2510 12 20 273

10 1213 15 22 2510 12 20 272

1013 15 22 2510 12 20 271

S (Resutl)VUk



18

Analysis of Algorithm 2.2
Worst-Case Time Complexity 

(Mergesort)
• Basic operation:

– the comparison of U[i] with V[j].
– As mentioned in Section 1.3, in the case of algorithms that 

sort by comparing keys, the comparison instruction and the 
assignment instruction can each be considered the basic 
operation. Here we will consider the comparison instruction. 
When we discuss Mergesort further in Chapter 7, we will 
consider the number of assignments. 

• Input size: h and m
– the number of items in each of the two input arrays.

• The worst case occurs when the loop is exited, because one 
of the indices—say, i—has reached its exit point h+1 
whereas the other index j has reached m, 1 less than its 
exit point. 



19

Analysis of Algorithm 2.2 Worst-
Case Time Complexity (Mergesort)



20

Analysis of Algorithm 2.2 Worst-
Case Time Complexity (Mergesort)



21

2.3 The Divide-and-Conquer 
Approach

• The divide-and-conquer design strategy involves 
the following steps:
– (1) Divide an instance of a problem into one or more 

smaller instances.
– (2) Conquer (solve) each of the smaller instances. Unless 

a smaller instance is sufficiently small, use recursion to 
do this.

– (3) Combine, if necessary, the solutions to the smaller 
instances to obtain the solution to the original instance.

• The reason we say "if necessary" in Step 3 is that 
in algorithms such as Binary Search Recursive 
(Algorithm 2.1) the instance is reduced to just 
one smaller instance, so there is no need to 
combine solutions



22

2.4 Quicksort 
(Partition Exchange Sort)
• Quicksort is similar to Mergesort in that the sort 

is accomplished by dividing the array into two 
partitions and then sorting each partition 
recursively. 

• In Quicksort, however, the array is partitioned by 
placing all items smaller than some pivot item 
before that item and all items larger than the 
pivot item after it. 

• The pivot item can be any item, and for 
convenience we will simply make it the first one. 



23



24

Example of QuickSort



25



26



27

Table 2.2: An example of procedure partition[*]

[*]Items compared are in boldface. Items just exchanged appear in squares.

Final values25202722151213104—

252027221012131548

252027221012131547

252010222712131546

252010122722131535

252010122722131524

252010122713221523

252010122713221512

Initial values2520101227132215——

S[8]S[7]S[6]S[5]S[4]S[3]S[2]S[1]ji



28



29

Analysis of Algorithm 2.6
Worst-Case Time Complexity 

(Quicksort)
• Basic operation: 

– the comparison of S[i] with pivotitem in 
partition.

• Input size: 
– n, the number of items in the array S.



30

Analysis of Algorithm 2.6
Worst-Case Time Complexity 

(Quicksort)



31

Why QuickSort is Quick? 
• Wost-case time complexity

– O(n2)
– A slow algorithm

• Average-case time complexity
– (nlgn)
– A quick algorithm



32

Analysis of Algorithm 2.6 
Average-Case Time Complexity 

(Quicksort)



33



34



35

2.8 When Not to Use 
Divide-and-Conquer

• Case I: An instance of size n is divided into two 
or more instances each almost of size n.
– Concept: like Napoleon dividing an opposing army of 

30,000 soldiers into two armies of 29,999 soldiers (if 
this were somehow possible). 

– Example: Algorithm 1.6 (nth Fibonacci Term, Recursive) 
• F(n)=F(n-1)+F(n-2) => T(n) > 2n/2

• Case II: An instance of size n is divided into 
almost n instances of size n/c, where c is a 
constant.
– Complexity: n (lgn)



36

• Divide-and-Conquer 



37



38



39



40



41


	<: 


