A

Algorithms
MIS, KUAS, 2007

Jen-Wen Ding %

A vy
L A
N Y

e
Ry >
T

N

o

de-

IV

D

2 What is Divide-and-Conquer?

« Divide-and-Conquer divides an instance of a

problem into two or more smaller instances.
— The smaller instances are usually instances of the
original problem.

« If solutions to the smaller instances can be
obtained readily, the solution to the original
instance can be obtained by combining these
solutions.

« If the smaller instances are still too large to be
solved readily, they can be divided into still
smaller instances.

— This process of dividing the instances continues until
they are so small that a solution is readily obtainable.

Overview of Divide-and-Conquer

» The divide-and-conquer approach is a top-down
approach.

— That is, the solution to a fop-/eve/instance of a problem
is obtained by going down and obtaining solutions to
smaller instances.

e The reader may recognize this as the method
used by recursive routines.

« Recall that when writing recursion, one thinks at
’rhedproblem—solving level and lets the system
handle the details of obtaining the solution (by
means of stack manipulations).

« When developing a divide-and-conquer algorithm,
we usually think at this level and write it as a
recursive routine.

-_After this, we can sometimes create a more efficient
(= rative version of the algorithm.

2.1 Binary Search

« The divide-and-conquer steps of Binary Search:
« If xequals the middle item, quit.

e Otherwise:

— (1) Divide the array into two subarrays about half as
arge. If xis smaller than the middle item, choose the
left subarray. If xis larger than the middle item, choose

the right subarray.

- (2) Coni‘ue/" (solve) the subarray by determining whether
x IS in that subarray. Unless the subarray is sufficiently
small, use recursion to do this.

— (3) Obtain the solution to the array from the solution to
the subarray.

Example of Binary Search

Example 2.1

Suppose x = 18 and we have the following array

1

10 12 13 14 18 20 25 27 30 35 40 45 47

T
Middle item

Divide the array: Because ¥ <25 we need to search
J

10 12 13 14 18 20

Conguer the subarray by determining whether x is in the subarray. This is
accomplished by recursively dividing the subarray. The solution 1s

Yes, x 15 in the subarray

Obtain the solution to the array from the solution to the subarray

Yes. x 15 In the array

10 12 13 14 18 20 25 27 30 35 40 45 47

Choose left subarray Compare Iwith 25
because x < 25. '

Y
10 12 13 14 18 20

!

Compare x with 13.

Choose right subarray
because x > 13.

Y
14 18 20

T

Compare x with 18.

Determine that x is present
because x = 18.

Algorithm 2.1: Binary Search (Recursive)

Problem: Determine whether x is in the sorted array 5 of size n.
Inputs: positive integer 1, sorted (nondecreasing order) array of keys 5 indexed fram 1 to n, a key x.

Qutputs: location, the location of x in 5 (0 if x is not in 5)

index location (index low, index high)
index mid:
if (low > high)
retorn 0O:;
else
mid = (low + high)/2]:
if (x == 5S[mid])
retorn mid
elze 1f (x < S[mid])
retorn leocation(low, mid - 1) ;
else
return location(mid + 1, high):

gda
Rectangle

gda
Rectangle

gda
Text Box
<

Comment for Algorithm 2.1

* Notice that 1, 5, and xare not parameters to
function /ocation.

 Because they remain unchanged in each recursive
call, there is no need to make them parameters.

« There are two reasons for doing this.

— First, it makes the expression of recursive routines less
cluttered.

— Second, in an actual implementation of a recursive
routine, a new copy of any variable passed to the routine
is made in each recursive call. If a variable's value does
not change, the copy is unnecessary. This waste could be
costly if the variable is an array.

Analysis of Algorithm 2.1
Worst-Case Time Complexity
(Binary Search, Recursive)

 Basic operation
— the comparison of xwith S/mid]

* Input size: n
— the number of items in the array

* There are two comparisons of xwith S/mid]
in any call Yo function /Jocation in which x
does not equal S/mid]

— we can assume that there is only one .
comparison, because this would be the case in
an efficient assembler language implementation

4@‘

|

10

Analysis of Algorithm 2.1
Worst-Case Time Complexity
(Binary Search, Recursive)

T
Wn)= W (5) 3 1
R ol S
Comparisons in Comparison at
recursive call top level

W (n)
W (1)

W (%) +1 for n > 1, n a power of 2

This recurrence is solved in Example B.1 in Appendix B. The solution 1s
Win)=Ilgn+ 1.
If 7 1= not restricted to being a power of 2, then

Win)=|lgn]|+1e©(lgn)

11

2.2 Mergesort

« The divide-and-conquer steps of
Mergesort

— (1) Divide the array into two subarrays each
with n/2 items.

— (2) Conguer (solve) each subarray by sorting it.
Unless the array is sufficiently small, use
recursion to do this.

— (3) Combine the solutions to the subarrays by
merging them into a single sorted array.

12

Example of Mergesort

Example 2.2

27 10 12 25 13 15 22

Diivide the array

2710 12 20 and 25 13 15
Sort each subarray

10 12 20 27 and 13 15 22
[Merge the subarrays

10 12 13 15 20 22 25 27

Suppose the array contains these numbers in sequence

22

25

13

27 10 12 20 25 13 18 22

Divide

27 10 12 20 25 13 156 22

Divide Divide

/D.v.de\ /D.wde\ /D.v.de\ /D\

12 25 15

o/ e e]

Merge

14

g 2 4@ 16 R0 22 25 27

,ﬂnlgﬂrithm 2.2: Mergesm‘t

Froblem: Sort n keys in nondecreasing sequence
Inputs: positive integer r, array of keys 5 indexed from 1 to n.

Outputs: the array S containing the keys in nondecreasing order

Lry

vold mergesort (int n, keytype

if (m>l)
con=t int h=[n/2], m = n - &h;
keytype U[1 ..RH], V[1 ..m];
copy S[1] through S[h] to U[l] through U[h]:;
copy S[h+l] through S5/n] to V[1l] through V[m];
mergesortih, U):

mergesort{m, V):

15

Algorithm 2.3: Merge

Problem: Merge two sorted arrays into one sorted array.

Inputs: positive integers i and m, array of sorted keys U indexed from 1 to h, array of sorted keys V
indexed from 1 to m.

Qutputs: an array S indexed from 1 to b + m containing the keys in U/ and V in a single sorted array.
void merge (int kh, int m, const keytype U[].

con=st keytype V[1.,

keytype S5[])

index 1, 7, k:

i=1; j =1; k= 1;
while (1 <¢<=h && 7 <= m) {
if (OU[i] < VI3 |

S[k] = Ul1]:

14+
H
elseq
5[k] = VI[3]:
J++;
H
k++;
H
if (ixh)

copy V[Jj] through V[m] to 5[k] through S[h+m]:
elze

copy U[1] through U[h] to 5[k] through S[h+m]:

N

N

16

Table 2.1: An example of merging two arrays U and V into one array Sl

U

V

S (Resutl)

10 12 20 27

13 15 22 25

10

1012 20 27

13 15 22 25

10 12

1012 20 27

13 15 22 25

1012 13

1012 20 27

13 1522 25

10 12 13 15

10 12 20 27

13 15 22 25

10121315 20

10 12 20 27

13 15 22 25

1012 13 15 20 22

N ook, IWIN|RFP|

10 12 20 27

13 15 22 25

1012 13 15 20 22 25

10 12 20 27

1315 22 25

10 12 13 15 20 22 25 27 < Final values

Mlitems compared are in boldface. Items just exchanged appear in squares.

17

Analysis of Algorithm 2.2
Worst-Case Time Complexity
(Mergesort)

« Basic operation:

— the comparison of UfiJwith V/j]

— As mentioned in Section 1.3, in the case of algorithms that
sort by comparing keys, the comparison instruction and the
assignment instruction can each be considered the basic
wera’rlon. Here we will consider the comparison instruction.

hen we discuss Mergesort further in Chapter 7, we will
consider the number of assignments.

* TInput size: ~Aand m
— the number of items in each of the two input arrays.

« The worst case occurs when the loop is exited, because one
of the indices—say, /~—has reached its exit point A+1
whereas the other index j has reached m, 1 less than its
exit point.

Wihm)=h+m-1.

18

Analysis of Algorithm 2.2 Worst-
Case Time Complexity (Mergesort)

Basic operation: the comparison that takes place in merge.

Input size: . the number of items in the array S.

The taotal number of comparisons is the sum of the number of comparisons in the recursive call to mergesort
with U as the input, the number of comparisons in the recursive call to mergesorf with V' as the input, and the
number of comparisons in the top-level call to merge. Therefore

W(n) = Wih) + Wim) + h+m-—1

Time to sort /' Time tosort ¥V Time to merge

VWe first analyze the case where n is a power of 2. In this case

h=In/2) = 3
mn n
m=n—h=n—§+§

h+m=o+o=n

T T

Qur expression for VW (n) becomes

W) =W (3)+W(35)+n-1
—zw(z) +n—1. 19

Analysis of Algorithm 2.2 Worst-
Case Time Complexity (Mergesort)

VWhen the input size is 1, the terminal condition is met and no merging is done. Therefore
Wi1)is 0. We have established the recurrence

T

Win)=2W (vz-) +n—1 for n = 1, n a power of 2
Wi(l)=0

This recurrence is solved in Example B.19 in Appendix B. The solution 15
Wi(n)=nlgn—(n—-1) €8 (nlgn}.

For n not a power of 2, we will establish in the exercises that

v (3] <w (3] +n-.

where [y] and [y] are the smallest integer = y and the largest integer = y, respectively. It is
hard to analyze this case exactly because of the floors ([]) and ceilings ([]). However

using an induction argument like the one in Example B.25 in Appendix B, it can be shown
> that Win) is nondecreasing. Therefore, Theorem B.4 in that appendix implies that

Win)e®©nlgn).

20

2.3 The Divide-and-Conquer
Approach

» The divide-and-conguer design strategy involves
the following steps:
— (1) Divide an instance of a problem into one or more

smaller instances.

— (2) Conguer (solve) each of the smaller instances. Unless
a smaller instance is sufficiently small, use recursion to

do this.
— (3) Combine, if necessary, the solutions to the smaller
instances to obtain the solution to the original instance.
« The reason we say "if necessary" in Step 3 is that
in algorithms such as Binary Search Recursive
(Algorithm 2.1) the instance is reduced to just
ohe smaller instance, so there is no need to

combine solutions

21

2.4 Quicksort
(Partition Exchange Sort)

* Quicksort is similar to Mergesort in that the sort
is accomplished by dividing the array into two
partitions and then sorting each partition
recursively.

* In Quicksort, however, the array is partitioned by
placing all items smaller than some pivot item
before that item and all items larger than the
pivot item after it.

« The pivot item can be any item, and for
convenience we will simply make it the first one.

22

Example 2.3

Suppose the array contains these numbers in sequence

Pivot item

!
15 22 13 27 12 10 20 25

1. Partition the array so that all items smaller than the pivot item are to the left of it
and all items larger are to the right

Pivot item

l
10 13 12 15 22 27 20 25
All smaller All larger

2. Sort the subarrays

FPivot item

!

10 13 12 15 20 22 25 27

Sorted Sorted

23

Example of QuickSort

16 22 13 27 12 10 20 25

[)

10 13 12 15 22 27 20 25
10 13 12 15 20 22 27 25

~ :;}‘10 12 13 15 20 22 25 27
A 24
l

,ﬂ.lgnrithm 2.6: Quicksort

Froblem: Sort n keys in nondecreasing order
Inputs: positive integer . array of keys 5 indexed from 1 to n.

Qutputs: the array 5 containing the keys in nondecreasing order

void guicksort (index low, index high)

index piveotpoint:

r

if B > low){

o

(B1ig
partition{lov, high, pivotpoint):;
quicksort{lov, pivetpoint - 1):

gquicksort (pivotpoint +

L T []
- -J.J.=l-J._| r

25

Algorithm 2.7: Partition

Froblem: Partition the array 5 for Quicksort

Inputs: two indices, low and high, and the subarray of 5 indexed from low to high.

Qutputs: pivoipoint, the pivot point for the subarray indexed from low to high.

void partition (index low, index high,
index& piveotpoint)

index 1, 7J:
keytype pivotitem;

-. - -. — "ol B [Fd Fd il - -
pivobitem = S[low]:; // Choose first item for
J = low; /S /pivotitem.

- - — T % m - — N = - - 5

o |:J. - A LV o — AL {_ .-—E‘--_r J.___I

if (5]1] < pivotitem) {

.__I
J B
3 - 1 - 1
exchange 5[1] and 5[37]:;
= Jr
T e L.
1o and S[pivotpoint]:

26

Table 2.2: An example of procedure partitionl

i | j | S[a1]s[21| 311 S[4]|S[5] | S[6] | S[7] | S[8]
—|—|15 |22 |13 |27 |12 |10 |20 |25 | < Initial values
2 |1 |15 |22 |13 |27 |12 |10 |20 |25
3 |2 |15 |22 |13 |27 |12 |10 |20 |25
4 |2 |15 |13 |22 |27 |12 |10 |20 |25
5 |3 |15 |13 |22 |27 |12 |10 |20 |25
6 |4
7 |4
8 |4

15 |13 |12 |27 |22 |10 |20 |25
15 |13 |12 |10 |22 |27 |20 |25
15 |13 |12 |10 |22 |27 |20 |25
— 4 |10 |13 |12 |15 |22 |27 |20 |25 | < Finalvalues

Mlitems compared are in boldface. Items just exchanged appear in squares.

27

Analysis of Algorithm 2.7 Every-Case Time Complexity (Partition)
Basic operation: the comparison of 5[i] with pivotifern.
Input size: n = high — low + 1, the number of items in the subarray
Because every item except the first is compared
fm=n-1

1A

e are using n here to represent the size of the subarray. not the size of the array S
It represents the size of 5 only when partition is called at the top level

28

Analysis of Algorithm 2.6
Worst-Case Time Complexity
(Quicksort)

 Basic operation:

—the comparison of S/ijwith pivotitem in
partition.

* Input size:
— n, the number of items in the array S.

29

4@‘

|

Analysis of Algorithm 2.6
Worst-Case Time Complexity
(Quicksort)

Tm)= TO + Tm-1) + n—1
Time to sort Time to sort Time to
left subarray right subarray partition

AT

We are using the notation T{n} because we are presently determining the every-case
complexity for the class of instances that are already sorted in nondecreasing order
Because T{0) = 0, we have the recurrence

Tn)=Tnh-1)+n-1 forn >0
T i0)z==A;

This recurrence is solved in Example B.16 in Appendix B. The solution is

_n{n-—1)
= ———

T(n)

30

Why QuickSort is Quick?

« Wost-case time complexity
— O(nZ)

« Average-case time complexity
- ©(nlgn)

49‘

31

Analysis of Algorithm 2.6
Average-Case Time Complexity
(Quicksort)

Basic operation: the comparnson of 5[if with pivofifem in partition

Input size: n, the number of items in the array 5.

We will assume that we have no reason to believe that the numbers in the
array are in any particular order, and therefore that the value of pivoipoint
returned by partifion is equally likely to be any of the numbers from 1 through
n. If there was reason to believe a different distribution, this analysis would not
be applicable. The average obtained is, therefore, the average sorting time
when every possible ordering is sorted the same number of times. In this
case, the average-case time complexity is given by the following recurrence:

Probability
prvatpoint 1s p
l
™ .I
A(n) = = [Alp-1)+An-p)] + n-1 2.1
[};nl{p) Fdin =g # 8 (2.1)
. Average time to Time to
sort subarrays when partition

pivotpoint is p

32

In the exercises we show that

Y Ap-1)+An-p]=2) A(p-1).
p=1

p=1

Plugging this equality into Equality 2.1 yields

2 n
Aln)=— Alp-1 - 1.
(n)==3 Ap-1)+n
p=1
Multiplying by n we have

nA(n) = EZH: Alp—1)+n(n-1). (2.2)

p=1

Applying Equality 2. 2 to n — 1 gives

n—1

(n-1)A(n—1)=2> A(p-1)+(n—1)(n-2). (2.3)

p=1
Subtracting Equality 2.3 from Equality 2.2 yields
nAn)-n-1)An-1)=2A(n-1)+2(n-1),

» which simplifies to

A(n) _ Aln-1) " 2(n—1)
n+1 n n(n+1) 33

If we let

_ A(n)
Cn+1’

%

we have the recurrence

2 (n—1)

Mt n(n+1)

for n > 0

ag = (.

Like the recurrence in Example B.22 in Appendix B, the approximate solution
to this recurrence is given by

a, == 2ln n,

which implies that
An)=(n+1)2lInn=(n+1)2(In2)(lg n)
~1.38(n+1)lgn € O (nlg n).

34

2.8 When Not to Use
Divide-and-Conquer

An instance of size nis divided into two
or more instances each almost of size ».
— Concept: like Napoleon dividing an opposing army of
30,000 soldiers into two armies of 29,999 soldiers (if
this were somehow possible).

— Example: Algorithm 1.6 (#th Fibonacci Term, Recursive)
e F(n)=F(n-1)+F(n-2) => T(n) > 2"2
An instance of size nis divided into
almost 7 instances of size n/c, where cis a
constant.
— Complexity: n®gn

35

R
. Divide—and-Conquer- fEDEIJEﬁﬁ\?

INTRODICTION
TO ALGORITHMS

36

3.5.2 Divide and Conquer Relations

In a divide-and-conquer algorithm, the problem is divided into smaller subproblems, each
subproblem is solved recursively, and a combine algorithm is used to solve the original
problem. Assume that there are a subproblems, each of size 1/b of the original problem,
and that the algorithm used to combine the solutions of the subproblems runs in time ¢n ¢,
for some constants a, b, ¢, and k. The running time 7 (n) of the algorithm thus satisfies

T(n)=aT (n/b)+cn*. (3.14)

We assume, for simplicity, that n =", so that n/b is always an integer (b is an integer
greater than 1). We first try to expand (3.14) a couple of times to get the feel of it:

T(n)= a(aT{frszHc(mb-J*)+m" — a(a{aT(m’b3)+('(n/b3}"')+c'{nfb)")+('f1k.
[n general, if we expand all the way to n/b™ =1, we get
T(ny=a(a(---Tn/b™) +cn/b™ Yy + -y +cnt,

Let’s assume that T(1)=c (a different value would change the end result by only a
constant). Then,

T'inY=ca™ +ea®™ b* +ca™ 2% 4 - 4 ch™*.

which implies that

m - n bk i
T'in)= c'Za’”_‘b”‘ = =)
r={) i=0 9

But, this is a simple geometric series. There are three cases, depending on whether
(b*/a) is less than, greater than, or equal to 1.

N

37

Casel: a > b*

In this case, the factor of the geometric series is less than 1, so the series converges to a
constant even if m goes to infinity. Therefore, 7 (n) =0 (a™). Since m = log,n, we get

' log, n log,a

art=gq =n =" (the last equality can be easily proven by taking logarithm of base b
of both sides). Thus,

=

T(n)=0 (n°%%).

38

Case 2: a~= b
In this case, the factor of the geometric series is 1, and thus T(n) = O (a¢™ m). Notice that
a = b* implies that log,a = k and m = O (logn). Thus,

T(n)=0 (n“logn).

39

]{.
Case3: a<b
In this case, the factor of the geometric series is greater than 1.

expression for summing a geometric series. Denote b"/a by F (F is a constant). Since

We use the standard

the first element of the series is a”, we obtain
Fm+| ul l .
En)=a"———=0@"F")=0(®"")=0(®")")=0".

40

These three cases are summarized in the following theorem.
00 Theorem 3.4

The solution of the recurrence relation T (n) = aT (n/b) + cn*, where a and
b are integer constants,a 21, b 22, and ¢ and k are positive constants, is

-~

O (') ifa>bt
gin)= » O(nklmg n) ifa=b*.
O(n*) if a < b*

41

	<:

