
1

Algorithms and Data Structures 2010-2011

Lesson 2: stacks and queues

Luciano Bononi

<bononi@cs.unibo.it>

http://www.cs.unibo.it/~bononi/
(slide credits: these slides are a revised version of slides created by Dr. Gabriele D’Angelo)

International Bologna Master in
Bioinformatics

University of Bologna

19/04/2011, Bologna

2Algorithms and Data Structures 2010-2011© Luciano Bononi

Outline of the lesson

� Introduction to algorithms

� Introduction to data structures and abstract data types

� Abstract data type List

� Basic data structures

� arrays

� linked lists

2

3Algorithms and Data Structures 2010-2011© Luciano Bononi

Outline of the lesson

� Abstract Data Types (ADT):

� Stacks

� definition

� examples

� implementation

� Queues

� definition

� implementation

4Algorithms and Data Structures 2010-2011© Luciano Bononi

Stack overview

� Intuitive view: a pile of things on top of each other

� Example: a pile of plates

� An object added to the stack goes on the “top” of the stack

� Example: put a plate on the top of the pile

� This operation is called “push”

� An object removed from the stack is taken from the “top” of

the stack

� Example: the only plate that can be accessed or removed

conveniently is the top one

� Removing the top one is called “pop”

3

5Algorithms and Data Structures 2010-2011© Luciano Bononi

Stack example

� Example: a pile of plates

� A new plate added to the stack goes

on the “top” of the stack

� The removal of a plate is from the

“top” of the stack

� The only plate that can be accessed

or removed conveniently is the top

one

6Algorithms and Data Structures 2010-2011© Luciano Bononi

Stack Abstract Data Type: specification

� A stack is a container of objects. Objects are inserted and

removed according to the Last-In-First-Out (LIFO) principle

� sequence of entries <a1, a2, …, ai, …, an>, but only an is

accessible as the “top” of the stack

� Push(x) inserts an entry at the “front” of the sequence

� Example: given stack L (a list), use add_first(L,x) in List

� Top() returns the last entry

� Example: return(L.Head) node in List

� Pop() deletes the last entry

� Example: delete(L.Head) in a List (and update L.Head)

4

7Algorithms and Data Structures 2010-2011© Luciano Bononi

Stack Abstract Data Type: description

� Objects can be inserted at any time, but only the last (the

most-recently inserted) object can be removed

� Objects are removed in the reverse order from that in which

they were inserted

� Usually it is not possible to access objects that are in the

“middle” of the stack

� It is possible to access the “top” element without removing it

8Algorithms and Data Structures 2010-2011© Luciano Bononi

Stack Abstract Data Type: operations

� Creates a new Stack

� True if Stack is empty,

false otherwise

� Inserts a new element onto

the top of the Stack

� Returns the top entry of the

Stack, the stack is unchanged

� Returns and delete the top entry

of the Stack

Make(S)

Empty(S)

Push(S, x)

Top(S)

Pop(S)

5

9Algorithms and Data Structures 2010-2011© Luciano Bononi

Applications of Stacks

� Stacks are used in many aspects of computing

� Arithmetic expression evaluation

� Syntax parsing

� Example: properly balanced parenthesis

� Activation record of functions

� Convert recursive algorithms to non-recursive version

10Algorithms and Data Structures 2010-2011© Luciano Bononi

Applications of Stacks: parenthesis balance example

� Expression to check: (2+3)-6)*2

2*)6-)3+2(

((

)

)

Stack empty!

The parenthesis

are unbalanced!

6

11Algorithms and Data Structures 2010-2011© Luciano Bononi

Applications of Stacks: arithmetic expression evaluation

� Given a simple arithmetic expression such as:

((1 + 2) * 4) + 3

� Is it possible to use a stack for its evaluation?

� If it is possible then we should be able to write an algorithm

that uses a stack and that defines how to evaluate the given

expression

12Algorithms and Data Structures 2010-2011© Luciano Bononi

Reverse polish notation

� The Reverse Polish Notation (RPN, also called Postfix notation)

is a postfix notation wherein every operator follows all of its

operands

� For example:

� conventional infix notation: “3 + 4”

� postfix notation: “3 4 +”

7

13Algorithms and Data Structures 2010-2011© Luciano Bononi

Reverse polish notation

� Another example:

� infix: “3 - 4 + 5”

� RPN: “3 4 – 5 +”

� One of the advantages of RPN is that parentheses are not

necessary

� “3 – (4 * 5)” is “3 4 5 * -”

14Algorithms and Data Structures 2010-2011© Luciano Bononi

Reverse polish notation

� A more complex example:

((1 + 2) * 4) +3 is 1 2 + 4 * 3 +

Simple algorithm:

� The expression is evaluated from the left to the right using a

stack

� push when encountering an operand and

� pop two operands and evaluate the value when

encountering an operation

� push the result

8

15Algorithms and Data Structures 2010-2011© Luciano Bononi

Applications of Stacks: arithmetic expression evaluation

((1 + 2) * 4) +3 -> 1 2 + 4 * 3 +

Step Input Operation Stack

1 1 Push operand 1

2 2 Push operand 1, 2

3 + Add 3

4 4 Push operand 3, 4

5 * Multiply 12

6 3 Push operand 12, 3

7 + Add 15

16Algorithms and Data Structures 2010-2011© Luciano Bononi

Implementation of the Stack ADT

� It is possible to use different data structures to implement the

stack abstract data type

� Option #1: doubly linked list

� Each entry contains references to its predecessor and successor in

the sequence, even for the first and last entries

� The whole list is represented by a header containing only a

reference to the first entry

� Stack operations push and pop need to handle references in both

directions. Is it possible a simpler implementation?

9

17Algorithms and Data Structures 2010-2011© Luciano Bononi

Implementation of the Stack ADT

� Option #2: singly linked list

� Each entry contains only one reference to its successor in the

sequence. The first and last entries are not linked

� The last entry contains a NULL (^) reference

� The Stack can be seen as a special list, the Stack operations form

a subset of the List operations

18Algorithms and Data Structures 2010-2011© Luciano Bononi

Implementation of the Stack ADT

� Option #2 (continue)

� To support Stack operations conveniently, here we put the back of

the sequence at the front of the singly linked list

� Push() implementation:

� Pop() implementation: “move the header one step on the right”

� Both Push() and Pop() are O(1)

10

19Algorithms and Data Structures 2010-2011© Luciano Bononi

Implementation of the Stack ADT

� Option #3: array

� Create a stack using an array by specifying a maximum size N for

our stack

� The stack consists of a N-element array S and an integer variable

t, the index of the top element in array S

S
1 2 3 t N

� The array implementation is simple and efficient

� Operations performed in O(1), except for resizing

� There is an upper bound, N, on the size of the stack

� The arbitrary value N may be too small for a given application, or a
waste of memory if it is too large

20Algorithms and Data Structures 2010-2011© Luciano Bononi

Queue ADT: definition

� A Queue differs from a Stack in that its insertion and removal

follow the First-In-First-Out (FIFO) principle.

� <a1, a2, …, ai, …, an>

� the same to a real-life queue

� Objects can be inserted at any time, but only the object which

has been in the queue the longest may be removed

� Objects are inserted at the rear (enqueued) and removed

from the front (dequeued)

� Objects are removed from a queue in the same order as they

were inserted

11

21Algorithms and Data Structures 2010-2011© Luciano Bononi

Queue ADT: animated example

22Algorithms and Data Structures 2010-2011© Luciano Bononi

Queue ADT: operations

� Creates a new Queue

� True if Queue is empty,

false otherwise

� Inserts the new element x at

the end of the Queue

� Returns the front entry of the

Queue, which is not changed

� Removes and returns the front

entry of the queue

Make(Q)

Empty(Q)

Enqueue(Q, x)

Front(Q)

Dequeue(Q)

12

23Algorithms and Data Structures 2010-2011© Luciano Bononi

Queue ADT: implementation

� A Queue can be seen as a special case of List

� Queue operations are a subset of List operations

� Option #1: singly linked circular list

� The last entry has a reference to the first

� The header contains a reference to the last entry

24Algorithms and Data Structures 2010-2011© Luciano Bononi

Queue ADT: implementation

� Dequeue(Q, x)

� Enqueue(Q, x)

� Enqueue and Dequeue an

item: time needed is

independent of the number of

items in the queue -> O(1)

Is it possible to further

improve it?

13

25Algorithms and Data Structures 2010-2011© Luciano Bononi

Queue ADT: implementation

� Option #2: a “circularly managed” or “wrapped” array

� A maximum size N is specified

� Why in a circular fashion?

� What about a “standard array”?

Q

0 1 2 N-1f r

26Algorithms and Data Structures 2010-2011© Luciano Bononi

Queue ADT: implementation

� The queue consists of an N-element array Q and two integer

variables:

� f: index of the front element (head–for dequeue)

� r: index of the element after the rear one (tail–for
enqueue)

� Initially, f = r = 0

� Enqueue: increase r by 1

� Dequeue: increase f by 1

� To allow circular fashion: we use a module operation,
mod(), when increasing f and r

Q

0 1 2 N-1f r

14

27Algorithms and Data Structures 2010-2011© Luciano Bononi

Queue ADT: implementation

� After a number of Enqueue and Dequeue operations, we may

get a “wrapped around” configuration

Q

0 1 2 N-1r f

� What does f = r mean?

� an empty array

� initially f=r=0, or all enqueued objects are dequeue and

f=r>0

� a full array

� r is increased continuously, from 0, 1, 2, …, to f finally

28Algorithms and Data Structures 2010-2011© Luciano Bononi

Queue ADT: implementation

� How to differentiate these two cases?

� Use one array index and a size variable to maintain the

Queue length, in this case the queue is full when size is

equal to N

� How is it possible to manage the Queue with only one array

index? (index the enqueue point, managed in circular way

and assume elements initialized as null value. Dequeue

requires searching the last element in the array: O(n)).

� Dequeue() and Enqueue() take both O(1) time, except

Enqueue() into a full queue. Resizing again: O(n)

15

29Algorithms and Data Structures 2010-2011© Luciano Bononi

References

� Part of this material is inspired / taken by the following freely

available resources:

� http://www.cs.rutgers.edu/~vchinni/dsa/

� http://www.cs.aau.dk/~luhua/courses/ad07/

� Wikipedia “stack data structure”

Algorithms and Data Structures 2008 - 2009

Lesson 2: stacks and queues

Luciano Bononi

<bononi@cs.unibo.it>

http://www.cs.unibo.it/~bononi/
(slide credits: these slides are a revised version of slides created by Dr. Gabriele D’Angelo)

International Bologna Master in
Bioinformatics

University of Bologna

19/04/2011, Bologna

