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Computation Model

Let’s consider a computation model composed of a register-based
machine as follows:

It has a input and a output device;
The machine has N memory locations, addressed from 1 to N;
every memory location can contain a value (integer, real, etc.);
Read or write access to each memory location requires constant
time;
The machine has a set of registers to store parameters needed
for basic operations, and the pointer to current operation;
The machine has a program composed by a finite set of
instructions.



Computational Cost

Definition

Let f (n) be the amount of resources (execution time or memory
requested) needed by an algorithm on a input of size n, executed on
a register-based machine.

We want to study the order of magnitude of f (n) by ignoring the
multiplicative constants and the terms of lower magnitude.



Computational cost metric

Evaluating the real execution time of a program to estimate the
computational cost has a number of disadvantages:

To implement a given algorithm could be time consuming activity;
Execution time is dependent on the given architecture used
(programming language used, machine and CPU characteristics,
etc.);
We could be interested to know the computational cost metric for
input size too wide for the machine available;
To estimate the order of magnitude of the cost metric from
empirical measures is nto always possible;



Computational Cost
Example

Let’s conider two algorithms A e B resolving the same problem.
Let fA(n) = 103n be the computational cost of A;
Let fB(n) = 10−3n2 be the computational cost of B.

Which one is preferable?
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Asymptotic notation O(f (n))

Definition

Given a cost function f (n), we define the set O(f (n)) as the set of
functions g(n) such that constants c > 0 e n0 ≥ 0 exist, such that the
following conditions are satisfied:

∀n ≥ n0 : g(n) ≤ cf (n)

Or synthetically:

O(f (n)) = {g(n) : ∃c > 0,n0 ≥ 0 such that ∀n ≥ n0 : g(n) ≤ cf (n)}

Note: we use the notation (though not formally correct)
g(n) = O(f (n)) to indicate g(n) ∈ O(f (n)).



Graphical representation

n

g(n) = O(f(n))

cf(n)
g(n)



Example

Let g(n) = 3n2 + 2n and f (n) = n2. We want to prove that
g(n) = O(f (n)).

We must find two constants c > 0,n0 ≥ 0 such that g(n) ≤ cf (n) for
each n ≥ n0, in other words:

3n2 + 2n ≤ cn2 (1)

c ≥ 3n2 + 2n
n2 = 3 +

2
n

as an example, let’s select
n0 = 10 and c = 4, and we
see that relation (1) is
satisfied.
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Asymptotic notation Ω(f (n))

Definition

Given a cost function f (n), we define the set Ω(f (n)) as the set of
functions g(n) such that constants c > 0 e n0 ≥ 0 exist, such that the
following conditions are satisfied:

∀n ≥ n0 : g(n) ≥ cf (n)

More shortly:

Ω(f (n)) = {g(n) : ∃c > 0,n0 ≥ 0 such that ∀n ≥ n0 : g(n) ≥ cf (n)}

Note: we use the notation g(n) = Ω(f (n)) to indicate g(n) ∈ Ω(f (n)).



Graphical representation

n

g(n) = Ω(f(n))

cf(n)
g(n)



Example

Let g(n) = n3 + 2n2 and f (n) = n2, and let’s prove that
g(n) = Ω(f (n)).

We must find two constrants c > 0,n0 ≥ 0 such that, for any n ≥ n0
then g(n) ≥ cf (n), in other words:

n3 + 2n2 ≥ cn2 (2)

c ≤ n3 + 2n2

n2 = n + 2

as an example, by selecting
n0 = 0 and c = 1, the
relation (2) holds.
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Asymptotical notation Θ(f (n))

Definition

Given a cost function f (n), we define the set Θ(f (n)) as the set of
functions g(n) such that constants c1 > 0, c2 > 0 and n0 ≥ 0 exist,
such that the following conditions are satisfied:

∀n ≥ n0 : c1f (n) ≤ g(n) ≤ c2f (n)

Synthetically:

Θ(f (n)) = {g(n) : ∃c1 > 0, c2 > 0,n0 ≥ 0 such that
∀n ≥ n0 : c1f (n) ≤ g(n) ≤ c2f (n)}

Note: we use the notation g(n) = Θ(f (n)) to indicate g(n) ∈ Θ(f (n)).



Graphical representation

n

g(n) = Θ(f(n))

c1f(n)
c2f(n)
g(n)



Intuitive explanation

If g(n) = O(f (n)) this means that the order of magnitude of g(n)
is “less or equal” than f (n);
If g(n) = Θ(f (n)) this means that g(n) and f (n) have the same
order of magnitude;
Se g(n) = Ω(f (n)) this means that the order of magnitude of g(n)
is “greater or equal” than f (n)



Some properties of the asymptotical notation

Simmetry

g(n) = Θ(f (n)) if and only if f (n) = Θ(g(n))

Transposed Simmetry

g(n) = O(f (n)) iff f (n) = Ω(g(n))

Transitivity

If g(n) = O(f (n)) and f (n) = O(h(n)), then g(n) = O(h(n)).
The same holds for Ω and Θ.



Orders of magnitude

In ascending order of cost:

Order Example
O(1) constant determine if a number is even

O(log n) logaritmic search of an element in an ordered array
O(n) linear search of an element in an unordered array

O(n log n) pseudolinear Merge Sort ordering of an array
O(n2) quadratic Bubble Sort ordering of an array
O(n3) cubic matrix product n × n with “intuitive” algorithm
O(cn) exponential, base c > 1
O(n!) factorial Computation of matrix determinant by expansion of minor

O(nn) exponential, base n

In general:

O(nk ) when k > 0 is polinomial order
O(cn) when c > 1 is exponential order



Graphical comparison of orders of magnitude
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Graphical comparison of orders of magnitude
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Graphical comparison of orders of magnitude
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Quiz: true or false?

6n2 = Ω(n3) ?

By applying the definition, we must prove that

∃c > 0,n0 ≥ 0 : ∀n ≥ n0 6n2 ≥ cn3

That is, c ≤ 6/n.

Given c we can always select a value of n sufficiently large such that
6/n < c, hence the assertion is false.



Quiz: true or false?

10n3 + 2n2 + 7 = O(n3) ?

By applying the definition, we must prove that

∃c > 0,n0 ≥ 0 : ∀n ≥ n0 10n3 + 2n2 + 7 ≤ cn3

In other words:

10n3 + 2n2 + 7 ≤ 10n3 + 2n3 + 7n3 (se n ≥ 1)

= 19n3

Hence the inequality is true e.g. when n0 = 1 and c = 19.



Questions

Demonstrate log2 n = O(n);
What is the difference if the base of logarithm is 2?
Demonstrate n log n = O(n2);
Demonstrate, for all α > 0, log n = O(nα) (hint: see above, we
can say log nα = O(nα), hence...)
Find the good location for O(

√
n) in the table of the orders of

magnitude. Why?



Cost of execution

Definition

An algorithm A has execution cost O(f (n)) on an instance of the input
of size n with respect to a given computation resource, if given the
amount r(n) of the resource sufficient for execution of A, for every
instance of size n, the following relation holds: r(n) = O(f (n)).

Note Computation resources in our case means execution time or
memory occupation.



Problem complexity

Definition

A problem P has complexity O(f (n)), with respect to a given
computation resource, if an algorithm exists which resolves P, whose
execution cost with respect to the resource is O(f (n)).



Some useful laws

Sum

If g1(n) = O(f1(n)) and g2(n) = O(f2(n)), then
g1(n) + g2(n) = O(f1(n) + f2(n))

Product

If g1(n) = O(f1(n)) and g2(n) = O(f2(n)), then
g1(n) · g2(n) = O(f1(n) · f2(n))

constants elimination

If g(n) = O(f (n)), then a · g(n) = O(f (n)) for every constant a > 0



Observation

Dealing with the orders of magnitude, every basic operation
(instruction) has cost O(1); a different contribute comes from
conditional and iterative instructions.

i f ( F_tes t ) {
F_true

} else {
F_fa lse

}

Assuming:
F_test = O(f (n))

F_true = O(g(n))

F_false = O(h(n))

The execution cost of the
if-then-else block is

O(max{f (n),g(n),h(n)})



Analysis of the best, worst and average case

Let In be the set of all possible istances of the input of size n. Let
T (I) be the execution time of the algorithm on the intance I ∈ In.

The (worst case) cost is defined as

Tworst(n) = max
I∈In

T (I)

The (best case) cost is defined as

Tbest(n) = min
I∈In

T (I)

The (average case) cost is defined as

Tavg(n) =
∑
I∈In

T (I)P(I)

where P(I) is the probability of occurrence of the instance I.



Analyisis of non recursive algorithms
Search of min value in non-empty array

// Return position of minimum element in A
algorithm Minimum( A[1..n] of float ) -> int

int m:=1; // Position of min element
for i:=2 to n do

if ( A[i]<A[m] ) then
m = i;

endif
endfor
return m;

}

Analysis
Let n be the length of array v .
the cycle body is executed n − 1 times;
Every iteration has cost O(1)
Il time cost of the execution of Minimum is O(n) (or, more
precisely, Θ(n): why?).



Sequential search
Best and Worst cases

// Returns the position of first occurrence of ‘‘val’’
// in the array A[1..n].
// Returns -1 if the value is not included.
algorithm Find( array A[1..n] of int, int val ) -> int

for i:=1 to n do
if ( A[i]==val ) then

return i;
endif

endfor
return -1;

In the best case the searched element is the first of the list.
Hence Tbest(n) = O(1)

In the worst case the searched element is the last one (or it is not
present). Hence Tworst(n) = Θ(n)

and in the average case?



Sequential search
Analysis of the average case

We do not know the probability of occurrence of the values in the list,
so we make some assumptions.

Given an array of n elements, we assume the probability Pi that the
element is in position i (i = 1,2, . . .n) to be Pi = 1/n, for every i (we
assume the element is always present in the array).

The time T (i) needed to find element in the i-th position is T (i) = i .

Hence we conclude that:

Tavg(n) =
n∑

i=1

PiT (i) =
1
n

n∑
i=1

i =
1
n

n(n − 1)

2
= Θ(n)



Example
An iterative ordering algorithm

public class Sor t ingAlgo {
/ / compute index of min element i n the set
/ / v [ i ] , v [ i + 1 ] . . . v [ j ]
s t a t i c i n t Min ( i n t v [ ] , i n t i , i n t j )
{ /∗ . . . /∗ }
/ / v [ ] must be non−empty
p u b l i c s t a t i c vo id Sor t ( i n t v [ ] )
{

f o r ( i n t i =0; i <v . length−1; ++ i ) {
i n t m = Sor t ingAlgo . Min ( v , i , v . length−1 ) ;
/ / Swap v [ i ] e v [m]
i n t tmp = v [ i ] ;
v [ i ] = v [m] ;
v [m] = tmp ;

}
}

}



Analysis of the sorting algorithm

The call of Min(v, i ,v.length−1) finds the min element in the array
v [i], v [i + 1], . . . v [n− 1]. The time needed is proportional to n− i ,
i = 0,1, . . .n − 1 (why?);
the swap operation has execution time cost O(1);
The body of the for cycle is executed n times.

The time execution cost of the whole function Sort is:

n−1∑
i=0

(n − i) = n2 −
n−1∑
i=0

i = n2 − n(n − 1)

2
=

n2 + n
2

which is Θ(n2).



Analysis of recursive algorithms
Search an element in an ordered array

public class BinarySearch {

s t a t i c i n t FindRec ( i n t val , i n t v [ ] , i n t i , i n t j ) {
i f ( i > j ) { return −1; }
else {

i n t m = ( i + j ) / 2 ;
i f ( v [m] == va l ) { return m; } / / found
else {

i f ( v [m] > va l ) {
return FindRec ( val , v , i , m−1 ) ;

} else {
return FindRec ( val , v , m+1 , j ) ;

}
}

}
}

/ / Finds the p o s i t i o n o f an element w i th value va l i n the
/ / a r ray v [ ] , ordered i n ascending order .
public s t a t i c i n t Find ( i n t val , i n t v [ ] ) {

BinarySearch . FindRec ( val , v , 0 , v . length−1 ) ;
}

}



Analysis of the binary search algorithm

Let T (n) be the execution time of function FindRec on an array of
n = j − i + 1 elements.

In general, T (n) depends both on the number of elements in the
array, and on the position of the searched element (or the fact that the
element is missing).

In the most favorable case (best case) the searched element is in
the central position; in this case T (n) = O(1).

In the less favorable case (worst case) the searched element
does not exist. Which function is T (n) in this case?



Analysis of the binary search algorithm
Iteration method

We can define T (n) with a recurrence, as follows.

T (n) =

{
c1 if n = 0
T (bn/2c) + c2 if n > 0

The iteration method consists in developing the recurrence equation
and intuitively define the equation:

T (n) = T (n/2)+c2 = T (n/4)+2c2 = T (n/8)+3c2 = . . . = T (n/2i )+i×c2

Assuming that n is a power of 2, we stop when n/2i = 1, that is
i = log n. At the end we get

T (n) = c1 + c2 log n = O(log n)



Verifying recurrence equations
Substitution method

We apply the principle of induction to verify the solution of a
recurrence equation.

Example We prove that T (n) = O(n) is a solution for

T (n) =

{
1 if n = 1
T (bn/2c) + n if n > 1

Proof By induction, we verify that T (n) ≤ cn for n sufficiently large.
Base step: T (1) = 1 ≤ c × 1. It is sufficient to choose c ≥ 1.
Inductive step:

T (n) = T (bn/2c) + n
≤ cbn/2c+ n (inductive assumption)
≤ cn/2 + n = f (c)n

with f (c) = (c/2 + 1). The proof of the inductive step works
when f (c) ≤ c, that is c ≥ 2.



Fundamenthal Theorem of Recurrence
Master Theorem

Theorem

The recurrence relation:

T (n) =

{
aT (n/b) + f (n) if n > 1
1 if n = 1

(3)

has solution:
1 T (n) = Θ(nlogb a) if f (n) = O(nlogb a−ε) for ε > 0;
2 T (n) = Θ(nlogb a log n) if f (n) = Θ(nlogb a);
3 T (n) = Θ(f (n)) if f (n) = Ω(nlogb a+ε) for ε > 0 and

af (n/b) ≤ cf (n) for c < 1 and sufficiently large n.



Example
Application of the master theorem

T (n) =

{
aT (n/b) + f (n) if n > 1
1 if n = 1

1 In the binary search, we have T (n) = T (n/2) + O(1). Hence
a = 1, b = 2, f (n) = O(1); this is the second case of the
theorem, hence T (n) = Θ(log n).

2 Considering T (n) = 9T (n/3) + n; in this case a = 9, b = 3 and
f (n) = O(n). This is the first case, f (n) = O(nlogb a−ε) with ε = 1,
that is T (n) = Θ(nlogb a) = Θ(n2).



Analysis of recursive algorithms
Fibonacci

The Fibonacci sequence is defined as:

Fn =

{
1 if n = 1, 2
Fn−1 + Fn−2 if n > 2

Let’s consider the execution time of the trivial recursive algorithm to
compute Fn, whose execution time T (n) satisfies the occurrence
relation:

T (n) =

{
c1 if n = 1, 2
T (n − 1) + T (n − 2) + c2 if n > 2

We want to evaluate a lower and upper bound for T (n)



Analysis of recursive algorithms
Fibonacci–upper bound

Upper bound. We exploit the fact that T (n) is non-decreasing
function:

T (n) = T (n − 1) + T (n − 2) + c2

≤ 2T (n − 1) + c2

≤ 4T (n − 2) + 2c2 + c2

≤ 8T (n − 3) + 22c2 + 2c2 + c2

≤ . . .

≤ 2k T (n − k) + c2

k−1∑
i=0

2i

≤ . . .
≤ 2n−1c3

for a given constant c3. Hence T (n) = O(2n).



Analysis of recursive algorithms
Fibonacci–lower bounds

Lower bounds. Again, we exploit the fact that T (n) is a
non-decreasing function:

T (n) = T (n − 1) + T (n − 2) + c2

≥ 2T (n − 2) + c2

≥ 4T (n − 4) + 2c2 + c2

≥ 8T (n − 6) + 22c2 + 2c2 + c2

≥ . . .

≥ 2k T (n − 2k) + c2

k−1∑
i=0

2i

≥ . . .
≥ 2bn/2cc4

for a given constant c4. Hence T (n) = Ω(2bn/2c).



Note

Attention 2bn/2c = O(2n), but 2bn/2c 6= Θ(2n). In other words, the two
functions, both exponential, belong to different classes of complexity.
(Why?).



Amortized cost

The amortized analysis studies the average cost of a sequence of
operations.

Definition

Let T (n, k) be the total time needed by an algorithm, in the worst
case, to execute k operation on input instances of size n. We define
amortized cost a sequence of k operations

Tα(n) =
T (n, k)

k



Example
Amortized analysis

Problem: given a sequence of binary digits, initialized to zero, we
define a function which increments by one the decimal value
represented by the binary digits.

/ / v [ 0 ] i s the most s i g n i f i c a n t b i t
public s t a t i c void increment ( i n t [ ] v )
{

for ( i n t i =v . length−1; i >0; −− i ) {
v [ i ] = 1−v [ i ] ; / / i n v e r t the b i t
i f ( v [ i ] == 1 ) {

break ;
}

}
}



Example

value v [0] v [1] v [2] v [3] v [4] v [5] Cost
0 0 0 0 0 0 0
1 0 0 0 0 0 1 1
2 0 0 0 0 1 0 2
3 0 0 0 0 1 1 1
4 0 0 0 1 0 0 3
5 0 0 0 1 0 1 1
6 0 0 0 1 1 0 2
7 0 0 0 1 1 1 1
8 0 0 1 0 0 0 4
9 0 0 1 0 0 1 1
10 0 0 1 0 1 0 2



Analysis

The cost of operation invert is the number of inverted bits.

The first bit (v[n-1]) is inverted in each call;
The second bit (v[n-2]) is inverted every 2 calls;
The third bit (v[n-3]) is inverted every 4 calls;
. . .

The i-th bit (v[n-i]) is inverted every 2i−1 calls;

The total execution time for k operatinos is given as:

T (n, k) = k +bk/2c+bk/4c+. . .+2+1 =

log2 k∑
i=0

bk/2ic ≤ k
∞∑
i=0

1/2i = 2k

Hence
Tα(n) =

T (n, k)

k
= O(1)


