Techniques for analysis of algorithms

Luciano Bononi and Moreno Marzolla bononi@cs.unibo.it
Department of Computer Science Engineering, University of Bologna

23 aprile 2012

Copyright (c)2012 Luciano Bononi and Moreno Marzolla, University of Bologna

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/3.0/or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

Computation Model

Let's consider a computation model composed of a register-based machine as follows:

■ It has a input and a output device;
■ The machine has N memory locations, addressed from 1 to N; every memory location can contain a value (integer, real, etc.);
■ Read or write access to each memory location requires constant time;

- The machine has a set of registers to store parameters needed for basic operations, and the pointer to current operation;
■ The machine has a program composed by a finite set of instructions.

Computational Cost

Definition

Let $f(n)$ be the amount of resources (execution time or memory requested) needed by an algorithm on a input of size n, executed on a register-based machine.

We want to study the order of magnitude of $f(n)$ by ignoring the multiplicative constants and the terms of lower magnitude.

Computational cost metric

Evaluating the real execution time of a program to estimate the computational cost has a number of disadvantages:

- To implement a given algorithm could be time consuming activity;
- Execution time is dependent on the given architecture used (programming language used, machine and CPU characteristics, etc.);
■ We could be interested to know the computational cost metric for input size too wide for the machine available;
■ To estimate the order of magnitude of the cost metric from empirical measures is nto always possible;

Computational Cost

Example

Let's conider two algorithms A e B resolving the same problem.
■ Let $f_{A}(n)=10^{3} n$ be the computational cost of A;

- Let $f_{B}(n)=10^{-3} n^{2}$ be the computational cost of B.

Which one is preferable?

Asymptotic notation $O(f(n))$

Definition

Given a cost function $f(n)$, we define the set $O(f(n))$ as the set of functions $g(n)$ such that constants $c>0$ e $n_{0} \geq 0$ exist, such that the following conditions are satisfied:

$$
\forall n \geq n_{0}: g(n) \leq c f(n)
$$

Or synthetically:

$$
O(f(n))=\left\{g(n): \exists c>0, n_{0} \geq 0 \text { such that } \forall n \geq n_{0}: g(n) \leq c f(n)\right\}
$$

Note: we use the notation (though not formally correct) $g(n)=O(f(n))$ to indicate $g(n) \in O(f(n))$.

Graphical representation

$$
g(n)=O(f(n))
$$

Example

Let $g(n)=3 n^{2}+2 n$ and $f(n)=n^{2}$. We want to prove that $g(n)=O(f(n))$.
We must find two constants $c>0, n_{0} \geq 0$ such that $g(n) \leq c f(n)$ for each $n \geq n_{0}$, in other words:

$$
\begin{equation*}
3 n^{2}+2 n \leq c n^{2} \tag{1}
\end{equation*}
$$

$$
c \geq \frac{3 n^{2}+2 n}{n^{2}}=3+\frac{2}{n}
$$

as an example, let's select $n_{0}=10$ and $c=4$, and we see that relation (1) is satisfied.

Asymptotic notation $\Omega(f(n))$

Definition

Given a cost function $f(n)$, we define the set $\Omega(f(n))$ as the set of functions $g(n)$ such that constants $c>0$ e $n_{0} \geq 0$ exist, such that the following conditions are satisfied:

$$
\forall n \geq n_{0}: g(n) \geq c f(n)
$$

More shortly:

$$
\Omega(f(n))=\left\{g(n): \exists c>0, n_{0} \geq 0 \text { such that } \forall n \geq n_{0}: g(n) \geq c f(n)\right\}
$$

Note: we use the notation $g(n)=\Omega(f(n))$ to indicate $g(n) \in \Omega(f(n))$.

Graphical representation

$$
g(n)=\Omega(f(n))
$$

Example

Let $g(n)=n^{3}+2 n^{2}$ and $f(n)=n^{2}$, and let's prove that $g(n)=\Omega(f(n))$.
We must find two constrants $c>0, n_{0} \geq 0$ such that, for any $n \geq n_{0}$ then $g(n) \geq c f(n)$, in other words:

$$
\begin{equation*}
n^{3}+2 n^{2} \geq c n^{2} \tag{2}
\end{equation*}
$$

$$
c \leq \frac{n^{3}+2 n^{2}}{n^{2}}=n+2
$$

as an example, by selecting $n_{0}=0$ and $c=1$, the relation (2) holds.

Asymptotical notation $\Theta(f(n))$

Definition

Given a cost function $f(n)$, we define the set $\Theta(f(n))$ as the set of functions $g(n)$ such that constants $c_{1}>0, c_{2}>0$ and $n_{0} \geq 0$ exist, such that the following conditions are satisfied:

$$
\forall n \geq n_{0}: c_{1} f(n) \leq g(n) \leq c_{2} f(n)
$$

Synthetically:

$$
\begin{array}{r}
\Theta(f(n))=\{g(n): \\
: \exists c_{1}>0, c_{2}>0, n_{0} \geq 0 \text { such that } \\
\\
\left.\forall n \geq n_{0}: c_{1} f(n) \leq g(n) \leq c_{2} f(n)\right\}
\end{array}
$$

Note: we use the notation $g(n)=\Theta(f(n))$ to indicate $g(n) \in \Theta(f(n))$.

Graphical representation

$$
g(n)=\Theta(f(n))
$$

Intuitive explanation

■ If $g(n)=O(f(n))$ this means that the order of magnitude of $g(n)$ is "less or equal" than $f(n)$;

- If $g(n)=\Theta(f(n))$ this means that $g(n)$ and $f(n)$ have the same order of magnitude;
$■$ Se $g(n)=\Omega(f(n))$ this means that the order of magnitude of $g(n)$ is "greater or equal" than $f(n)$

Some properties of the asymptotical notation

Simmetry

$$
g(n)=\Theta(f(n)) \text { if and only if } f(n)=\Theta(g(n))
$$

Transposed Simmetry

$$
g(n)=O(f(n)) \text { iff } f(n)=\Omega(g(n))
$$

Transitivity

If $g(n)=O(f(n))$ and $f(n)=O(h(n))$, then $g(n)=O(h(n))$.
The same holds for Ω and Θ.

Orders of magnitude

In ascending order of cost:

	Order	Example
$O(1)$	constant	determine if a number is even
$O(\log n)$	logaritmic	search of an element in an ordered array
$O(n)$	linear	search of an element in an unordered array
$O(n \log n)$	pseudolinear	Merge Sort ordering of an array
$O\left(n^{2}\right)$	quadratic	Bubble Sort ordering of an array
$O\left(n^{3}\right)$	cubic	matrix product $n \times n$ with "intuitive" algorithm
$O\left(c^{n}\right)$	exponential, base $c>1$	
$O(n!)$	factorial	Computation of matrix determinant by expansion of minor
$O\left(n^{n}\right)$	exponential, base n	

In general:

■ $O\left(n^{k}\right)$ when $k>0$ is polinomial order

- $O\left(c^{n}\right)$ when $c>1$ is exponential order

Graphical comparison of orders of magnitude

Note: y scale is logaritmic; horizontal lines indicate the number of seconds in an hour, a year, a century (respectively, bottom to up)

Graphical comparison of orders of magnitude

Note: y scale is logaritmic

Graphical comparison of orders of magnitude

Quiz: true or false?

$6 n^{2}=\Omega\left(n^{3}\right) ?$
By applying the definition, we must prove that

$$
\exists c>0, n_{0} \geq 0: \forall n \geq n_{0} \quad 6 n^{2} \geq c n^{3}
$$

That is, $c \leq 6 / n$.
Given c we can always select a value of n sufficiently large such that $6 / n<c$, hence the assertion is false.

Quiz: true or false?

$10 n^{3}+2 n^{2}+7=O\left(n^{3}\right) ?$
By applying the definition, we must prove that

$$
\exists c>0, n_{0} \geq 0: \forall n \geq n_{0} \quad 10 n^{3}+2 n^{2}+7 \leq c n^{3}
$$

In other words:

$$
\begin{aligned}
10 n^{3}+2 n^{2}+7 & \leq 10 n^{3}+2 n^{3}+7 n^{3} \quad(\text { se } n \geq 1) \\
& =19 n^{3}
\end{aligned}
$$

Hence the inequality is true e.g. when $n_{0}=1$ and $c=19$.

Questions

- Demonstrate $\log _{2} n=O(n)$;
\square What is the difference if the base of logarithm is 2?
- Demonstrate $n \log n=O\left(n^{2}\right)$;
- Demonstrate, for all $\alpha>0, \log n=O\left(n^{\alpha}\right)$ (hint: see above, we can say $\log n^{\alpha}=O\left(n^{\alpha}\right)$, hence...)
■ Find the good location for $O(\sqrt{n})$ in the table of the orders of magnitude. Why?

Cost of execution

Definition

An algorithm \mathcal{A} has execution cost $O(f(n))$ on an instance of the input of size n with respect to a given computation resource, if given the amount $r(n)$ of the resource sufficient for execution of \mathcal{A}, for every instance of size n, the following relation holds: $r(n)=O(f(n))$.

Note Computation resources in our case means execution time or memory occupation.

Problem complexity

Definition

A problem \mathcal{P} has complexity $O(f(n))$, with respect to a given computation resource, if an algorithm exists which resolves \mathcal{P}, whose execution cost with respect to the resource is $O(f(n))$.

Some useful laws

Sum

$$
\begin{aligned}
& \text { If } g_{1}(n)=O\left(f_{1}(n)\right) \text { and } g_{2}(n)=O\left(f_{2}(n)\right) \text {, then } \\
& g_{1}(n)+g_{2}(n)=O\left(f_{1}(n)+f_{2}(n)\right)
\end{aligned}
$$

Product

$$
\begin{aligned}
& \text { If } g_{1}(n)=O\left(f_{1}(n)\right) \text { and } g_{2}(n)=O\left(f_{2}(n)\right) \text {, then } \\
& g_{1}(n) \cdot g_{2}(n)=O\left(f_{1}(n) \cdot f_{2}(n)\right)
\end{aligned}
$$

constants elimination

If $g(n)=O(f(n))$, then $a \cdot g(n)=O(f(n))$ for every constant $a>0$

Observation

Dealing with the orders of magnitude, every basic operation (instruction) has cost $O(1)$; a different contribute comes from conditional and iterative instructions.

Assuming:
■ F_test $=O(f(n))$
■ F_true $=O(g(n))$

- F_false $=O(h(n))$

The execution cost of the if-then-else block is

$$
O(\max \{f(n), g(n), h(n)\})
$$

Analysis of the best, worst and average case

Let \mathcal{I}_{n} be the set of all possible istances of the input of size n. Let $T(I)$ be the execution time of the algorithm on the intance $I \in \mathcal{I}_{n}$.

- The (worst case) cost is defined as

$$
T_{\text {worst }}(n)=\max _{l \in \mathcal{I}_{n}} T(I)
$$

■ The (best case) cost is defined as

$$
T_{\text {best }}(n)=\min _{l \in \mathcal{I}_{n}} T(I)
$$

■ The (average case) cost is defined as

$$
T_{\text {avg }}(n)=\sum_{l \in \mathcal{I}_{n}} T(I) P(I)
$$

where $P(I)$ is the probability of occurrence of the instance I.

Analyisis of non recursive algorithms

Search of min value in non-empty array

```
// Return position of minimum element in A
algorithm Minimum( A[1..n] of float ) -> int
    int m:=1; // Position of min element
    for i:=2 to n do
        if (A[i]<A[m] ) then
            m = i;
        endif
    endfor
    return m;
}
```

Analysis
■ Let n be the length of array v.

- the cycle body is executed $n-1$ times;
- Every iteration has cost O (1)

■ Il time cost of the execution of Minimum is $O(n)$ (or, more precisely, $\Theta(n)$: why?).

Sequential search

```
// Returns the position of first occurrence of ''val''
// in the array A[1..n].
// Returns -1 if the value is not included.
algorithm Find( array A[1..n] of int, int val ) -> int
    for i:=1 to n do
        if ( A[i]==val ) then
            return i;
        endif
    endfor
    return -1;
```

■ In the best case the searched element is the first of the list. Hence $T_{\text {best }}(n)=O(1)$
\square In the worst case the searched element is the last one (or it is not present). Hence $T_{\text {worst }}(n)=\Theta(n)$

- and in the average case?

Sequential search

We do not know the probability of occurrence of the values in the list, so we make some assumptions.
Given an array of n elements, we assume the probability P_{i} that the element is in position $i(i=1,2, \ldots n)$ to be $P_{i}=1 / n$, for every i (we assume the element is always present in the array).
The time $T(i)$ needed to find element in the i-th position is $T(i)=i$. Hence we conclude that:

$$
T_{\mathrm{avg}}(n)=\sum_{i=1}^{n} P_{i} T(i)=\frac{1}{n} \sum_{i=1}^{n} i=\frac{1}{n} \frac{n(n-1)}{2}=\Theta(n)
$$

Example

An iterative ordering algorithm

```
public class SortingAlgo \{
    // compute index of min element in the set
    // v[i], v[i+1]... v[j]
    static int \(\operatorname{Min}(\) int \(v[]\), int \(i, i n t j)\)
    \{ /* ... /* \}
    // v[] must be non-empty
    public static void Sort( int v[] )
    \{
        for ( int \(i=0 ; i<v\). length \(-1 ;++i)\{\)
            int \(m=\) SortingAlgo.Min( \(v, i, v . l e n g t h-1) ;\)
            // Swap v[i] e v[m]
            int tmp \(=v[i]\);
            \(v[i]=v[m]\);
            \(v[m]=t m p ;\)
        \}
    \}
\}
```


Analysis of the sorting algorithm

- The call of $\min (v, i, v . \operatorname{length}-1)$ finds the min element in the array $v[i], v[i+1], \ldots v[n-1]$. The time needed is proportional to $n-i$, $i=0,1, \ldots n-1$ (why?);
■ the swap operation has execution time cost $O(1)$;
■ The body of the for cycle is executed n times.
The time execution cost of the whole function Sort is:

$$
\sum_{i=0}^{n-1}(n-i)=n^{2}-\sum_{i=0}^{n-1} i=n^{2}-\frac{n(n-1)}{2}=\frac{n^{2}+n}{2}
$$

which is $\Theta\left(n^{2}\right)$.

Analysis of recursive algorithms

Search an element in an ordered array

```
public class BinarySearch {
    static int FindRec( int val, int v[], int i, int j ) {
        if ( i>j ) { return -1; }
        else {
            int m=(i+j)/2;
            if ( v[m] == val ) { return m; } // found
            else {
                if ( v[m] > val ) {
                return FindRec( val, v, i, m-1 );
            } else {
                return FindRec( val, v, m+1, j );
            }
            }
    }
    }
    // Finds the position of an element with value val in the
    // array v[], ordered in ascending order.
    public static int Find( int val, int v[] ) {
        BinarySearch.FindRec( val, v, 0, v.length-1 );
    }
}
```


Analysis of the binary search algorithm

Let $T(n)$ be the execution time of function F indRec on an array of $n=j-i+1$ elements.
In general, $T(n)$ depends both on the number of elements in the array, and on the position of the searched element (or the fact that the element is missing).

■ In the most favorable case (best case) the searched element is in the central position; in this case $T(n)=O(1)$.

■ In the less favorable case (worst case) the searched element does not exist. Which function is $T(n)$ in this case?

Analysis of the binary search algorithm

We can define $T(n)$ with a recurrence, as follows.

$$
T(n)= \begin{cases}c_{1} & \text { if } n=0 \\ T(\lfloor n / 2\rfloor)+c_{2} & \text { if } n>0\end{cases}
$$

The iteration method consists in developing the recurrence equation and intuitively define the equation:
$T(n)=T(n / 2)+c_{2}=T(n / 4)+2 c_{2}=T(n / 8)+3 c_{2}=\ldots=T\left(n / 2^{i}\right)+i \times c_{2}$
Assuming that n is a power of 2 , we stop when $n / 2^{i}=1$, that is $i=\log n$. At the end we get

$$
T(n)=c_{1}+c_{2} \log n=O(\log n)
$$

Verifying recurrence equations

We apply the principle of induction to verify the solution of a recurrence equation.
Example We prove that $T(n)=O(n)$ is a solution for

$$
T(n)= \begin{cases}1 & \text { if } n=1 \\ T(\lfloor n / 2\rfloor)+n & \text { if } n>1\end{cases}
$$

Proof By induction, we verify that $T(n) \leq c n$ for n sufficiently large.

- Base step: $T(1)=1 \leq c \times 1$. It is sufficient to choose $c \geq 1$.
- Inductive step:

$$
\begin{aligned}
T(n) & =T(\lfloor n / 2\rfloor)+n \\
& \leq c\lfloor n / 2\rfloor+n \quad \text { (inductive assumption) } \\
& \leq c n / 2+n=f(c) n
\end{aligned}
$$

with $f(c)=(c / 2+1)$. The proof of the inductive step works when $f(c) \leq c$, that is $c \geq 2$.

Fundamenthal Theorem of Recurrence

Theorem

The recurrence relation:

$$
T(n)= \begin{cases}a T(n / b)+f(n) & \text { if } n>1 \tag{3}\\ 1 & \text { if } n=1\end{cases}
$$

has solution:
$1 T(n)=\Theta\left(n^{\log _{b} a}\right)$ if $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ for $\epsilon>0$;
$2 T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$ if $f(n)=\Theta\left(n^{\log _{b} a}\right)$;
$3 T(n)=\Theta(f(n))$ if $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for $\epsilon>0$ and af $(n / b) \leq c f(n)$ for $c<1$ and sufficiently large n.

Example

Application of the master theorem

$$
T(n)= \begin{cases}a T(n / b)+f(n) & \text { if } n>1 \\ 1 & \text { if } n=1\end{cases}
$$

1 In the binary search, we have $T(n)=T(n / 2)+O(1)$. Hence $a=1, b=2, f(n)=O(1)$; this is the second case of the theorem, hence $T(n)=\Theta(\log n)$.
2 Considering $T(n)=9 T(n / 3)+n$; in this case $a=9, b=3$ and $f(n)=O(n)$. This is the first case, $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ with $\epsilon=1$, that is $T(n)=\Theta\left(n^{\log _{b} a}\right)=\Theta\left(n^{2}\right)$.

Analysis of recursive algorithms

The Fibonacci sequence is defined as:

$$
F_{n}= \begin{cases}1 & \text { if } n=1,2 \\ F_{n-1}+F_{n-2} & \text { if } n>2\end{cases}
$$

Let's consider the execution time of the trivial recursive algorithm to compute F_{n}, whose execution time $T(n)$ satisfies the occurrence relation:

$$
T(n)= \begin{cases}c_{1} & \text { if } n=1,2 \\ T(n-1)+T(n-2)+c_{2} & \text { if } n>2\end{cases}
$$

We want to evaluate a lower and upper bound for $T(n)$

Analysis of recursive algorithms

Fibonacci-upper bound

Upper bound. We exploit the fact that $T(n)$ is non-decreasing function:

$$
\begin{aligned}
T(n) & =T(n-1)+T(n-2)+c_{2} \\
& \leq 2 T(n-1)+c_{2} \\
& \leq 4 T(n-2)+2 c_{2}+c_{2} \\
& \leq 8 T(n-3)+2^{2} c_{2}+2 c_{2}+c_{2} \\
& \leq \cdots \\
& \leq 2^{k} T(n-k)+c_{2} \sum_{i=0}^{k-1} 2^{i} \\
& \leq \cdots \\
& \leq 2^{n-1} c_{3}
\end{aligned}
$$

for a given constant c_{3}. Hence $T(n)=O\left(2^{n}\right)$.

Analysis of recursive algorithms

Fibonacci-lower bounds

Lower bounds. Again, we exploit the fact that $T(n)$ is a non-decreasing function:

$$
\begin{aligned}
T(n) & =T(n-1)+T(n-2)+c_{2} \\
& \geq 2 T(n-2)+c_{2} \\
& \geq 4 T(n-4)+2 c_{2}+c_{2} \\
& \geq 8 T(n-6)+2^{2} c_{2}+2 c_{2}+c_{2} \\
& \geq \cdots \\
& \geq 2^{k} T(n-2 k)+c_{2} \sum_{i=0}^{k-1} 2^{i} \\
& \geq \ldots \\
& \geq 2^{\lfloor n / 2\rfloor} c_{4}
\end{aligned}
$$

for a given constant c_{4}. Hence $T(n)=\Omega\left(2^{\lfloor n / 2\rfloor}\right)$.

Note

Attention $2^{\lfloor n / 2\rfloor}=O\left(2^{n}\right)$, but $2^{\lfloor n / 2\rfloor} \neq \Theta\left(2^{n}\right)$. In other words, the two functions, both exponential, belong to different classes of complexity. (Why?).

Amortized cost

The amortized analysis studies the average cost of a sequence of operations.

Definition

Let $T(n, k)$ be the total time needed by an algorithm, in the worst case, to execute k operation on input instances of size n. We define amortized cost a sequence of k operations

$$
T_{\alpha}(n)=\frac{T(n, k)}{k}
$$

Problem: given a sequence of binary digits, initialized to zero, we define a function which increments by one the decimal value represented by the binary digits.

```
// v[0] is the most significant bit
public static void increment( int[] v )
    for ( int i=v.length-1; i>0; -i ) {
        v[i] = 1-v[i]; // invert the bit
        if (v[i] == 1 ) {
            break;
        }
    }
}
```


Example

value	$v[0]$	$v[1]$	$v[2]$	$v[3]$	$v[4]$	$v[5]$	Cost
0	0	0	0	0	0	0	
1	0	0	0	0	0	$\mathbf{1}$	1
2	0	0	0	0	$\mathbf{1}$	$\mathbf{0}$	2
3	0	0	0	0	1	$\mathbf{1}$	1
4	0	0	0	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	3
5	0	0	0	1	0	$\mathbf{1}$	1
6	0	0	0	1	$\mathbf{1}$	$\mathbf{0}$	2
7	0	0	0	1	1	$\mathbf{1}$	1
8	0	0	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	4
9	0	0	1	0	0	$\mathbf{1}$	1
10	0	0	1	0	$\mathbf{1}$	$\mathbf{0}$	2

Analysis

The cost of operation invert is the number of inverted bits.

- The first bit ($\mathrm{v}[\mathrm{n}-1]$) is inverted in each call;
- The second bit ($\mathrm{v}[\mathrm{n}-2 \mathrm{l}$) is inverted every 2 calls;

■ The third bit $(\mathrm{v}[\mathrm{n}-3])$ is inverted every 4 calls;

■ The i-th bit (v [n-i]) is inverted every 2^{i-1} calls;
The total execution time for k operatinos is given as:
$T(n, k)=k+\lfloor k / 2\rfloor+\lfloor k / 4\rfloor+\ldots+2+1=\sum_{i=0}^{\log _{2} k}\left\lfloor k / 2^{i}\right\rfloor \leq k \sum_{i=0}^{\infty} 1 / 2^{i}=2 k$

Hence

$$
T_{\alpha}(n)=\frac{T(n, k)}{k}=O(1)
$$

