
Algorithms and Data Structures 2012-2013

Lesson 9: some examples of algorithms for bioinformatics

Luciano Bononi
<bononi@cs.unibo.it>

http://www.cs.unibo.it/~bononi/
(slide credits: these slides are a revised version of slides created by Dr. Gabriele D’Angelo)

International Bologna Master in
Bioinformatics

University of Bologna

29/05/2013, Bologna

2 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Outline of the lesson

  Graphs

  Dynamic programming techniques

  Definition and concepts: dynamic programming: It basically

consists of solving an instance of a problem by taking advantage of

already computed solutions for smaller instances of the same

problem.
  Case study:

  Sequence comparison

3 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Comparing Sequences

  EXERCISE: similarity of sequences (two subproblems)

  Provide a way to measure the similarity of sequences

  Same characters in the same place

  Aligment of sequences:

  Move subsequences inserting blank spaces (to improve

the similarity)

4 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Comparing Sequences

Example of problems in bioinformatics:

 1) Given 2 sequences of the same alphabet, both about the same

length (tens of thousands of characters). We know that the sequences

are almost equal, with only a few isolated differences such as insertions,

deletions, and substitutions of characters. The average frequency of

these differences is low, say, one each hundred characters. We want to

find the places where the differences occur.

  Problems like this appear when, for instance, the same gene is

sequenced by two different labs and they want to compare the results;

or even when the same long sequence is typed twice into the computer

and we are looking for typing errors.

5 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Comparing Sequences

  Example of problems in bioinformatics:

 2) Given 2 sequences of the same alphabet, with a few

hundred characters each. We want to know whether there is a

prefix of one which is similar to a suffix of the other. If the

answer is yes, the prefix and the suffix involved must be

produced.

6 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Comparing Sequences

  Example of problems in bioinformatics:

 3) We have the same problem as in (2), but now we have

several hundred sequences that must be compared (each one

against all). In addition, we know that the great majority of

sequence pairs are unrelated, that is, they will not have the

required degree of similarity.

  Problems like (2) and (3) appear in the context of fragment

assembly in programs to help large-scale DNA sequencing.

7 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Comparing Sequences

  Example of problems in bioinformatics:

 4) We have two sequences over the same alphabet with a few

hundred characters each. We want to know whether there are

two substrings, one from each sequence, that are similar.

8 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Comparing Sequences

  Example of problems in bioinformatics:

 5) We have the same problem as in (4), but instead of two

sequences we have one sequence that must be compared to

thousands of others.

 Problems like (4) and (5) occur in the context of searches for

local similarities using large biosequence databases.

Result: a single basic algorithmic idea and a dynamic

programming technique can be used to solve all of the above

problems (1-5).

9 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Global Comparison

Global Comparison: the basic algorithm:

Consider the following DNA sequences:

GACGGATTAG and GATCGGAATAG.

Notice that they actually look very much alike, a fact that

becomes more obvious when we align them one above the other

as follows.

GA-CGGATTAG

GATCGGAATAG

10 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Global Comparison

Global Comparison: the basic algorithm:

Our goal in this section is to present an efficient

algorithm that takes two sequences and determines

the best alignment between them as we did above. Of

course, we must define what the "best" alignment is

before approaching the problem. To simplify the

discussion, we will adopt a simple formalism; later, we

will see possible generalizations.

11 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Global Comparison

Global Comparison: the basic algorithm:

 Aligment concept: Given 2 sequences:

 they may have different size

 We insert blank spaces (-) to make them same size

 …and to improve their similarity (blanks can be included

in both sequences, but not in the same position on both

sequences)

 If they have same size

 Align them one above the other and see their similarity

Similarity score: providing a score function to the similarity concept

12 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Global Comparison

Global Comparison: the basic algorithm:

Similarity score function (example):

Given Ai and Bi the symbols in the sequences A, B, in position i,

Score(Ai,Bi) =+1 (match) if Ai=Bi

 -1 (character mismatch) if Ai is not equal to Bi

 -2 (blank mismatch) if Ai OR Bi is the blank char.

Choice ot the score values is important! More on this later.

BEST ALIGNMENT between A and B: the one providing the max

total score.

= SIMILARITY sim (A, B) = max [Summatory_i (score(Ai,Bi)]

13 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Global Comparison

Global Comparison: the basic algorithm:

Example: given A and B as follows

A = GA-CGGATTAG

B = GATCGGAATAG

Sum[Score (Ai, Bi)] = [1+1-2+1+1+1+1-1+1+1+1] = +6

Similarity (A,B) = +6 (with this aligment)

… but how many possible alignment can be considered?

An exponential number! Which means that we have to enumerate

(brute force) all of them before deciding which alignemnt

provides the better similarity! (we need a better solution)

14 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Global Comparison

Global Comparison: the basic algorithm:

…we need a better solution: Dynamic Programming!

Main idea: Given two sequences s and t, instead of determining

the similarity between s and t as whole sequences only, we build

up the solution by determining all similarities between arbitrary

prefixes of the two sequences. We start with the shorter prefixes

and use previously computed results to solve the problem for

larger prefixes.

Let’s see an example to build the concept…

15 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Global Comparison

Global Comparison: the basic algorithm:

Dynamic Programming technique:

Given two strings s and t, let m be the size of s and n the size of

t. There are m+1 possible prefixes of s and n+1 prefixes of f,

including the empty string. Thus, we can arrange our calculations

in an (m + 1) x (n + 1) array where entry (z, j) contains the

similarity between s[1..i] and t[1..jl.

Example: s = AAAC and t = AGC.

16 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Global Comparison

Global Comparison: the basic algorithm:

Example: s = AAAC and t = AGC.

We create an array corresponding to s = AAAC and t = AGC. We

place s along the left margin and t along the top to indicate the

prefixes more easily. Notice that the first row and the first

column are initialized with multiples of the space penalty (—2 in

our case). This is because there is only one alignment possible if

one of the sequences is empty: Just add as many spaces as there

are characters in the other sequence. The score of this alignment

is — 2k, where k is the length of the nonempty sequence. Hence,

filling the first row and column is easy.

17 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Global Comparison

Example: s = AAAC t = AGC.

Now let us concentrate on the

other entries. The key observation

here is that we can compute the

value for entry (i, j) looking at

just three previous entries: those

for (i - 1, j), (i - 1,j - 1) and

(i, j - 1).

The reason is that there are just

three ways of obtaining an

alignment between s[1..i] and t

[1..j], and each one uses one of

these previous values

18 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Global Comparison

Example: s = AAAC t = AGC.

 In fact, to get an alignment for

s[1..i] and t [1.. j] , we have the

following three choices:

 Align ,s[1..i] with t[1..j — 1] and

match a space with t[j], or

 Align s[1..i — 1] with t[1..j — 1]

and match s[i] with t[j], or

 Align s[1..i - 1] with t[1..j] and

match s[i] with a space.

(N.B. we cannot have two spaces

paired in the last column of the

alignment)

19 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Global Comparison

Example: s = AAAC t = AGC.

 Dynamic programming

concept: Scores of the best

alignments between smaller

prefixes are already stored in the

array if we choose an appropriate

order in which to compute the

entries. As a consequence, the

similarity sought can be

determined by a formula.

 Given p(i, j) = +1 if s[i] = t[j]

and —1 if s[i] <> t[j]… these

values p(i, j) are written in the

upper left corners of the boxes

20 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Global Comparison

 Given p(i, j) = +1 if s[i] = t[j]

and —1 if s[i] <> t[j]… these

values p(i, j) are written in the

upper left corners of the boxes

 The formula is:

SIM(s[1..i],t[1..j]) = max(

 SIM(s[1..i],t[1..j-1])-2

 SIM(s[1..i-1],t[1..j-1])+p(i,j)

 SIM(s[1..i-1],t[1..j])-2

)

Any order that makes sure a[i, j

—1], a[i — 1, j — 1], and a[i — 1,

j] are available when a[i, j] must

be computed is fine.

21 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Global Comparison

 If we denote the matrix as a[i,j],

then every element a[i,j] can be

computed as

a(i,j) = max(

 a(i,j-1])-2

 a(i-1, j-1]) + p(i,j)

 a(i-1, j)-2

)

22 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Global Comparison

 Finally, we drew arrows in Figure

to indicate where the maximum

value comes from according to

Equation a[i,j]. For instance, the

value of a[1, 2] was taken as the

maximum among the following

figures.

 A[1, 1] - 2 = 1 – 2 = -1

 a[0, 1] - 1 = -2 -1 = - 3

 a[0, 2] - 2 = -4 -2 = - 6 .

Therefore, there is only one way

of getting this maximum value,

namely, coming from entry (1, 1),

and that is what the arrows show.

23 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Global Comparison
Algorithm Similarity

input: sequences s and t

output: similarity between s and t

m = \s\

n= \t\

for i = 0 to m do

 a[i, 0] = i x g

for j = 0 to n do

 a[0, j] = j x g

For i = 1 to m do

 for j = 1 to n do

 a[i, j] = max(a[i - 1, j] + g,

 a[i - 1,j - 1] + p(i, j),

 a[i, j – 1] + g)

return a [in, n]

24 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Optimal Alignment

Now, we want to compute the

optimum alignemnt: All we

need to do is start at entry (m, n)

and follow the arrows until we

get to (0, 0). Each arrow used will

give us one column of the

alignment. In fact, consider

an arrow leaving entry (i, j). If

this arrow is horizontal, it

corresponds to a column with

a space in s matched with t[j]. If

it is vertical, it corresponds to s[i]

matched with a space in t. finally,

a diagonal arrow means s[i]

matched with t[j].

25 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Optimal Alignment

Now, we want to compute the

optimum alignemnt:

 s= - A G C

 t= A A A C

This is one of the optimum

alignments. As we said previously,

many optimal alignments may

exist for a given pair of

sequences. The algorithm of

returns just one of them, giving

preference to the edges leaving

(i, j) in counterclockwise order.

26 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Optimal Alignments

Optimal Alignments
Algorithm Align

input: indices i, j , array a given by algorithm Similarity

output: alignment in aligns, align-t, and length in len

if i==0 and j==0 then

 len = 0

else if i > 0 and a[i, j] = a[i — 1, j] + g then

 Align(i — 1, j , len)

 len = len + 1

 Align-s[len] = s[i]

 align-t[len] = ‘-’

else if i > 0 and j > 0 and a[i, j] = a[i — 1, j — 1] + p(i, j) then

 Align{i — 1, j — 1, len)

 len = len + 1

 align-s[len] = s[i]

 align-t[len] = t[j]

else // has to be j > 0 and a[i, j] = a[i, j — 1] + g

 Align(i, j — 1, len)

 len = len + 1

 aligns[len] =‘-’

 align-t[len] = t[j]

27 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Optimal Alignments

Optimal Alignments

Exercise at the blackboard: align AGTATG and TGATA

- A G T A T G

- 0 -2 -4 -6 -8 -10 -12

T -2 -1 -3 -3 -5 -7 -9

G -4 -3 0 -2 -4 -6 -6

A -6 -3 -2 -1 -1 -3 -5

T -8 -5 -4 -1 -2 0 -2

A -10 -7 -6 -3 0 -2 -1

t

s

28 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Optimal Alignments

Optimal Alignments

The optimal alignment returned by this algorithm has the following general characteristic:

- when there is choice, a column with a space in t has precedence over a column with two

symbols, which in turn has precedence over a column with a space in s.

- For instance, when aligning s = ATAT with t = TATA, we get:

- -ATAT

- TATA-

 rather than

ATAT-

-TATA

which is the other optimal alignment for these two sequences.

29 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Optimal Alignments

Optimal Alignments

Similarly, when aligning s = AA with t = AAAA, we get

--AA

AAAA

although there are five other optimal alignments. This alignment is sometimes referred

to as the upmost alignment because it uses the arrows higher up in the matrix. To reverse

these preferences, we would reverse the order of the if statements in the code, obtaining

the downmost alignment in this case. A column appearing in both the upmost and

downmost alignments will be present in all optimal alignments between the two sequences

considered.

Now, is it possible to modify the algorithm to produce all optimal alignments

between s and t? How?

30 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Optimal Alignments

All the Optimal Alignments

Now, is it possible to modify the algorithm to produce all optimal alignments between s and

t? How?

A: We need to keep a stack with the points at which there are options and backtrack

to them to explore all possibilities of reaching (0, 0) through the arrows. However, there

might be a very large number of optimal alignments.

Time Complexity

The time complexity of the matrix filling algorithm is O(mn), where |s|=m and |t|=n, both in

time and in space. If the sequences are nearly the same length, the complexity is O(n^2)

(quadratic). Then the algorithm extracting the alignment is O(n+m) following the arrows,

since n+m is the maximum length of the (worst) alignment possible.

31 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Optimal Alignments

Local Comparison

A local alignment between s and t is an alignment between a substring of s and a

substring of t.

Problem: How would you define an algorithm to find the highest scoring local alignments

between two sequences?

32 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Optimal Alignments

Local Comparison

A local alignment between s and t is an alignment between a substring of s and a

substring of t.

Problem: How would you define an algorithm to find the highest scoring local alignments

between two sequences?

Main Idea: we exploit the previous “matrix algorithm”, but this time the interpretation of the

array values is different. Each entry (i, j) will hold the highest score of an alignment between

a suffix of s[1..i] and a suffix of t[1..j].

 The first row and the first column are initialized with zeros.

 For any entry (i, j) there is always the alignment between the empty suffixes of s[1..i] and t

[1..j], which has score zero; therefore the array will have all entries greater than or equal to

zero. This explains in part the initialization above.

33 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Optimal Alignments

Local Comparison

The matrix can be filled in the usual way, with a[i, j] depending on the value of three

previously computed entries. The resulting recurrence is:

a(i,j) = max(

 a(i,j-1])+g

 a(i-1, j-1]) + p(i,j)

 a(i-1, j)+g

0

)

(the same as in the basic algorithm, except that now we have a fourth possibility, not

available in the global case, of an empty alignment.)

But which one is the result in the matrix we are interested now?

34 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Optimal Alignments

Local Comparison

But which one is the result in the matrix we are interested now?

A: it suffices to find the maximum entry in the whole array. This will be the score of an

optimal local alignment.

Any entry containing this value can be used as a starting point to get such an alignment.

The rest of the alignment is obtained tracing back as usual, but stopping as soon as we reach

an entry with no arrow going out.

Alternatively, we can stop as soon as we reach an entry with value zero.

Problem: In general, when doing local comparison, we are interested not only in the optimal

alignments, but also in near optimal alignments with scores above a certain threshold. Any

idea on how to obtain this result now?

35 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Optimal Alignments

Semi-Global Comparison

In a semiglobal comparison, we score alignments ignoring some of the end spaces in the

sequences. An interesting characteristic of the basic dynamic programming algorithm is

that we can control the penalty associated with end spaces by doing very simple

modifications to the original scheme.

Let us begin by defining precisely what we mean by end spaces and why it might be

better to let them be included for free in certain situations.

End spaces are those that appear before the first or after the last character in a sequence.

For instance, all the spaces in the second sequence in the alignment below are end spaces,

while the single space in the first sequence is not an end space.

CAGCA-CTTGGATTCTCGG

---CAGCGTGG--------

36 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Optimal Alignments

Semi-Global Comparison

CAGCA-CTTGGATTCTCGG

---CAGCGTGG--------

Notice that the lengths of these two sequences differ considerably. One has size 8, and the

other has 18 characters. When this happens, there will be many spaces in any alignment,

giving a large negative contribution to the score. Nevertheless, if we ignore end spaces, the

alignment is pretty good, with 6 matches, 1 mismatch, and 1 space.

Observe that this is not the best alignment between these sequences. In alignment below we

present another alignment with a higher score (—12 against —19 of the previous one)

according to the scoring system we have been using so far.

CAGCACTTGGATTCTCGG

CAGC-----G-T----GG

However this alignment is not so interesting when finding similar regions in the sequences!

37 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Optimal Alignments

Semi-Global Comparison

However this alignment is not so interesting when finding similar regions in the sequences!

Problem: So, how to obtain such a good semi-global alignment only?

Again, we need a variation of the basic algorithm that will ignore end spaces…

Consider initially the case where we do not want to charge for spaces after the last character

of s. Take an optimal alignment in this case. The spaces after the end of s are matched

to a suffix of t.

If we remove this final part of the alignment, we have an alignment between s and a prefix of

t, with score equal to the original alignment. Therefore, to get the score of the optimal

alignment between s and t without charge for spaces after the end of s, all we need to do is

to find the best similarity between s and a prefix of t. But we know that the entry (i, j) of the

matrix a contains the similarity between s[1..i] and t[1..j]. Hence, it suffices to take the

maximum value in the last row of matrix a, (when s has been eaten all), that is,

Sim’(s, t) = max(j=1..n) a[m, j] , with m=|s|

Notice that Sim’ ignores the end spaces, differently than Sim

38 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Optimal Alignments

Semi-Global Comparison

Sim’(s, t) = max(j=1..n) a[m, j] , with m=|s|

Notice that Sim’ ignores the end spaces, differently than Sim

Now, to extract the alignment itself, we proceed just as in the basic algorithm, but starting at

(m, k) where k is such that sim’(s, t) = a[m, k].

An analogous argument solves the case in which we do not charge for final spaces in t. We

take the maximum along the last column of a in this case. We can even combine the two

ideas and seek the best alignment without charging for final spaces in either sequence.

The answer will be found by taking the maximum along the border of the matrix formed by

the union of the last row and the last column. In all cases, to recover an optimal alignment,

we start at an array entry that contains the similarity value and follow the arrows until we

reach (0, 0). Each arrow will give one column of the alignment as in the basic case.

Now let us turn our attention to the case of initial spaces. Suppose that we want the

best alignment that does not charge for initial spaces in s.

39 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Optimal Alignments

Semi-Global Comparison

Now let us turn our attention to the case of initial spaces. Suppose that we want the

best alignment that does not charge for initial spaces in s.

This is equivalent to the best alignment between s and a suffix of t.

To get the desired answer, we use an (m + 1) x (n + 1) array just as in the basic algorithm,

but with a slight difference. Each entry (i, j) now will contain the highest similarity between

s[1..i] and a suffix of a prefix of t, which is to say a suffix of t[1..j].

Doing that, it is clear that a[m, n] will be the answer.

What is less clear, but nevertheless true, is that the array can be filled in using exactly the

same formula as in the basic algorithm (the one with the zero option in slide 32), even

though the initialization must be different: the first row must be initialized with zeros instead

of multiples of the space penalty because of the new meaning of the entries.

Exercise: verify that Equation in slide 32 works in this case.

So, now…

40 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Optimal Alignments

Semi-Global Comparison

So, now…to summarize, we can apply the same trick and initialize the first column with zeros,

and by doing this we will be forgiving spaces before the beginning of t.

If in addition we initialize both the first row and the first column with zeros, and proceed with

Equation (in slide 32) for the other entries, we will be computing in each entry the highest

similarity between a suffix of s and a suffix of t. To find an optimal alignment, we follow the

arrows from the maximum value entry until we reach one of the borders initialized with

zeros, and then follow the border back to the origin.

Intuitively, there are four places where we may not want to charge for spaces: beginning or

end of s, and beginning or end of t.

41 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Optimal Alignments

Semi-Global Comparison

Intuitively, there are four places where we may not want to charge for spaces: beginning or

end of s, and beginning or end of t.

We can combine these conditions independently in any way and use the variations above to

find the similarity. The only things that change are the initialization and where to look for the

maximum value. Forgiving initial spaces translates into initializing certain positions with

zero. Forgiving final spaces means looking for the maximum along certain positions. But

filling in the array is always the same process.

Place where spaces are not charged for Action

Beginning of first sequence Initialize first row with zeros

End of first sequence Look for maximum in last row

Beginning of second sequence Initialize first column with zeros

End of second sequence Look for maximum in last column

42 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Optimal Alignments

Reducing memory cost

Problem: Now, We analyze the problem of memory costs. We want to reduce the space

requirements of the algorithms from quadratic (mn) to linear (m+n)…. at a cost of roughly

doubling computation time.

Any idea?

More Realistic Alignment
Problem: another possible improvement has to do with the biological interpretation of

alignments. From the biological point of view, it is more realistic to consider a series of

consecutive spaces instead of individual spaces in the alignment algorithm.

Any idea on how to do this?

43 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Optimal Alignments

Reducing memory cost

Problem: The quadratic complexity of the basic algorithms makes them unattractive in some

applications involving very long sequences or repeated comparison of several sequences.

With respect to space, however, it is possible to improve complexity from quadratic to linear

and keep the same generality. The price to pay is an increase in processing time, which will

roughly double. Nevertheless, the asymptotic time complexity is still the same, and in many

cases space and not time is the limiting factor, so this improvement is of great practical

value. So we need to design an elegant space-saving technique!

We begin by noticing that computing sim(s, t) can be easily done in linear space.

In fact, each row (or column) of the matrix depends only on the preceding one, and it is

possible to perform the calculations keeping only one vector in memory, which will hold partly

the new row being computed and partly the previous row.

44 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Optimal Alignments

Reducing memory cost

Problem: The quadratic complexity of the basic algorithms makes them unattractive in some

applications involving very long sequences or repeated comparison of several sequences.

With respect to space, however, it is possible to improve complexity from quadratic to linear

and keep the same generality. The price to pay is an increase in processing time, which will

roughly double. Nevertheless, the asymptotic time complexity is still the same, and in many

cases space and not time is the limiting factor, so this improvement is of great practical

value. So we need to design an elegant space-saving technique!

We begin by noticing that computing sim(s, t) can be easily done in linear space.

In fact, each row (or column) of the matrix depends only on the preceding one, and it is

possible to perform the calculations keeping only one vector in memory, which will hold partly

the new row being computed and partly the previous row. So what would you do if m>n?

45 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Optimal Alignments

Reducing memory cost

Algorithm for similarity in linear space. In the end, a[n] contains sim(s,

t).

Algorithm BestScore

input: sequences s and t

output: vector a

m=|s|

n=|t|

For j = 0 to n do

 a[j] = j x g

for i = 1 to m do

 old = a[0]

 a[0] = i x g

 for j = 1 to n do

 temp = a[j]

 a[j] = max(a[j]+g, old+p(i,j), a[j-1]+g)

 old = temp

The key idea is the following:

Fix an optimal alignment and a position i in s,

and consider what can possibly be matched with

s[i] in this alignment. There are only two

possibilities:

1. The symbol t[j] will match s[i], for some j in

1..n.

2. A space between t[j] and t[j + 1] will match s

[i], for some j in O..n.

In the second case the index j varies

between 0 and n because there is always

one more position for spaces than for

symbols in a sequence. We also abused

notation when j = 0 or j = n. What we

mean in these cases is that the space will

be before t[1] or after t[n], respectively.

Continue in next slide…

46 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Optimal Alignments

Reducing memory cost

Now, let OPT(x, y) be the optimal alignment between x and y.

Every alignment between s and t, optimal or not, satisfies (1) or (2).

1. The symbol t[j] will match s[i], for some j in 1..n.

2. A space between t[j] and t[j + 1] will match s[i], for some j in 0..n.

In particular, our fixed optimal alignment must satisfy one of these as well. If it satisfies (1), to

obtain all of it we must concatenate (A):

OPT(s[1..i-1]) + s[i] + OPT(s[i+1..m])

OPT(t[1..j-1]) + t[j] + OPT(t[j+1..n])

While if (2) is satisfied, we must concatenate (B):

OPT(s[1..i-1]) + s[i] + OPT(s[i+1..m])

OPT(t[1..j-1]) + “-” + OPT(t[j+1..n])

This provides a recursive method to compute an optimal alignment, as long as we can

determine, for a given i, which (1) or (2) occurs and what is the corresponding value of j .

47 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Optimal Alignments

Reducing memory cost

A recursive method to compute an optimal alignment, splitting the problem into two equivalent

subproblems…. Sounds like something already known right?

YES, Divide et Impera!

This can be done as follows. According to Equations A and B in previous slide, we need, for

fixed i, the similarities between s[1..i — 1] and an arbitrary prefix of t, and also the similarities

between s[i + 1..m] and an arbitrary suffix of t. If we had these values, we could explicitly

compute the scores of the j alignments represented in (A) and of the j + 1 alignments

represented in (B). By choosing the best among these, we will have the information

necessary to proceed in the recursion.

As we saw earlier, it is possible to compute in linear space the best scores between a given

prefix of s and all prefixes of t (BestScore alg.). A similar algorithm exists for suffixes. Hence,

our problem is almost solved. The only thing left is to decide which value of i to use in each

recursive call. What is the best choice for i?

48 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Optimal Alignments

Reducing memory cost

A recursive method to compute an optimal alignment, splitting the problem into two equivalent

subproblems…. Sounds like something already known right?

YES, Divide et Impera!

This can be done as follows. According to Equations A and B in previous slide, we need, for

fixed i, the similarities between s[1..i — 1] and an arbitrary prefix of t, and also the similarities

between s[i + 1..m] and an arbitrary suffix of t. If we had these values, we could explicitly

compute the scores of the j alignments represented in (A) and of the j + 1 alignments

represented in (B). By choosing the best among these, we will have the information

necessary to proceed in the recursion.

As we saw earlier, it is possible to compute in linear space the best scores between a given

prefix of s and all prefixes of t (BestScore alg.). A similar algorithm exists for suffixes. Hence,

our problem is almost solved. The only thing left is to decide which value of i to use in each

recursive call. What is the best choice for i?

The best choice is to pick i as close as possible to the middle of the sequence, of course.

49 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Optimal Alignments

Reducing memory cost

Now, given the service functions implemented:

BestScore(s[a..i — 1], t[c..d],pref-sim)

Which returns in pref-sim the similarities between s[a..i — 1] and t[c..j] for all j in [c-1..d].

And the function:

BestScoreRev(s[i + 1..b], t[c..d], suff-sim)

returns in suff-sim the similarities between s [i + 1 ..b] and t [j +1..d] for all j in [c—1..d].

The call of the function (see next slide):

Align(1, m, 1, n, 1, len)

will return an optimal alignment in the global variables align-s and align-t, and the size

of this alignment in len.

50 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Optimal Alignments

Reducing memory cost

Algorithm Align

input: sequences s and r, indices a, b, c, d, start position start

output: optimal alignment between s[a..b] and t[c..d] placed in vectors align-s

and align-t beginning at position start and ending at position end

if s[a..b] empty or t[c..d] empty then

 // Base case: s[a..b] empty or t[c..d] empty

 Align the nonempty sequence with spaces

 end = start + max(|s|, |t|)

else

// General case…

51 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Optimal Alignments

Reducing memory cost

…else

 // General case

 i = bottom((a+b)/2)

 BestScore(s[a..(i - 1)], t[c..d], pref-sim)

 BestScoreRev(s[(i + 1)..b], t[c..d], suff-sim)

 posmax = c — 1

 typemax = SPACE

 vmax = pref-sim[c — 1] + g + suff-sim[c — 1]

 for j = c to d do

 if (pref-sim[j — 1] + p(i, j) + suff-sim[j]) > vmax then

 posmax = j

 typemax = SYMBOL

 vmax = pref-sim[j — 1] + p(i, j) + suff-sim[j]

52 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Optimal Alignments

Reducing memory cost

 ((((vmax = pref-sim[j — 1] + p(i, j) + suff-sim[j]))))….

 if pref-sim[j] + g + suff-sim[j] > vmax then

 posmax = j

 typemax = SPACE

 vmax = pref-sim[j] + g + suff-sim[j]

 endfor

 if typemax = SPACE then

 Align(a, i — 1, c, posmax, start, middle)

 align-s[middle] = s[i]

 align-t[middle] = SPACE

 Align(i + 1, b, posmax + 1, d, middle +1, end)

 else // typemax = SYMBOL…

53 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Optimal Alignments

Reducing memory cost

 else // typemax = SYMBOL…

 Align(a, i — 1, c, posmax — 1, start, middle)

 align-s[middle] = s[i]

 align-t[middle] = t[posmax]

 Align{i +1, b, posmax + 1, d, middle + 1, end)

endAlign

Now, what about the additional time complexity cost of this compact-space

implementation?

54 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Optimal Alignments

Reducing memory cost

Now, what about the additional time complexity cost of this compact-space

implementation?

Let T(m, n) be the number of times a maximum is computed in the internal loop of BestScore

or BestScoreRev as a result of a call Align(a, b, c, d, start, end) where m =b — a + 1 and

n = c — d + 1. It is easy to see that the total processing time will be proportional to T(m, n)

plus linear terms due to control and initializations. We claim that T(m,n) < 2mn.

Proof by induction on m.

For m = 1 no maximum computations will occur, so obviously T(1, n) < 2n.

For m > 1 we will have a call to BestScore with at most mn/2 maximum computations, another

such amount for BestScoreRev, and two recursive calls to Align, producing at most T(m/2, j)

and T(m/2, n — j) maximum computations. Adding this all up, we have

T(m, n) <= mn/2 + mn/2 + T(m/2, j) + T(m/2, n - j)

 <= mn + mj + m(n — j) = 2mn, proving the claim.

55 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Optimal Alignments

Reducing memory cost

Now, what about the additional time complexity cost of this compact-space

implementation?

Let T(m, n) be the number of times a maximum is computed in the internal loop of BestScore

or BestScoreRev as a result of a call Align(a, b, c, d, start, end) where m =b — a + 1 and

n = c — d + 1. It is easy to see that the total processing time will be proportional to T(m, n)

plus linear terms due to control and initializations. We claim that T(m,n) < 2mn.

Proof by induction on m.

For m = 1 no maximum computations will occur, so obviously T(1, n) < 2n.

For m > 1 we will have a call to BestScore with at most mn/2 maximum computations, another

such amount for BestScoreRev, and two recursive calls to Align, producing at most T(m/2, j)

and T(m/2, n — j) maximum computations. Adding this all up, we have

T(m, n) <= mn/2 + mn/2 + T(m/2, j) + T(m/2, n - j)

 <= mn + mj + m(n — j) = 2mn, proving the claim.

56 Algorithms and Data Structures 2010-2011 © Luciano Bononi

Optimal Alignments

Gap Sequences

Now, Let us define a gap as being a consecutive number k > 1 of spaces.

It is generally accepted that, when DNA mutations are involved, the occurrence of a gap with k

spaces is more probable than the occurrence of k isolated spaces. This is because a gap may

be due to a single mutational event that removed a whole stretch of residues, while separated

spaces are most probably due to distinct events, and the occurrence of one event is more

common than the occurrence of several events.

Up to now, we have not made any distinction between clustered or isolated spaces.

This means that a gap is penalized through a linear function. Denoting by w(k), for k >1, the

penalty associated with a gap with k spaces, we have w(k)=bk, where b is the absolute value

of the (negative) score associated with a space.

Exercise: Think to an algorithm that computes similarities with respect to more general gap

penalty functions w paying more those alignment with max gap (hint: such that penalties are

not additive)

Algorithms and Data Structures 2010 - 2011

Lesson 9: some examples of algorithms for bioinformatics

Luciano Bononi
<bononi@cs.unibo.it>

http://www.cs.unibo.it/~bononi/
(slide credits: these slides are a revised version of slides created by Dr. Gabriele D’Angelo)

International Bologna Master in
Bioinformatics

University of Bologna

20/05/2011, Bologna

