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Outline of the lesson 

  Graphs 

  Dynamic programming techniques 

    Definition and concepts: dynamic programming: It basically 

consists of solving an instance of a problem by taking advantage of 

already computed solutions for smaller instances of the same 

problem. 
  Case study: 

  Sequence comparison 
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Comparing Sequences 

  EXERCISE: similarity of sequences (two subproblems) 

  Provide a way to measure the similarity of sequences 

  Same characters in the same place 

  Aligment of sequences:  

  Move subsequences inserting blank spaces (to improve 

the similarity) 
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Comparing Sequences 

Example of problems in bioinformatics: 

 1) Given 2 sequences of the same alphabet, both about the same 

length (tens of thousands of characters). We know that the sequences 

are almost equal, with only a few isolated differences such as insertions, 

deletions, and substitutions of characters. The average frequency of 

these differences is low, say, one each hundred characters. We want to 

find the places where the differences occur. 

  Problems like this appear when, for instance, the same gene is 

sequenced by two different labs and they want to compare the results; 

or even when the same long sequence is typed twice into the computer 

and we are looking for typing errors. 
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Comparing Sequences 

  Example of problems in bioinformatics: 

 2) Given 2 sequences of the same alphabet, with a few 

hundred characters each. We want to know whether there is a 

prefix of one which is similar to a suffix of the other. If the 

answer is yes, the prefix and the suffix involved must be 

produced. 
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Comparing Sequences 

  Example of problems in bioinformatics: 

 3) We have the same problem as in (2), but now we have 

several hundred sequences that must be compared (each one 

against all). In addition, we know that the great majority of 

sequence pairs are unrelated, that is, they will not have the 

required degree of similarity. 

  Problems like (2) and (3) appear in the context of fragment 

assembly in programs to help large-scale DNA sequencing. 
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Comparing Sequences 

  Example of problems in bioinformatics: 

 4) We have two sequences over the same alphabet with a few 

hundred characters each. We want to know whether there are 

two substrings, one from each sequence, that are similar. 
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Comparing Sequences 

  Example of problems in bioinformatics: 

 5) We have the same problem as in (4), but instead of two 

sequences we have one sequence that must be compared to 

thousands of others. 

 Problems like (4) and (5) occur in the context of searches for 

local similarities using large biosequence databases. 

Result: a single basic algorithmic idea and a dynamic 

programming technique can be used to solve all of the above 

problems (1-5). 
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Global Comparison 

Global Comparison: the basic algorithm: 

Consider the following DNA sequences:  

GACGGATTAG and GATCGGAATAG.  

Notice that they actually look very much alike, a fact that 

becomes more obvious when we align them one above the other 

as follows. 

GA-CGGATTAG 

GATCGGAATAG 
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Global Comparison 

Global Comparison: the basic algorithm: 

Our goal in this section is to present an efficient 

algorithm that takes two sequences and determines 

the best alignment between them as we did above. Of 

course, we must define what the "best" alignment is 

before approaching the problem. To simplify the 

discussion, we will adopt a simple formalism; later, we 

will see possible generalizations. 
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Global Comparison 

Global Comparison: the basic algorithm: 

 Aligment concept: Given 2 sequences: 

 they may have different size 

 We insert blank spaces (-) to make them same size 

 …and to improve their similarity (blanks can be included 

in both sequences, but not in the same position on both 

sequences) 

 If they have same size 

 Align them one above the other and see their similarity 

Similarity score: providing a score function to the similarity concept 
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Global Comparison 

Global Comparison: the basic algorithm: 

Similarity score function (example): 

Given Ai and Bi the symbols in the sequences A, B, in position i, 

Score(Ai,Bi) =+1 (match) if Ai=Bi 

  -1 (character mismatch) if Ai is not equal to Bi 

  -2 (blank mismatch) if Ai OR Bi is the blank char. 

Choice ot the score values is important! More on this later. 

BEST ALIGNMENT between A and B: the one providing the max 

total score.  

= SIMILARITY sim (A, B) = max [Summatory_i (score(Ai,Bi)] 
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Global Comparison 

Global Comparison: the basic algorithm: 

Example: given A and B as follows 

A = GA-CGGATTAG 

B = GATCGGAATAG 

Sum[Score (Ai, Bi)] = [1+1-2+1+1+1+1-1+1+1+1] = +6 

Similarity (A,B) = +6 (with this aligment) 

… but how many possible alignment can be considered?  

An exponential number! Which means that we have to enumerate 

(brute force) all of them before deciding which alignemnt 

provides the better similarity! (we need a better solution) 
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Global Comparison 

Global Comparison: the basic algorithm: 

…we need a better solution: Dynamic Programming! 

Main idea: Given two sequences s and t, instead of determining 

the similarity between s and t as whole sequences only, we build 

up the solution by determining all similarities between arbitrary 

prefixes of the two sequences. We start with the shorter prefixes 

and use previously computed results to solve the problem for 

larger prefixes. 

Let’s see an example to build the concept… 
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Global Comparison 

Global Comparison: the basic algorithm: 

Dynamic Programming technique: 

Given two strings s and t, let m be the size of s and n the size of 

t. There are m+1 possible prefixes of s and n+1 prefixes of f, 

including the empty string. Thus, we can arrange our calculations 

in an (m + 1) x (n + 1) array where entry (z, j) contains the 

similarity between s[1..i] and t[1..jl. 

Example: s = AAAC and t = AGC. 
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Global Comparison 

Global Comparison: the basic algorithm: 

Example: s = AAAC and t = AGC. 

We create an array corresponding to s = AAAC and t = AGC. We 

place s along the left margin and t along the top to indicate the 

prefixes more easily. Notice that the first row and the first 

column are initialized with multiples of the space penalty (—2 in 

our case). This is because there is only one alignment possible if 

one of the sequences is empty: Just add as many spaces as there 

are characters in the other sequence. The score of this alignment 

is — 2k, where k is the length of the nonempty sequence. Hence, 

filling the first row and column is easy. 
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Global Comparison 

Example: s = AAAC t = AGC. 

Now let us concentrate on the 

other entries. The key observation 

here is that we can compute the 

value for entry (i, j) looking at 

just three previous entries: those 

for (i - 1, j),  (i - 1,j - 1) and  

(i, j - 1). 

The reason is that there are just 

three ways of obtaining an 

alignment between s[1..i] and t

[1..j], and each one uses one of 

these previous values 
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Global Comparison 

Example: s = AAAC t = AGC. 

 In fact, to get an alignment for  

s[1..i] and t [1.. j] , we have the 

following three choices: 

 Align ,s[1..i] with t[1..j — 1] and 

match a space with t[j], or 

 Align s[1..i — 1] with t[1..j — 1] 

and match s[i] with t[j], or 

 Align s[1..i - 1] with t[1..j] and 

match s[i] with a space. 

(N.B. we cannot have two spaces 

paired in the last column of the 

alignment) 
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Global Comparison 

Example: s = AAAC t = AGC. 

 Dynamic programming 

concept: Scores of the best 

alignments between smaller 

prefixes are already stored in the 

array if we choose an appropriate 

order in which to compute the 

entries. As a consequence, the 

similarity sought can be 

determined by a formula. 

 Given p(i, j) = +1 if s[i] = t[j] 

and —1 if s[i] <> t[j]… these 

values p(i, j) are written in the 

upper left corners of the boxes 
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Global Comparison 

 Given p(i, j) = +1 if s[i] = t[j] 

and —1 if s[i] <> t[j]… these 

values p(i, j) are written in the 

upper left corners of the boxes 

 The formula is: 

SIM(s[1..i],t[1..j]) = max( 

      SIM(s[1..i],t[1..j-1])-2 

      SIM(s[1..i-1],t[1..j-1])+p(i,j) 

      SIM(s[1..i-1],t[1..j])-2 

) 

Any order that makes sure a[i, j 

—1], a[i — 1, j — 1], and a[i — 1, 

j] are available when a[i, j] must 

be computed is fine. 
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Global Comparison 

 If we denote the matrix as a[i,j], 

then every element a[i,j] can be 

computed as 

a(i,j) = max( 

      a(i,j-1])-2 

      a(i-1, j-1]) + p(i,j) 

      a(i-1, j)-2 

) 
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Global Comparison 

 Finally, we drew arrows in Figure 

to indicate where the maximum 

value comes from according to 

Equation a[i,j]. For instance, the 

value of a[1, 2] was taken as the 

maximum among the following 

figures. 

 A[1, 1] - 2 = 1 – 2 =   -1 

 a[0, 1] - 1 = -2 -1 =  - 3 

 a[0, 2] - 2 = -4 -2 =  - 6 . 

Therefore, there is only one way 

of getting this maximum value, 

namely, coming from entry (1, 1), 

and that is what the arrows show. 
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Global Comparison 
Algorithm Similarity 

input: sequences s and t 

output: similarity between s and t 

m = \s\ 

n= \t\ 

for i = 0 to m do 

 a[i, 0] =  i x g 

for j = 0 to n do 

 a[0, j] = j x g 

For i = 1 to m do 

 for j = 1 to n do 

  a[i, j] = max(a[i - 1, j] + g, 

  a[i - 1,j - 1] + p(i, j), 

  a[i, j – 1] + g) 

return a [in, n] 
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Optimal Alignment 

Now, we want to compute the 

optimum alignemnt: All we 

need to do is start at entry (m, n) 

and follow the arrows until we 

get to (0, 0). Each arrow used will 

give us one column of the 

alignment. In fact, consider 

an arrow leaving entry (i, j). If 

this arrow is horizontal, it 

corresponds to a column with 

a space in s matched with t[j]. If 

it is vertical, it corresponds to s[i] 

matched with a space in t. finally, 

a diagonal arrow means s[i] 

matched with t[j]. 



25 Algorithms and Data Structures    2010-2011 © Luciano Bononi 

Optimal Alignment 

Now, we want to compute the 

optimum alignemnt: 

    s=  - A G C 

    t=  A A A C 

This is one of the optimum 

alignments. As we said previously, 

many optimal alignments may 

exist for a given pair of 

sequences. The algorithm of 

returns just one of them, giving 

preference to the edges leaving 

(i, j) in counterclockwise order. 
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Optimal Alignments 

Optimal Alignments 
Algorithm Align 

input: indices i, j , array a given by algorithm Similarity 

output: alignment in aligns, align-t, and length in len 

if i==0 and j==0 then 

 len = 0 

else if i > 0 and a[i, j] = a[i — 1, j] + g then 

 Align(i — 1, j , len) 

 len =  len + 1 

 Align-s[len] = s[i] 

 align-t[len] = ‘-’ 

else if i > 0 and j > 0 and a[i, j] = a[i — 1, j — 1] + p(i, j) then 

 Align{i — 1, j — 1, len) 

 len = len + 1 

 align-s[len] = s[i] 

 align-t[len] = t[j] 

else // has to be j > 0 and a[i, j] = a[i, j — 1] + g 

 Align(i, j — 1, len) 

 len = len + 1 

 aligns[len] =‘-’ 

 align-t[len] = t[j] 
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Optimal Alignments 

Optimal Alignments 

Exercise at the blackboard: align AGTATG and TGATA 

- A G T A T G 

- 0 -2 -4 -6 -8 -10 -12 

T -2 -1 -3 -3 -5 -7 -9 

G -4 -3   0 -2 -4 -6 -6 

A -6 -3 -2 -1 -1 -3 -5 

T -8 -5 -4 -1 -2  0 -2 

A -10 -7 -6 -3  0 -2 -1 

t 

s 
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Optimal Alignments 

Optimal Alignments 

The optimal alignment returned by this algorithm has the following general characteristic:  

- when there is choice, a column with a space in t has precedence over a column with two 

symbols, which in turn has precedence over a column with a space in s.  

- For instance, when aligning s = ATAT with t = TATA, we get: 

- -ATAT 

- TATA- 

 rather than 

ATAT- 

-TATA 

which is the other optimal alignment for these two sequences. 
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Optimal Alignments 

Optimal Alignments 

Similarly, when aligning s = AA with t = AAAA, we get 

--AA 

AAAA 

although there are five other optimal alignments. This alignment is sometimes referred 

to as the upmost alignment because it uses the arrows higher up in the matrix. To reverse 

these preferences, we would reverse the order of the if statements in the code, obtaining 

the downmost alignment in this case. A column appearing in both the upmost and 

downmost alignments will be present in all optimal alignments between the two sequences 

considered. 

Now, is it possible to modify the algorithm to produce all optimal alignments 

between s and t? How? 
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Optimal Alignments 

All the Optimal Alignments 

Now, is it possible to modify the algorithm to produce all optimal alignments between s and 

t? How? 

A: We need to keep a stack with the points at which there are options and backtrack 

to them to explore all possibilities of reaching (0, 0) through the arrows. However, there 

might be a very large number of optimal alignments. 

Time Complexity 

The time complexity of the matrix filling algorithm is O(mn), where |s|=m and |t|=n, both in 

time and in space. If the sequences are nearly the same length, the complexity is O(n^2) 

(quadratic). Then the algorithm extracting the alignment is O(n+m) following the arrows, 

since n+m is the maximum length of the (worst) alignment possible. 
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Optimal Alignments 

Local Comparison 

A local alignment between s and t is an alignment between a substring of s and a 

substring of t.  

Problem: How would you define an algorithm to find the highest scoring local alignments 

between two sequences? 
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Optimal Alignments 

Local Comparison 

A local alignment between s and t is an alignment between a substring of s and a 

substring of t.  

Problem: How would you define an algorithm to find the highest scoring local alignments 

between two sequences? 

Main Idea: we exploit the previous “matrix algorithm”, but this time the interpretation of the 

array values is different. Each entry (i, j) will hold the highest score of an alignment between 

a suffix of s[1..i] and a suffix of t[1..j].  

 The first row and the first column are initialized with zeros. 

 For any entry (i, j) there is always the alignment between the empty suffixes of s[1..i] and t

[1..j], which has score zero; therefore the array will have all entries greater than or equal to 

zero. This explains in part the initialization above. 
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Optimal Alignments 

Local Comparison 

The matrix can be filled in the usual way, with a[i, j] depending on the value of three 

previously computed entries. The resulting recurrence is: 

a(i,j) = max( 

      a(i,j-1])+g 

      a(i-1, j-1]) + p(i,j) 

      a(i-1, j)+g 

0 

) 

(the same as in the basic algorithm, except that now we have a fourth possibility, not 

available in the global case, of an empty alignment.) 

But which one is the result in the matrix we are interested now? 
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Optimal Alignments 

Local Comparison 

But which one is the result in the matrix we are interested now? 

A: it suffices to find the maximum entry in the whole array. This will be the score of an 

optimal local alignment.  

Any entry containing this value can be used as a starting point to get such an alignment.  

The rest of the alignment is obtained tracing back as usual, but stopping as soon as we reach 

an entry with no arrow going out.  

Alternatively, we can stop as soon as we reach an entry with value zero. 

Problem: In general, when doing local comparison, we are interested not only in the optimal 

alignments, but also in near optimal alignments with scores above a certain threshold. Any 

idea on how to obtain this result now? 
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Optimal Alignments 

Semi-Global Comparison 

In a semiglobal comparison, we score alignments ignoring some of the end spaces in the 

sequences. An interesting characteristic of the basic dynamic programming algorithm is 

that we can control the penalty associated with end spaces by doing very simple 

modifications to the original scheme. 

Let us begin by defining precisely what we mean by end spaces and why it might be 

better to let them be included for free in certain situations.  

End spaces are those that appear before the first or after the last character in a sequence. 

For instance, all the spaces in the second sequence in the alignment below are end spaces, 

while the single space in the first sequence is not an end space. 

CAGCA-CTTGGATTCTCGG 

---CAGCGTGG-------- 
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Optimal Alignments 

Semi-Global Comparison 

CAGCA-CTTGGATTCTCGG 

---CAGCGTGG-------- 

Notice that the lengths of these two sequences differ considerably. One has size 8, and the 

other has 18 characters. When this happens, there will be many spaces in any alignment, 

giving a large negative contribution to the score. Nevertheless, if we ignore end spaces, the 

alignment is pretty good, with 6 matches, 1 mismatch, and 1 space. 

Observe that this is not the best alignment between these sequences. In alignment below we 

present another alignment with a higher score (—12 against —19 of the previous one) 

according to the scoring system we have been using so far. 

CAGCACTTGGATTCTCGG 

CAGC-----G-T----GG 

However this alignment is not so interesting when finding similar regions in the sequences! 
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Optimal Alignments 

Semi-Global Comparison 

However this alignment is not so interesting when finding similar regions in the sequences! 

Problem: So, how to obtain such a good semi-global alignment only? 

Again, we need a variation of the basic algorithm that will ignore end spaces…  

Consider initially the case where we do not want to charge for spaces after the last character 

of s. Take an optimal alignment in this case. The spaces after the end of s are matched 

to a suffix of t.  

If we remove this final part of the alignment, we have an alignment between s and a prefix of 

t, with score equal to the original alignment. Therefore, to get the score of the optimal 

alignment between s and t without charge for spaces after the end of s, all we need to do is 

to find the best similarity between s and a prefix of t. But we know that the entry (i, j) of the 

matrix a contains the similarity between s[1..i] and t[1..j]. Hence, it suffices to take the 

maximum value in the last row of matrix a, (when s has been eaten all), that is, 

Sim’(s, t) = max(j=1..n) a[m, j] , with m=|s| 

Notice that Sim’ ignores the end spaces, differently than Sim 
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Optimal Alignments 

Semi-Global Comparison 

Sim’(s, t) = max(j=1..n) a[m, j] , with m=|s| 

Notice that Sim’ ignores the end spaces, differently than Sim 

Now, to extract the alignment itself, we proceed just as in the basic algorithm, but starting at 

(m, k) where k is such that sim’(s, t) = a[m, k]. 

An analogous argument solves the case in which we do not charge for final spaces in t. We 

take the maximum along the last column of a in this case. We can even combine the two 

ideas and seek the best alignment without charging for final spaces in either sequence. 

The answer will be found by taking the maximum along the border of the matrix formed by 

the union of the last row and the last column. In all cases, to recover an optimal alignment, 

we start at an array entry that contains the similarity value and follow the arrows until we 

reach (0, 0). Each arrow will give one column of the alignment as in the basic case. 

Now let us turn our attention to the case of initial spaces. Suppose that we want the 

best alignment that does not charge for initial spaces in s. 
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Optimal Alignments 

Semi-Global Comparison 

Now let us turn our attention to the case of initial spaces. Suppose that we want the 

best alignment that does not charge for initial spaces in s. 

This is equivalent to the best alignment between s and a suffix of t.  

To get the desired answer, we use an (m + 1) x (n + 1) array just as in the basic algorithm, 

but with a slight difference. Each entry (i, j) now will contain the highest similarity between  

s[1..i] and a suffix of a prefix of t, which is to say a suffix of t[1..j]. 

Doing that, it is clear that a[m, n] will be the answer.  

What is less clear, but nevertheless true, is that the array can be filled in using exactly the 

same formula as in the basic algorithm (the one with the zero option in slide 32), even 

though the initialization must be different: the first row must be initialized with zeros instead 

of multiples of the space penalty because of the new meaning of the entries.  

Exercise: verify that Equation in slide 32 works in this case. 

So, now… 



40 Algorithms and Data Structures    2010-2011 © Luciano Bononi 

Optimal Alignments 

Semi-Global Comparison 

So, now…to summarize, we can apply the same trick and initialize the first column with zeros, 

and by doing this we will be forgiving spaces before the beginning of t.  

If in addition we initialize both the first row and the first column with zeros, and proceed with 

Equation (in slide 32) for the other entries, we will be computing in each entry the highest 

similarity between a suffix of s and a suffix of t. To find an optimal alignment, we follow the 

arrows from the maximum value entry until we reach one of the borders initialized with 

zeros, and then follow the border back to the origin. 

Intuitively, there are four places where we may not want to charge for spaces: beginning or 

end of s, and beginning or end of t.  
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Optimal Alignments 

Semi-Global Comparison 

Intuitively, there are four places where we may not want to charge for spaces: beginning or 

end of s, and beginning or end of t.  

We can combine these conditions independently in any way and use the variations above to 

find the similarity. The only things that change are the initialization and where to look for the 

maximum value. Forgiving initial spaces translates into initializing certain positions with 

zero. Forgiving final spaces means looking for the maximum along certain positions. But 

filling in the array is always the same process. 

Place where spaces are not charged for   Action 

Beginning of first sequence    Initialize first row with zeros 

End of first sequence    Look for maximum in last row 

Beginning of second sequence   Initialize first column with zeros 

End of second sequence    Look for maximum in last column 
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Optimal Alignments 

Reducing memory cost 

Problem: Now, We analyze the problem of memory costs. We want to reduce the space 

requirements of the algorithms from quadratic (mn) to linear (m+n)…. at a cost of roughly 

doubling computation time. 

Any idea? 

More Realistic Alignment 
Problem: another possible improvement has to do with the biological interpretation of 

alignments. From the biological point of view, it is more realistic to consider a series of 

consecutive spaces instead of individual spaces in the alignment algorithm.  

Any idea on how to do this? 
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Optimal Alignments 

Reducing memory cost 

Problem: The quadratic complexity of the basic algorithms makes them unattractive in some 

applications involving very long sequences or repeated comparison of several sequences. 

With respect to space, however, it is possible to improve complexity from quadratic to linear 

and keep the same generality. The price to pay is an increase in processing time, which will 

roughly double. Nevertheless, the asymptotic time complexity is still the same, and in many 

cases space and not time is the limiting factor, so this improvement is of great practical 

value. So we need to design an elegant space-saving technique! 

We begin by noticing that computing sim(s, t) can be easily done in linear space. 

In fact, each row (or column) of the matrix depends only on the preceding one, and it is 

possible to perform the calculations keeping only one vector in memory, which will hold partly 

the new row being computed and partly the previous row. 



44 Algorithms and Data Structures    2010-2011 © Luciano Bononi 

Optimal Alignments 

Reducing memory cost 

Problem: The quadratic complexity of the basic algorithms makes them unattractive in some 

applications involving very long sequences or repeated comparison of several sequences. 

With respect to space, however, it is possible to improve complexity from quadratic to linear 

and keep the same generality. The price to pay is an increase in processing time, which will 

roughly double. Nevertheless, the asymptotic time complexity is still the same, and in many 

cases space and not time is the limiting factor, so this improvement is of great practical 

value. So we need to design an elegant space-saving technique! 

We begin by noticing that computing sim(s, t) can be easily done in linear space. 

In fact, each row (or column) of the matrix depends only on the preceding one, and it is 

possible to perform the calculations keeping only one vector in memory, which will hold partly 

the new row being computed and partly the previous row. So what would you do if m>n? 
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Optimal Alignments 

Reducing memory cost 

Algorithm for similarity in linear space. In the end, a[n] contains sim(s, 

t). 

Algorithm BestScore 

input: sequences s and t 

output: vector a 

m=|s| 

n=|t| 

For j = 0 to n do 

 a[j] = j x g 

for i = 1 to m do 

 old =  a[0] 

 a[0] = i x g 

 for j = 1 to n do 

  temp = a[j] 

  a[j] = max(a[j]+g, old+p(i,j), a[j-1]+g) 

  old = temp 

The key idea is the following: 

Fix an optimal alignment and a position i in s, 

and consider what can possibly be matched with 

s[i] in this alignment. There are only two 

possibilities: 

1. The symbol t[j] will match s[i], for some j in 

1..n. 

2. A space between t[j] and t[j + 1] will match s

[i], for some j in O..n. 

In the second case the index j varies 

between 0 and n because there is always 

one more position for spaces than for 

symbols in a sequence. We also abused 

notation when j = 0 or j = n. What we 

mean in these cases is that the space will 

be before t[1] or after t[n], respectively. 

Continue in next slide… 
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Now, let OPT(x, y) be the optimal alignment between x and y.  

Every alignment between s and t, optimal or not, satisfies (1) or (2).  

1. The symbol t[j] will match s[i], for some j in 1..n. 

2. A space between t[j] and t[j + 1] will match s[i], for some j in 0..n. 

In particular, our fixed optimal alignment must satisfy one of these as well. If it satisfies (1), to 

obtain all of it we must concatenate (A): 

OPT(s[1..i-1]) + s[i] + OPT(s[i+1..m]) 

OPT(t[1..j-1]) + t[j] + OPT(t[j+1..n]) 

While if (2) is satisfied, we must concatenate (B): 

OPT(s[1..i-1]) + s[i] + OPT(s[i+1..m]) 

OPT(t[1..j-1]) + “-” + OPT(t[j+1..n]) 

This provides a recursive method to compute an optimal alignment, as long as we can 

determine, for a given i, which (1) or (2) occurs and what is the corresponding value of j . 



47 Algorithms and Data Structures    2010-2011 © Luciano Bononi 

Optimal Alignments 

Reducing memory cost 

A recursive method to compute an optimal alignment, splitting the problem into two equivalent 

subproblems…. Sounds like something already known right? 

YES, Divide et Impera! 

This can be done as follows. According to Equations A and B in previous slide, we need, for 

fixed i, the similarities between s[1..i — 1] and an arbitrary prefix of t, and also the similarities 

between s[i + 1..m] and an arbitrary suffix of t. If we had these values, we could explicitly 

compute the scores of the j alignments represented in (A) and of the j + 1 alignments 

represented in (B). By choosing the best among these, we will have the information 

necessary to proceed in the recursion. 

As we saw earlier, it is possible to compute in linear space the best scores between a given 

prefix of s and all prefixes of t (BestScore alg.). A similar algorithm exists for suffixes. Hence, 

our problem is almost solved. The only thing left is to decide which value of i to use in each 

recursive call. What is the best choice for i? 
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A recursive method to compute an optimal alignment, splitting the problem into two equivalent 

subproblems…. Sounds like something already known right? 

YES, Divide et Impera! 

This can be done as follows. According to Equations A and B in previous slide, we need, for 

fixed i, the similarities between s[1..i — 1] and an arbitrary prefix of t, and also the similarities 

between s[i + 1..m] and an arbitrary suffix of t. If we had these values, we could explicitly 

compute the scores of the j alignments represented in (A) and of the j + 1 alignments 

represented in (B). By choosing the best among these, we will have the information 

necessary to proceed in the recursion. 

As we saw earlier, it is possible to compute in linear space the best scores between a given 

prefix of s and all prefixes of t (BestScore alg.). A similar algorithm exists for suffixes. Hence, 

our problem is almost solved. The only thing left is to decide which value of i to use in each 

recursive call. What is the best choice for i? 

The best choice is to pick i as close as possible to the middle of the sequence, of course. 
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Now, given the service functions implemented:  

BestScore(s[a..i — 1], t[c..d],pref-sim) 

Which returns in pref-sim the similarities between s[a..i — 1] and t[c..j] for all j in [c-1..d]. 

And the function: 

BestScoreRev(s[i + 1..b], t[c..d], suff-sim) 

returns in suff-sim the similarities between s [i + 1 ..b] and t [j +1..d] for all j in [c—1..d]. 

The call of the function (see next slide): 

Align(1, m, 1, n, 1, len) 

will return an optimal alignment in the global variables align-s and align-t, and the size 

of this alignment in len. 
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Algorithm Align 

input: sequences s and r, indices a, b, c, d, start position start 

output: optimal alignment between s[a..b] and t[c..d] placed in vectors align-s 

and align-t beginning at position start and ending at position end 

if s[a..b] empty or t[c..d] empty then 

 // Base case: s[a..b] empty or t[c..d] empty 

 Align the nonempty sequence with spaces 

 end = start + max(|s|, |t|) 

else 

// General case… 
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…else 

 // General case 

 i = bottom((a+b)/2) 

 BestScore(s[a..(i - 1)], t[c..d], pref-sim) 

 BestScoreRev(s[(i + 1)..b], t[c..d], suff-sim) 

 posmax = c — 1 

 typemax = SPACE 

 vmax = pref-sim[c — 1] + g + suff-sim[c — 1] 

 for j = c to d do 

  if (pref-sim[j — 1] + p(i, j) + suff-sim[j]) > vmax then 

   posmax = j 

   typemax = SYMBOL 

   vmax = pref-sim[j — 1] + p(i, j) + suff-sim[j] 
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   (((( vmax = pref-sim[j — 1] + p(i, j) + suff-sim[j] ))))…. 

  if pref-sim[j] + g + suff-sim[j] > vmax then 

   posmax = j 

   typemax = SPACE 

   vmax = pref-sim[j] + g + suff-sim[j] 

 endfor 

 if typemax = SPACE then 

  Align(a, i — 1, c, posmax, start, middle) 

  align-s[middle] = s[i] 

  align-t[middle] = SPACE 

  Align(i + 1, b, posmax + 1, d, middle +1, end) 

 else // typemax = SYMBOL… 
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 else // typemax = SYMBOL… 

  Align(a, i — 1, c, posmax — 1, start, middle) 

  align-s[middle] = s[i] 

  align-t[middle] = t[posmax] 

  Align{i +1, b, posmax + 1, d, middle + 1, end) 

endAlign 

Now, what about the additional time complexity cost of this compact-space 

implementation? 
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Now, what about the additional time complexity cost of this compact-space 

implementation? 

Let T(m, n) be the number of times a maximum is computed in the internal loop of BestScore 

or BestScoreRev as a result of a call Align(a, b, c, d, start, end) where m =b — a + 1 and  

n = c — d + 1. It is easy to see that the total processing time will be proportional to T(m, n) 

plus linear terms due to control and initializations. We claim that T(m,n) < 2mn. 

Proof by induction on m.  

For m = 1 no maximum computations will occur, so obviously T(1, n) < 2n.  

For m > 1 we will have a call to BestScore with at most mn/2 maximum computations, another 

such amount for BestScoreRev, and two recursive calls to Align, producing at most T(m/2, j) 

and T(m/2, n — j) maximum computations. Adding this all up, we have 

T(m, n) <= mn/2 + mn/2 + T(m/2, j) + T(m/2, n - j) 

            <= mn + mj + m(n — j)       = 2mn, proving the claim. 
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n = c — d + 1. It is easy to see that the total processing time will be proportional to T(m, n) 
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Proof by induction on m.  

For m = 1 no maximum computations will occur, so obviously T(1, n) < 2n.  

For m > 1 we will have a call to BestScore with at most mn/2 maximum computations, another 

such amount for BestScoreRev, and two recursive calls to Align, producing at most T(m/2, j) 

and T(m/2, n — j) maximum computations. Adding this all up, we have 

T(m, n) <= mn/2 + mn/2 + T(m/2, j) + T(m/2, n - j) 

            <= mn + mj + m(n — j)       = 2mn, proving the claim. 
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Now, Let us define a gap as being a consecutive number k > 1 of spaces.  

It is generally accepted that, when DNA mutations are involved, the occurrence of a gap with k 

spaces is more probable than the occurrence of k isolated spaces. This is because a gap may 

be due to a single mutational event that removed a whole stretch of residues, while separated 

spaces are most probably due to distinct events, and the occurrence of one event is more 

common than the occurrence of several events. 

Up to now, we have not made any distinction between clustered or isolated spaces. 

This means that a gap is penalized through a linear function. Denoting by w(k), for k >1, the 

penalty associated with a gap with k spaces, we have w(k)=bk, where b is the absolute value 

of the (negative) score associated with a space. 

Exercise: Think to an algorithm that computes similarities with respect to more general gap 

penalty functions w paying more those alignment with max gap (hint: such that penalties are 

not additive) 
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