SIAM J. Dnsc. MATH. & 1988 Sociery lor Industrial and Applied Mathemsatics
Vol |, Moo 3, Augast 1958 s

TOTAL DOMINATION AND IRREDUNDANCE
IN WEIGHTED INTERVAL GRAPHS*

ALAN A, BERTOSSIf anp ALESSANDRO GORIY

Abstract. In an undirected graph, a subset X of the nodes is a total dominating set if each node in the
graph is a neighbor of some node in X. In contrast, X is an irredundant set if the closed neighborhood of each
node in X' is not contained in the union of closed neighborhoods of the other nodes in X This paper gives O(n
log n) and G{n*) time algorithms for finding, respectively, a minimum weighted total dominating set and a
minimum weighted maximal irmedundant set in a weighted interval graph, i.e., one that represents n intersecting
intervals on the real line, each having a { possibly negative) real weight.

Key words. dominating set, total dominating set, irredundant set, interval graph, min-tree, shortest path
AMS(MOS) subject classifications. 05C70, 49899, 68R10, 68025

1. Introduction. Let G(N, E) be an undirected graph. The open neighborhood of a
node x is N(x)={yeN:[x,yl€E}, while its closed neighborhood is N[x]=
N{x) U {x}. In general, let N(X) and N[.X] denote, respectively, U,.x N(x) and
NXYUX.

A subset X of the nodes domtinates another subset Yif ¥ = N(X). X isa dominating
set if N[ X] = N, while it is a total dominating set if in addition X = N(.X') [COCR0].
In words, X is a dominating set if each node of N — X is adjacent to at least one node
in X, while it is also total if in addition each node in X is adjacent to some other node
in X. As an example, Fig. 1(a) shows the “Capricorn” graph. It is easy to realize that
{1, 4, 6} is a dominating set whereas {2, 4} is not; moreover, {1, 2, 5, 6} is a total
dominating set.

A node x € X is redundant in X if N[x] = N[.X — {x}]. X is an irredundant set if
it contains no redundant node. An irredundant set is maximal if it is not properly con-
tained within another irredundant set. For instance, the set {2, 4} is an irredundant set
for the Capricorn graph, whereas {2, 4, 5} is not, since node four is redundant; further-
more, {2, 4} is also maximal, since adding any other node to it would induce redun-
dancies.

The problems of determining dominating, total dominating, or irredundant sets
have obvious applications in the location of facilities in a network [ROB78]. In particular,
the notion of redundancy is relevant in the context of communication networks, since
any redundant node in a set can be removed from the set without affecting the totality
of nodes that may receive communication from some node in the set [BOL79], [LAS85].

The problem of finding dominating sets along with several closely related variants
has been remarkably investigated (e.g., see [HUJ84], [JOH84] for extensive references).
In particular, finding a minimum cardinality total dominating set is NP-complete, even
for special classes of graphs, such as bipartite or chordal graphs [BER84], [CHA84],
[LASE4]. Moreover, finding a minimum cardinality maximal irredundant set is also
NP-complete for chordal graphs [LAS83], but can be solved in linear time for frees
[BERS85] and partial k-trees [WIM8&7]. In this paper, we consider the weighted versions
of these last two problems on a particular subclass of chordal graphs. known as interval
graphs. Such graphs are one of the most useful discrete mathematical structures for
modeling problems arising in the real world. In fact, they have found applications in

* Received by the editors December 1, 1986; accepted for publication (in revised form ) February 9, 1988,
t Dipartimento di Informatica, Universitd di Pisa, Corso Italia 40, 56100 Pisa, Italy.

T



318 A, A, BERTOSSI AND A. GORI

{a)

iy e y ! ;

o350 Bk g o

31 a? b'l. ﬂa ﬂ.‘ b? h! aE b‘ au hﬂ l}s
(b}

FiG. 1. {a) The “Capricorn™ graph; (b} an interval family for it.

archaeology, biology, psvchology, traffic control, job scheduling, and storage information
retrieval (e.g., see [GOL80], [ROB78], [GOL85]).

More formally, an interval family is a set of intervals on the real line. A graph is an
interval graph if there is a one-to-one correspondence between the nodes of the graph
and the intervals of an interval family such that two nodes of the graph are joined by an
edge if and only if their corresponding intervals overlap. An interval graph is weighted
if a real (possibly negative) number w; (the weight) is associated to each node i. For
instance, Fig. 1(b) shows an interval family for the Capricorn graph, which thus results
to be an interval graph.

Investigating the algorithmic complexity of total domination in interval graphs was
mentioned in [LAS84] as a relevant open question. Successively, an Q(n + ¢) time
algorithm for finding a minimum cardinality total dominating set in an #n-node, e-edge
interval graph has been devised (see [ KEIB6] and, for a more comprehensive exposition,
[RAMSR]). Independently, an (n*) time algorithm has been proposed for the same
problem that can be easily modified so as to work in the weighted case too [BEREB6]. In
this paper, in § 3, we improve upon both these results, by giving an O(# log #n) time
algorithm for finding a minimum weighted total dominating set in an interval graph.
We also present in § 4 an O(n") time algorithm for determining a minimum weighted
maximal irredundant set in an interval graph.

2. Background. Let/= {1, ---, n} be an interval family such that the ith interval
is equal to [ay, &), 1= 1, - - - , n. Without loss of generality, we assume that each interval
contains both its endpoints and that no two intervals share a common endpoint. For the
sake of simplicity, the interval graph G corresponding 1o the interval family F will be
denoted as (J) and we shall deal directly only with the intervals instead of the nodes.



TOTAL DOMINATION AND IRREDUNDANCE IN INTERVAL GRAPHS 39

We assume that the interval family [ is augmented with two extreme intervals, say zero
and n + 1, in such a way that by < ay, b, < @4, and wy = w, 1 = 0. We also assume
that the intervals are indexed by increasing a;’s, namely, @y <a, < - - <a, < @y, ,. We
generically denote with e, - - - , &3, « the resulting 2n + 4 endpoints, sorted by increas-
ing order,

To better understand the algorithms presented in this paper, we first need to review
some known results. As shown in [MANGS4], the problem of finding a dominating set
having minimum overall weight in an interval graph G([) can be solved by reducing it
to a shortest path problem on an appropriate directed graph H.

Let us temporarily assume that there is no negative weight and consider the aug-
mented interval family I' = U {0, n + 1 }. The nodes of H correspond to the intervals
in I'. There is an arc (#, ) in H with length w; if and only if j € P, U ;, where

Fi={k:ai<a.<b<b}, and
Q; = {k: ay > b;and there is no h with b; < a, < b, < a,}.

We may readily verify that any shortest path from node zero to node n + 1 in H
corresponds to a minimum dominating set for G(I'). The minimum dominating set for
G (1) is obtained from such a path by deleting nodes zero and n + 1.

Since H is acyclic, a shortest path can be found in O(n?) time [LAW76]. However,
an O(n log n) time algorithm exists that uses a data structure known as min-tree. It
consists of a complete binary tree with 1 + 2 leaves (corresponding to intervals in ')
that is almost exactly balanced in such a way that the leftmost set of leaves is at one level
and the rightmost set of leaves at one level less. A value is assigned to each leaf of the
tree, while each interior node maintains the minimum of the values of its sons. An
example 1s shown in Fig. 2.

Let us define a block to be a set of intervals with consecutive indices, e.g.,
(i, i+ 1, -+-, i+ d). Given a block of leaves, it is possible to find in O(log n)
time the minimum wvalue in the block along with the index of the leaf in which this
minimum is located [AHO74], [MANS84]. A new value may be inserted in a leaf, and
updating the min-tree then also takes O(log n) time. Moreover, constructing such a min-
tree takes O(n) time.

Manacher and Smith’s algorithm for finding a minimum dominating set sequentially
scans the interval endpoints ey, - - - , 2,4 ; backward, from right to left (lines 5-14). As
soon as a right endpoint b; is encountered (line 6), the set Q; is determined (line 7).
Since @, is clearly a block, it is implemented by a pair { Q;[lower], (i[upper] . The
algorithm uses a min-tree Tpyst in which the value DIST [{] associated to a leaf i is the
distance in a shortest path of H between { and n + 1. As soon as a left endpoint g is

FiG. 2, 4 min-treg with 13 feaves.



320 A. A BERTOSSI AND A. GORI

encountered (line 8), the leaf k having smallest value in the block (i + 1, Q;[upper]’
is determined and DIST [&] is added to w; in order to get DIST [{] (lines 9-11).

. procedure MINIMUM-DOMINATING-SET;
Construct a min-tree Tpyst with leaf values DIST [0], - - - ,DIST [n+1];
DIST [H'i‘ I} ;=0 and UPDATE {TD]ST):
NEXT [n+1] := “end-of-list”; AVAIL [lower] := AVAIL [upper] := n+1;
for s from 2n4+2 to 1 by —1 do
if ¢, is a right endpoint b, then
Qi[lower] := AVAIL [lower]; Q;[upper] := AVAIL [upper];
else [/ ¢, 1s a left endpoint g;//
k:= MINEL (Tpsr, i+1, Q:[upper]);
NEXT [i] := k;
DIST [i] := w; + DIST [k] and UPDATE (Tpist):
AVAIL [lower] := i; AVAIL [upper] := min {AVAIL [upper],
Qi[lower] — 1};
endif
14, endfor.

R R

—_—
bd —

—
fad

The output of the algorithm is a minimum dominating set the weight of which is
DIST [0] and the elements of which are those in the NEXT list beginning with NEXT
[0]. The subroutine MINEL (T, i, j) selects the leaf of the min-tree T having minimum
value in the block {7, ;). In case of ties, it chooses the rightmost leaf in the block. Let

Ci={h:a;<ay<b,<b}.
The correctness of the algorithm is based on the fact that for the block
(i+ 1, Qi[upper]} = C;U AU Q;,

MINEL does not select any interval k which either is in C; or is “sandwiched” (i.e., with
NEXT [k] € C; U P,). Indeed. in both cases, either DIST [k] is not the minimum value
in the block (since wy > 0) or it is (because wy = 0), but k is not the rightmost leaf
[MAN84, Lemma 5b]. Since MINEL and UPDATE both take (3 log n) time, the overall
O n log n) time bound follows.

In the case there are negative weights, each w; < 0 is temporarily set to zero. Then
the above procedure is applied and a minimum weighted dominating set for G(7) is
obtained by deleting intervals zero and # + | and by adding all the intervals having
negative weights [MANS4],

3. Total domination. As we may easily prove by extending the results given in
[BERS6], the problem of finding a minimum weighted total dominating set can also be
reduced to a shortest path problem on an acyclic directed graph H' and thus solved in
O(n?) time. Temporarily assuming again there are only nonnegative weights, the nodes
of H' are obtained from those of H by splitting each node / into two nodes, say i and
iput. As for the arcs, they are defined as follows:

(i) There is an arc (i, jin) with length wy if and only if j € P;;
(ii) There is an arc (#in, four) with length w; if and only if j € @;
(iii) There is an arc {{our, fiv} with length wy; if and only if € P;;
(iv) There is an arc (iouT, four) with length w; + wy if and only if je 0, ke C
and wy, = min {wy: h € C;}.



TOTAL DOMINATION AND IRREDUNDANCE IN INTERVAL GRAPHS 321

FiG. 3. Nodes and arcs in H".

As illustrated in Fig. 3, only “ P-arcs™ enter into an “IN-node,” while both P- and
“@-arcs” can leave from it. In contrast, only (-arcs enter into an *OUT-node.” This is
because a total dominating set cannot contain any isolated interval, that is, one that does
not overlap with any other interval in the set. Since P-arcs are induced by interval over-
lapping, but (-arcs are not, no two consecutive (J-arcs may appear in /', unless an
interval properly contained within another (indeed, that having minimum weight) is
taken into account as in (iv).

As before, our algorithm scans the interval endpoints &;, - -, €1,4+2 backward.
However, we use three min-trees Ty, Tour, and Tine. The leaves of Ty ( Tou) comme-
spond to IN-nodes (OUT-nodes) of H', and the value IN [i] (OUT [{]) associated to a
generic leaf i is the shortest path distance between ipy (iput) and 7 + 1oyt (lines 24-30
and 31-42, respectively). T, instead, is used to determine, for each i, a k € C;, if any,
such that w, = min { wy: A € C;}. The value INC [{] initially associated to each leaf i is
w; (lines 6-8). Since C; is not a block, the block (i + 1, Q;[lower] — 1} = C; U Piis
considered as soon as the right endpoint b; is encountered (lines 13-16). The algorithm
acts in such a way that leaves in P; have value equal to infinity at this time. This is
accomplished by setting INC [{] to «c as soon as b, is scanned, since hereafter interval
cannot be properly included in any interval vet to be encountered (line 12).

1. procedure MINIMUM-TOTAL-DOMINATING-SET;

2 Construct three min-trees Tiw, Tour and e with leaf values, respectively,
IN [0], - -+ JIN [r+1], OUT [0], - - - ,OUT [n+1], and INC [0], -- -,
INC [n+1];

3 IN [n+1] := 0 and UPDATE (Tin); OUT [n+1] := 0 and
UPDATE (Tout);

4, NEXT [n+11] := NEXT [n+1gy7] := “end-oflist™;

5. AVAIL [lower] := AVAIL [upper] := n+1;

6. for i from 0 to n+1 do



322 A. A. BERTOSSI AND A. GORI

T INC [i] := w; and UPDATE (Tinc); CONT [i] := “empty™;
8. endfor
9, for 5 from 2n+2 to 1 by —1 do
10. if e, is a right endpoint &; then
11. Oi[lower] := AVAIL [lower]; O;[upper] := AVAIL [upper];
12. INC [{] := oo and UPDATE (Tinch;
13, if i+1 < O;[lower] then
14. k = MINEL (Tiye, i+1, O[lower]—1);
15. if INC [k] # oo then CONT [i] := k endif
16. endif
17. else // e, is a left endpoint a;/{
18, if i+1 < @,[lower] then
19, p = MINEL (T, i+1, O[lower]—1);
20. else
21, p = “empty”
22, endif
23 g 1= MINEL (Tour, Oi[lower], O;[upper]);
24, if p = “empty” or OUT [g] = IN [p] then
25, IN [{]:= OUT [g] + w; and UPDATE {Ti);
26. NEXT [in] := gour:
27. else
28. IN [i] := IN [p] + w; and UPDATE (Ti);
29, NEXT [in] := pin;
30. endif
31. if p = “empty™ then
32. OUT [i] := oc and UPDATE (Tout);
33. else
34, k.= CONT [{];
35. if &k = “empty” or IN [p] Z OUT [g] + w; then
36. OUT [i] := IN [p] + w; and UPDATE (Tour);
37. NEXT [imrt] == P
38. else
39, OUT [i] ;= OUT [g] + w: + wr and UPDATE (Tout):
40. NEXT [iout] := gouts
41. endif
42, endif
43, AVAIL [lower] := i; AVAIL [upper] := min {AVAIL [upper],
O [lower]—1};
44, endif
45, endfor,

The output of the algorithm 15 a minimum total dominating set the weight of which
is IN[0] and the elements of which are those in the NEXT list beginning with
NEXT [0n]; of course, elements zero and # + 1 are not to be included in such a set;
moreover, if two consecutive OUT-nodes, say ipur and jour, appear in the NEXT list,
then also CONT [{] belongs to the optimum solution.

The correctness of the algorithm follows from Lemma 5b of [MANS4]. In particular,
the subroutine MINEL selects the proper leaf having minimum value also in the block
{i+ 1, Q:[lower] — 1 = C;U P, (line 22), excluding, as before, selection of an interval



TOTAL DOMINATION AND IRREDUNDANCE IM INTERVAL GRAPHS 323

p that is in C;, as we may readily check. Notice that the “=" condition in line 24 allows
us to select leaf ¢ (the rightmost one) in case of ties.

The overall time complexity is O(n log n). Of course, in the presence of negative
weights, the same maneuver seen in the previous section can be performed, and the
actual minimum total dominating set is thus found with the same computational effort.

4. Irredundance. In this section, we show that the problem of finding a minimum
weighted maximal irredundant set of an interval graph can also be reduced to a shortest
path problem on an appropriate acyclic directed graph. To do this, we first need the
following result.

Lemma. Let G(I) be an interval graph. Then a subset X of intervals has redundancies
if and only if we have the following:

(1) Therearei,j€ X suchthata; <a; < by < b;, or

(2) There are i, j € X such that N[i] = N[j], or

(3) Therearei,j, he X such that a; < ay < a;, b; < by < b;, and N[h] € N[i] U N[j].

FProof. Venfying one direction of the lemma is trivial. So assume X to have redun-
dancies. If either condition (1) or (2) is verified, we are done. If none of them holds,
assume A to be redundant. By assumption, intervals in [, and hence in X, are indexed
by increasing left endpoints. Let i ( j) be that interval in X which immediately precedes
(follows) 4 in the ordering. Note that both 7 and j must exist, because otherwise either
condition (1) or (2) should be verified. Since h is redundant, the case b; < ay, < by, < g;
cannot occur. Thus A overlaps with at least one interval between § and j. Without loss
of generality, assume a; < a, < b; (the case a; < by < b; can be dealt with similarly).
Each interval in N[4] including one point p, a5 < p < b;, is dominated by i. Thus
consider the remaining intervals in N[k]. Each such interval & must contain a point g,
b; < g < by. Since there is no interval in X properly contained within another interval
in X' and h is redundant, b; < a; < by < g; cannot occur. Thus, k& overlaps with j and
N[R) S N[{JUN[j]. O

LetJ = {(i,j):i,j€l, a;<a;<b; <b;, N[i] € N[j] and N[j] € N[i]}. By the
lemma, we can define a directed graph D having node set equal to /' U J. There is an
arc (x, y) in D if and only if

yeEQ:UR,US,UT,UU,,
where:
(a) fori€l’, Q;={j:a;> b;and thereis no v with b; < a, < b, < g;},

(b) fori€l, Ri={(j.k):a> b, N[j]E N[i]U N[k]and there is no v with
b; < a, < b, < a,and N[j] € N[v] U N[k] },

(¢) for(i,j)€J, Si;={k:ay> b, N[j]1E N[i]U N[k] and there is no v with
by < a, < b, < a; and N[j] € N[i] U N[v]},

(d) for (i,j)eJ, T.;= {(h, k):a,> b, N[j] € N[i] U N[k], N[h]
N[j1U N[k] and there is no v with b; < g, <
b, < a; forwhich N[j] = N[i] U N[v] and
N[h]l N[v]U N[Kk] },

(e) for(i,j)eJ, Uy={(j,h):ay>b;and N[jle N[i{]UN[A]}.

Examples of arcs in D are given in Fig. 4. The length of the arcs is clearly equal to
w;in cases (a), (b), and (e}, while it is equal to w; + w; in cases (c) and (d). Note that
in case (e) there is an arc between nodes (i, j) and (j, k), which share the same j. This



324 A. A BERTOSSI AND A. GORI

(b) wuem;

[ T 5, — —_

—_ % o —
[ L]
(d) muer, R o
O —>{()

(8} iauy S T

FiG. 4. Examples of ares in D.

allows us to consider sequences of (two or more) pairwise overlapping intervals. A com-
plete example is exhibited in Fig. 3.

THEOREM. AJl the paths in D between zero and n + 1 correspond 1o maximal
irredundant sets of G(I), and vice versa.

Proof. By construction, any path p in D between zero and n + | corresponds to an
irredundant set X < /. Indeed, for any three (consecutive) intervals in p, conditions (1)-
{3) of the lemma have been tested. To prove maximality, let us add to X any interval
v €I — X and show that the resulting set X U {v} has redundancies.

Clearly, if there isa j in X such that a; < a, < b, < b;(or a, < a; < b; < a,) then v
( j)is redundant. Moreover, this is true also if N[v] = N[j] (or N[j] € N[v]). Therefore,
let i, j be two consecutive intervals appearing in p such that g; < a, < a;, N[v] & N[{],
N[v] & N[j], N[i] € N[v], and N[j] € N[v] (of course, i = 0 and/orj=n + 1 can
occur). Five cases may come up.

{a) If (i, j) € J, then v is “sandwiched” by iand j, sincea; < ay <@ < b < b, <
b;, and thus it is redundant (Fig. 6(a)).

{b) Ifj € O, then clearly the case b; < a, < b, < g; cannot occur; moreover, neither
can there exist an interval we N(v) with b, <a, <b, <a. Thus v is redundant
(Fig. 6(b)).

(c) Assume there is a k in p for which (j, k)€ R;,. If b; < a, < b, <ag;forawe
N[v], then, by definition of R;, N[ j] < N[i{]U N[w] and thus j is redundant (Fig. 6(c}).
Otherwise, v is redundant.



TOTAL DOMINATION AND IRREDUMDANCE IN INTERVAL GRAPHS 325

FiG. 5. The directed graph D for the Capricorn graph,

(d) Let j € S, for an A in p. Again, if there is a w € N[v] for which b; < g, <
b, < a;, then i is redundant, since N[i] € N[h] U N[w], by definition of 5, (Fig. 6(d)).
If no such w exists, v itself is redundant.

{e) Finally, when the case ( j, k) € Ty, holds for k and k& in p, then either { or j, or
both, are redundant (if there is w € N[v] with & < a. < b, < a;: see Fig. 6(e)), or v
itself is redundant (otherwise).

Conversely, let X' be a maximal irredundant set and assume its elements to be
ordered by increasing a;"s. Suppose X" does not correspond to any path in D. Thus there
exist two consecutive intervals in X, say { and j, for which neither (i, j) € J nor is there
an arc joining them.

Since (i, j) ¢ J, then { and j do not overlap, i.e., b < a;. Moreover, since j € 0,
there exists a v € J — X with b; < @, < b, < g;. Thus N[i] & NM[v], N[j] = M[v] and
N[v] &€ N[i] U N[J]. Four cases may appear: in each of them we shall reach a contra-
diction.

(i) If both i and j do not overlap with any other interval in X, then X U {v} is
irredundant.

{ii} If only interval { overlaps with another interval in X, say %, then N[i] =
N[h] U N[v], since j € 8y;. Thus X U { v} is again irredundant.

(iii) If only interval j overlaps with another interval in X, say k, then N[j] &
N[v] U N[k], since ( j, k) ¢ R;. As before, X U {v} results to be irredundant.

{iv) If intervals { and j overlap, respectively, with & and k, then N[i] € N[A] U
N[v] and N[j] € N[v] U N[k], since (j, k) € Ty;. Even in this case, X U {v} comes
out to be irredundant. O

As a consequence of the above theorem, any minimum weighted maximal irredun-
dant set can be found by means of the following algorithm.



326 A. A BERTOSSI AND A. GORI

{a) ngsJ —_— v seduncan

'I;!
m} (L] ﬂi I_II % 1—11 - W  redundant

E

—_
i w ]
E) ghie By o —y ——— =™ | redudat
— - |
i= } { I { & recyndant
(d) 1e5g i -
——i
h |
(2) ome Ty, i i z o |01 or ol
— i

Fic. 6. Examples of redundancies.

1. procedure MINIMUM-MAXIMAI-IRREDUNDANT-SET,

2. Construct the directed graph I,

3 Find a shortest path p =0, x,, -+ , X3, n + 1 inD;

4 The minimum maximal irredundant set X for G([J) is given by all intervals i
and j € I such that either { = x, or (i, j) = x4, | & h & k. The weight of X is
equal to the length of p.

The time required to build up D is @(n*), since it is dominated by that needed to
compute all the T,,"s and Uy;'s. Indeed, let us assume each N[i] to be represented by
an ordered list. Then verifying N[ 2] = N[i] U N[j] for given A, i, j, takes O(n) time.
Since there are O( n*) such triples, we can set up in O(n*) time a Boolean tri-dimensional
array B whose generic entry B[4, i, 7] is equal to one if and only if N[ ] = N[i] U N[ 1.
Then, all the R;'s and §;;’s can be computed in O(n*) time. Moreover, since (h, k) €
T;; if and only if both (h, k) € R; and h € S;;, computing all the T},’s also requires
O(n*) time. j

Since D contains (n?) nodes and is acyclic, as we may easily verify, a shortest
path can be found in O(n*) time [LAW76]. Hence, the overall running time required
to find a minimum weighted maximal irredundant set of an interval graph is O(n*).

REFERENCES

[AHO74] A. AHo, J. HOPCROFT, AND J. ULLMAN, The Design and Analysis of Computer Algoithms, Addison-
Wesley, Reading, MA, 1974,



TOTAL DOMINATION AND IRREDUNDANCE IN INTERVAL GRAFHS 327

[BERR4] A. A. BERTOSSL, Dominating sets for split and bipartite graphs, Inform. Process, Lett., 19 (1984),
pp. 3740,

[BERE5] M. Berw, E. L. LAWLER, AND A. WonG, Why certain subgraph computations require only linear
time, in Proc. 26th Annual IEEE Symposium on Foundations of Computer Science, Portland,
OR, 1985, pp. 117-125.

[BER86] A. A, BErToss, Total domination in interval graphs, Inform. Process. Lett., 23 (1986), pp. 131-
134.

[BOL79] B. BoLLoBAS aND E. J. COCKAYNE, Graph-theoretic parameters concerning domination, indepen-
dence, and irredundance, J. Graph Theory, 3 (1979), pp. 241-249,

[CHAS4] . J. CHang aND G. L. NEMHAUSER, The k-domination and k-stability problems on sun-free
chordal praphs, SIAM J. Algebraic Diserete Methods, 5 (1984), pp. 332-345,

[COCB0] E.J. CockayNE, R. M. DAWES, aND 5. T. HEDETNIEMI, Total domination in graphs, Networks,
10 {1980}, pp. 211-219.

[GOL20] M. C. GoLUMEIC, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York,
1980,

[GOL85] M. C. Gorumaic, en., Interval graphs and refated topics, Discrete Math., 55 (special issue: July
1985), pp. 113-243,

[HUJE4] M. Huster, Bibliography on the minimum dominating set problem, RUTCOR, Rutgers University,
Mew Brunswick, MJ, 1984,

[JOHE4] D. 5. JoHNsoN, The NP-completeness column: an ongoing guide, J. Algorithms, 5 (1984), pp. 147-
140,

[KEI$6] 1. M. Kew, Toral domination in interval graphs, Inform. Process. Lett., 22 (1986}, pp. 171-174,

[LASE3] R. Laskar anD J. PFaFF, Domination and irredundance in split graphs, manuscript, 1983,

[LASE4] R. Laskar, I. PFAFF, 5. M. HEDETNIEMI, AND 5. T. HEDETNIEMI, On the algorithmic complexity
of total domination, SIAM J. Algebraic Discrete Methods, 5 (1984), pp, 420-425,

[LASES] B. Laskar anpD S, T. HEDETNIEML, Trredundance in graphs: a survey, Congress. Numer., 48 (1985),
pp. 183-194,

[LAWT6E] E. L. LawLer, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart & Winston,
Mew York, 1976,

[MANE4] G. K. MaNacHER aND C. 1. SmiTH, Efficient algorithms for new problems on interval graphs and
interval models, manuscript, 1984,

[RAMESE] G. RAMALINGAM aND C. PANDU RaNGaN, A unified approach to domination problems in interval
graphs, Inform. Process. Lett., to appear.

[ROB78] F. 5 RoBerTs, Graph Theory and fts Applications to Problems of Society, Society for Industrial
and Applied Mathematics, Philadelphia, PA, 1973,

[WIM87] T.V. WiMER, Linear algorithms on k-terminal graphs, Ph.D. thesis, Dept. of Computer Science,
Clemson University, Clemson, SC, August 1987,



