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Code Assignment for Hidden Terminal Interference
Avoidance in Multihop Packet Radio Networks

Alan A. Bertossi and Maurizio A. Bonuccelli, Member, IEEE

Abstract— Hidden terminal interference is caused by the
(quasi-) simultaneous transmission of two stations that cannot
hear each other, but are both received by the same destination
station. This interference lowers the system throughput and
increases the average packet delay. Seme random access
protocols that reduce this interference have been proposed, e.g.,
BTMA protocol. However, the hidden terminal interference can
be totally avoided only by means of code division multiple access
(CDMA) schemes. In this paper, we investigate the problem
of assigning orthogonal codes to stations so as to eliminate
the hidden terminal interference. Since the codes share the
fixed channel capacity allocated to the network in the design
stage, their number must not exceed a given bound. In this
paper, we seek for assignments that minimize the number of
codes used. We show that this problem is NP-complete, and
thus computationally intractable, even for very restricted but
very realistic network topologies. Then, we present optimal
algorithms for further restricted topologies, as well as fast
suboptimal centralized and distributed heuristic algorithms.
The results of extensive simulation set up to derive the average
performance of the proposed heuristics on realistic network
topologies are presented.

1. INTRODUCTION

ORE than two decades ago, the need to let remote
Mcomputers exchange data arised. Such a need led to the
design and development of the currently ubiquitous packed
switched computer networks. The first computer network con-
sisted of computers connected by point to point lines, which
were usually telephone lines. This arrangement is not always
suitable, and in certain cases even infeasible, for many appli-
cations, like close computers in local area networks, mobile
computers, or computers displaced in wild areas where the
telephone system is underdeveloped or not present at all. To
overcome this difficulty, broadcast communication media were
used, such as busses (only in local area networks) or radio
frequencies.

Computers linked by radio frequencies are equipped with
radio transmitters and receivers (transceivers) whose task is
to broadcast outgoing packets and to listen for incoming pack-
ets. The arrangement computer+transceiver is often called
station. In this case, the computer network is called Packet
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Radio Nerwork (PRN). PRN’s were first displayed in 1969
at the University of Hawaii [1] and since then have greatly
increased their presence and importance in the computer
network scenario.

Sometimes all the stations of a PRN can directly receive
each other transmissions. In this case, the network is called
single hop, and is typical of fixed, relatively close stations, or
of stations communicating by a satellite. More often this is not
the case, and a packet must be received and later retransmitted
by intermediate stations before reaching its final destination:
the network is thus a multihop one.

Unconstrained transmission in broadcast media may lead
to the time overlap of two or more packet receptions, called
collision or inter ference, resulting in damaged useless pack-
ets at the destination. Collided packets must be retransmitted,
thus increasing the delay, that is the time between the packet
generation by the origin computer and its successful reception
by the final destination, and the bandwidth usage, which in
turn lowers the system throughput. There are two types of
collisions: direct (or primary) collision, due to the transmission
of stations which can hear each other, and hidden terminal (or
secondary) collision, when stations outside the hearing range
of each other transmit to the same receiving stations.

Several protocols have been devised to reduce or eliminate
the collisions. Such protocols form the Medium Access Con-
trol (MAC) sublayer of the OSI model [14] and can be divided
into two classes: random access protocols and deterministic
(code division multiple access, or CDMA, and time division
multiple access, or TDMA) ones. Under a random access pro-
tocol, a station starts the transmission whenever some locally
testable conditions are met and there is a packet waiting for
transmission. The most used and well-known MAC protocols
fall into this class: ALOHA (no test is performed), slotted
ALOHA (a time-out test is performed), CSMA (medium
sensing for other transmissions), CSMA/CD (medium sensing
and direct collision detection) [14], and BTMA (medium
sensing for other transmissions or for a busy tone by the
receiving station) [15]. These protocols are very simple, easy
to implement, fast to run, truly distributed, and their features
are well studied and understood. Unfortunalely, they only
reduce the number of direct collisions, but do not eliminate
all of them, which can sometimes happen. TDMA protocols,
while avoiding interferences, are quite complex and time
consuming since they require a slow gathering of transmission
requests and a later large processing time before a packet is
transmitted. To overcome these drawbacks, CDMA protocols
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have been recently introduced [8], [5], {9], [2], [10], [6].
These protocols allow a collision-free packet transmission
without the time cost of TDMA protocols, but are more
hardware demanding. The collision-free property is guaranteed
by the use of spread spectrum communication techniques (e.g.,
hopping over different time slots or frequency bands, or use
of direct-sequence pseudonoise) and proper assignment of
orthogonal codes.

The only random access protocol designed to overcome
the hidden terminal interferences is BTMA, which does only
reduce but not eliminate such interferences. Under BTMA,
when a receiving station senses a transmission bound for
itself, it transmits a busy tone on another frequency. Trans-
mitting stations test for the absence of the destination station
busy tone, before broadcasting a packet. To see how the
above interferences may arise, assume that the propagation
delay between stations A and B is di, and that between
stations B and C is dp. Then, if A starts transmitting at
time ¢, B will start receiving the A packet and broadcast
the busy tone at time ¢ + d;. Station C will receive the
busy tone at time ¢ + d; + ds. Thus, there is a time interval
of length di + dp during which C can transmit a packet
without being aware of the A transmission, resulting in a
collision at B. This drawback becomes more and more serious
as d; + dy becomes larger and larger. So, when the PRN
is widespread, or when the propagation delay is large with
respect to the packet transmission time, BTMA protocol is of
little help. In particular, when the propagation delay is larger
than the packet transmission time, the busy tone is simply
useless.

CDMA protocols require that either transmitters or receivers
are able to communicate over a multitude of codes. Such
codes share the fixed channel capacity allocated to the network
in the design stage. Thus, their number must no exceed
a given bound, and their use has to be minimized. This
is done by properly assigning to the stations the minimum
number of different orthogonal codes needed to eliminate
collisions. When the transmitters are code-agile, namely, able
to communicate over several codes, we are in presence of
a receiver-oriented code assignment (ROCA) scheme. Al-
ternatively, the receivers are code-agile, in which case the
scheme is a transmitter-oriented code assignment (TOCA) one
[7]. Recently, the pairwise-oriented code assignment (POCA)
scheme has been proposed [6]. Under this scheme, both
receivers and transmitters are code-agile, and codes are as-
signed to each single-hop receiver-transmitter pair. ROCA
schemes are cheaper and simpler, but yield a lower throughput
than TOCA ones. Moreover, hidden terminal interferences
cannot be completely avoided by ROCA schemes, while they
can be totally eliminated by properly assigning orthogonal
codes in TOCA schemes [7]. POCA schemes retain the
same interference avoidance properties of TOCA ones, while
requiring a more expensive harware and (in some cases)
a smaller number of codes, and yielding a slightly worse
performance [6].

In this paper, we investigate the problem of minimizing the
codes needed to eliminate hidden terminal interferences in a
Packet Radio Network with TOCA MAC protocols. In [7] such
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a problem is introduced, some heuristic procedures for code
assignment in special network topologies are proposed, and
a performance evaluation of the mixed protocol is presented.
However, a graph-theoretic investigation of such problem is
left as a relevant open question: in this paper, we present the
results of such an investigation.

Briefly, the remainder of the paper is structured in the
following fashion. In Section II we give a formal statement
of the problem and establish its NP-completeness, even for
very special and realistic network topologies, thus proving
its computational intractability. Section IIl presents optimal
algorithms for some special network topologies, and fast
suboptimal heuristic algorithms for general topologies, both
centralized and distributed. The average performance of such
heuristics is evaluated by means of extensive simulation exper-
iments. Finally, conclusions terminate the paper in Section IV.

II. PROBLEM FORMULATION AND
COMPUTATIONAL COMPLEXITY

We begin the present section with a formal problem state-
ment. Such a statement is then used to establish the problem
complexity.

A. Problem Formulation

A PRN can be modeled as an undirected graph G =
(V, E), where the set of vertices (or nodes) V = {1,---,n}
represents the set of stations, and the set of edges E the
common channel property between pairs of stations. More
precisely, there is a one-to-one mapping of the stations onto
the vertices in V, and two vertices ¢ and j in V are joined by
an undirected edge [i, j] € E if and only if their corresponding
stations can hear each other transmission. In such a case, the
vertices (or, equivalently, the stations) are called adjacent.
Thus, the graph G represents the network topology. A path
between the vertices ¢ and j is a sequence ¢ = vy, Vo, .... Vp =
J of vertices such that [vg.vg41] € E fork=1,2,....h — 1,
its length is h — 1, namely the number of edges appearing
in it. The distance d;; between two vertices ¢ and j of
G is the length of the shortest path between ¢ and j; it
equals the minimum number of hops that a packet must
undergo in a communication between stations « and j. Two
vertices (stations) 7 and j can generate a hidden terminal
interference if and only if they are two hops away, namely,
when d; ; = 2. Such an interference can be eliminated
if 4 and j transmit on different orthogonal codes. Thus,
the hidden terminal interference avoidance problem can be
formulated as follows: assign codes to vertices in V' so that
every pair of vertices at distance two is assigned a couple of
different codes and the minimum number of different codes
is used.

B. Computational Complexity

By equating codes with colors, the problem can be graph-
theoretically formulated as that of coloring the vertices of the
graph with the minimum number of colors in such a way
that vertices at distance two are colored with different colors.
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In [6], it has been observed that this problem is identical to
the ROCA code assignment one, which only avoids direct
interferences.

The above problem is a variation of the classical VERTEX
COLORING problem, where vertices at distance one have to
be assigned different colors, which is known to be strong NP-
complete even when restricted to very special classes of graphs
[4]. Tt is easy to derive the NP-completeness result for our
problem, when the graph (G can assume a general topology,
giving a reduction from the VERTEX COLORING problem.
However, this does not establish the problem complexity for
PRN topologies, which are not general graphs since they must
meet some practical constraints. Therefore, we shall propose
in the following a proof of the strong NP-completeness of our
problem when restricted to special but very realistic network
topologies.

First, let us assume that the stations are located on a plane
with no (radio) obstacle. Physically, this means that the zone
in which the transmission of a station can be heard is a disk.
Such situation can be commonly met, e.g., when the stations
are displayed in a relatively flat land. In this case, the network
topology can be depicted by the station coordinates in the
Euclidean plane representing the land, and their transmission
ranges. The network with the above property will be called
Euclidean (Disk) Network. We further restrict our attention
to such networks in which all the transmission ranges are
identical (e.g., say because the stations have equal power) and
each station can be heard by at most three other stations. Let
us call such subclass of networks 3-Euclidean networks. In the
following, we shall show that the problem of deciding whether
three orthogonal codes are sufficient or not to eliminate the
hidden terminal interference in 3-Euclidean networks is NP-
complete.

In order to prove the above NP-completeness result, we
need another problem @, already known NP-complete, and we
have to give a polynomial time transformation of any instance
of the problem () into a particular instance of our problem,
so that any solution for @ can be quickly transformed in a
solution of our problem, and vice-versa. We shall reduce the
NP-complete problem 3-VERTEX COLORING of straight line
planar graphs [13] to our problem.

A planar graph is a graph having a nonintersecting edges
planar layout. A planar graph is called straight line whenever
its edges can be represented by straight line segments. Any
straight line planar graph can be represented by a diagram of
nonintersecting vertical and horizontal straight line segments,
corresponding, respectively, to the graph vertices and edges.
Any horizontal segment, e.g., representing the edge [i. j], must
join the vertical segments representing its endpoint vertices,
i.e., + and j, but cannot intersect any other segment. An
example of a straight line planar graph, as well as its associated
segment diagram, is shown in Fig. I. Given a straight line
planar graph G, its associated segment diagram can be built
in polynomial time [3]. Thus, the graph and its diagram are
equivalent for the NP-completeness proof, and we shall use
the latter. In a segment diagram, the horizontal (vertical)
distance between two vertical (horizontal) segments, if not
zero, is irrelevant. Thus, we can horizontally and vertically

5
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/

Fig. 1.
diagram.

A straight-line planar graph and its representation by a segment

stretch or shrink the diagram at will, without a change in the
corresponding graph.

Theorem 1: The question of deciding whether three codes
are sufficient for hidden terminal avoidance in 3-Euclidean
networks is NP-complete.

Proof: See the Appendix. |

The problem reduction used in the above theorem proof
allows us to transfer some complexity properties from the
VERTEX COLORING problem to the code assignment one,
besides the NP-completeness. For instance, no polynomial
time algorithm exists which is guaranteed to always produce
a code assignment with no more than twice the minimum
number of codes for general network topologies. However, in
special cases, optimal code assignments can be found quickly,
as we shall see in the next section. There, we also present fast
suboptimal algorithms for general network topologies, assess
their average performance, and give a distributed algorithm
for the code assignment problem studied in this paper.

1II. ALGORITHMS

In this section, optimal algorithms for code assignment in
special networks, as well as both centralized and distributed
suboptimal algorithms for general topologies, will be pre-
sented.

A. Optimal Algorithms for Special Networks

Makansi [7] has shown that the minimum number of codes
needed to eliminate the hidden terminal interference cannot
be smaller than the maximum number of vertices which are
mutually at distance 2. This statement (a trivial one in our
model, since all vertices at distance two must have different
codes), allowed him to derive optimum code assignments for
some special kinds of regular network topologies, such as
busses, hexagonal, and grid topologies. We show here how
to derive optimum code assignments for two other regular
network topologies, namely, rings and trees.

Let us first consider a ring network whose number n of
stations is a multiple of four, namely, for which n = 4k for
some integer k > 1. In such a case, an optimum assignment
using only two codes can be easily derived by replicating
k times the code assignment pattern shown in Fig. 2(a). An
example for n = 4k stations is shown in Fig 2(b).



444

o—o0—0—0

(a)
1
4
4k-
4
(b) ()
1
4kt 2 i3 d o
4k+ 4k+2,
4k 4k+1
(d)

(e)

Fig. 2. Optimal code assignment for »n station ring nctworks. (a) Basic
pattern. (b) n =4k . (cyn =4k + 1. (d) n = 4k + 2. (e) n = 4k + 3.
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When n is not a multiple of four, however, three codes
are needed. As an example, consider a ring network with
n = 4k + 1 stations. By arbitrarily choosing an origin station
on the ring and replicating k& times the basic code assignment
pattern of Fig 2(a) to the first 4k stations, the situation shown
in Fig. 2(c) arises, where a third code is needed for station n.
A similar situation comes up when n = 4k + 2: as shown in
Fig 2(d), the last two nodes are assigned a third code. Finally,
the case n = 4k + 3 is similar to the previous one; as shown
in Fig. 2(e). the first code can be assigned to station 4k + 1,
while the third code has to be assigned to the last two stations
4k 4+ 2 and 4k + 3.

Now consider complete binary tree topologies. In such
networks, any station must be assigned a code different from
that of its brother, grandfather, and grandsons, since they are
the only stations which are two hops away from it. Three codes
suffice. Let T" be a complete binary tree, and let the level of a
station be its distance from the root, namely, the length of the
shortest path between it and the root (the root is at level 0).
An optimum code assignment for 7" can be found as follows.
Assign first codes 1, 2, and 3, respectively, to the root of T, its
left son, and its right son. Then consider the stations in 7" by
increasing levels: if a station has been assigned a code C, then
assign the remaining two codes to its grandsons, but giving
different codes to brother grandsons. An example is shown in
Fig. 3(b), where assignment of codes to grand-sons is done by
using the three basic assignment patterns shown in Fig. 3(a).

It is easy to realize that the above procedure can be
generalized to find optimum code assignments for k — ary
tree topologies, namely for trees in which every node has at
most k£ sons. An optimum code assignment requires in such
a case k + 1 codes (for k = 2, i.e., for binary trees, 3 codes
are needed as seen before, while for k = 1, i.e., for busses, 2
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Fig. 3. Optimal code assignment for binary tree networks. (a) Three basic
assignmants for a station and its grandsons. (b) An optimal assignment for a
binary tree with 32 stations.

codes are enough; notice that the code assignment for busses
given in [7] is a special case of that given here for trees).

B. Centralized Heuristics for General Networks

In this section, we describe simple centralized heuristic
algorithms for general network topologies. Since the prob-
lem of finding the optimal code assighment is computation-
ally intractable, the proposed heuristics generate quickly (in
polynomial time) code assignments which eliminate hidden
terminal interferences but do not use the minimum number
of codes. The extreme simplicity of the proposed heuristics,
however, makes them attractive for actual utilization. In [6], a
centralized algorithm similar to those presented here has been
proposed. Our algorithm is based on a naive greedy graph
coloring heuristic paradigm. The new part of it is the node
ordering, and the choice of the best such ordering. Observe
that there is no better practical approach.

Centralized algorithms are performed by one selected sta-
tion. Such station can be selected, e.g., by using distributed
election algorithms [11], and must know the network topology.
This requires the exchange of many control messages, and can
severely lower the system performance. However, centralized
algorithms are usually faster and produce better results. So,
they are a good choice when the network topology changes
rarely, namely for (relatively) static networks. Besides, in
a TOCA setting, the system cost of a distributed protocol
implementation can be very high.

Let the n stations be named 1.2.....n according to any
specified criterion (e.g., by sorted station nick names, by
increasing number of neighbors at distance 1, by increasing
number of neighbors at distance 2, or by a random ordering).
Moreover, let H2(i) be the set of stations j which are at
distance 2 (i.e., two hops away) from station ¢ and such that
j <14, fori=1,2,..,n. A simple code assignment algorithm
considers the stations 1,2,...,n sequentially, one at a time,
and assigns code k to station 7 if it is the smallest index code
not assigned to the stations in H2(7). Let code[i] be the code
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(b)

©
Fig. 4. Example of execution of algorithm CentralizedCodeAssignment. (a)

A network with seven stations. (b) Code assignment found by the algorithm.
(c) Optimal code assignment.

number assigned to node 4, and let assignedcodeset be the
set of codes assigned to the stations in H2(i). The above
algorithm can be described in Pascal-like fashion as follows.

Algorithm CentralizedCodeAssignment:
code[l] := 1;
for ; := 2 to n do
assignedcodeset = 0 ;
for j ;== 1toi—1do
if j ¢ H2 (i) then add code [j] to

assignedcodeset ;

enddo;

k=1

while £ € assignedcodeset do

k= k+1;
enddo;
codeli] := k ;
enddo.

As an example, consider the seven station network depicted
in Fig. 4(a). As one can easily check, the code assignment
found by the above algorithm is that exhibited in Fig. 4(b).
Such an assignment uses 3 codes, and is not optimal, since an
assignment using only 2 codes exists, as shown in Fig. 4(c).
It is worth noting that the optimal code assignment for this
example would be found by the algorithm if the stations were
renumbered in such a way that the numbers of stations 2 and
3 were swapped. However, this is not always true for every
network. A quick algorithm inspection is sufficient to establish
its correctness, namely that the produced code assignments are
legal.

When the sets H2(i) and assignedcodeset are properly
implemented, e.g., by means of boolean arrays, the time

\
N

RANDOM

D2 increasing
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D1 decreasing
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number of codes
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Fig. 5. n = 20.

required for testing membership and adding an element to the
above sets are O(1). Since the size of H2 and assignedcodeset
are upper bounded by n, the number of stations, the overall
running time of the algorithm is (On?).

In order to evaluate the actual behavior of the above
algorithm, in terms of number of codes employed, two ap-
proaches are possible: analytic and simulation. The former is
more accurate but requires sophisticated mathematical tools.
Unfortunately, the mathematical tools currently available for
an average algorithm performance evaluation can be employed
for very simple and unrealistic network topologies only, like
the tandem topology. Thus, we relied on simulation experi-
ments.

The algorithm was run on finite random networks with
varying connectivity patterns and number of stations. We
considered 7 station networks, with n, = 20, 50, 100, and 200.
The stations were represented by n randomly generated points
in the unit square {0, 1] x [0, 1]. Each point was generated
as a pair of random real numbers, each comprised between 0
and 1. which correspond to its Cartesian coordinates. For a
given set of n points, the edges of the networks were chosen
among all pairs of points whose Euclidean distance was not
larger than r. We considered four values of r, namely 0.2,
0.4, 0.6, and 0.8. The H2(i) sets, 4 = 1,2....,n, were then
constructed according to the network topology so generated.
For each value of » and r, 500 networks were generated,
and five variants of the proposed heuristic algorithms were
run. Each variant differs from the others according to the
chosen criterion for ordering the station numbers. Specifi-
cally, the considered ordering criteria were: random ordering
(RAN DO M), increasing number of neighbors at distance two
(D2 increasing), decreasing number of neighbors at distance
two (D2 decreasing), increasing number of neighbors at
distance one (D1 increasing), and decreasing number of
neighbors at distance one (D1 decreasing). Notice that the
Random algorithm proposed here is identical to Makansi’s
Algorithm 1 [7], and very similar to Algorithm C1 of [6].
Figs. 5-8 report the average number of codes used by each
algorithm for each pair of n and r. As the values reported
in the figures show, the number of codes used by all the
above criteria is quite small. In particular, the lower number of
codes is always achieved by the D2 decreasing criterion, which
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improves on codes over Algorithm 1 given in [7] (named
RANDOM in this paper) by 11%.

C. Distributed Heuristics for General Networks

We present here a distributed version of the above code as-
signment heuristics whereby all information upon the topology
of the network is truly distributed through the entire network.
Distributed algorithms are the natural choice for computer
networks, and are particularly suitable for dynamic topologies,
e.g., for mobile stations. Besides, they allow a more reliable
computation since no single station failure can compromise
the result, like a fault in the station performing the centralized
algorithm.

Few distributed algorithms for optimization problems are
known. In [6], a distributed algorithm similar to the one pre-
sented here is proposed, as well as other distributed algorithms.
However, such algorithms have been devised for a different
objective function, since they do not seek for minimum number
of codes.

Let us assume that each station of the network only knows
the names of its neighbors which are at distance at most
two from it (this list of names can be obtained by obviously
changing the usual topology-exchange distributed algorithms
[14]). Let the stations be ordered according to the selected
criterion (random, decreasing number of neighbors, etc.). This
ordering can be deduced by a number (e.g., the cardinality of
the neighbor set) associated to each station and not explicitly
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transmitted. The stations are assumed to be asynchronous and
can communicate by exchanging control messages.

There is one kind of control message: ASSIGN(¢, k). This
message is sent by station 7 to its two hops away neighbors to
tell them that the code k has been de finitively assigned to it.
All the control messages incoming into a station are buffered.
When ASSIGN(j, k) comes to station ¢ from a station A which
is one hop away from ¢, two events may occur: if j € H2(4)
(and so j < %), then the incoming control message is stored
into the buffer; otherwise, it is either broadcast to the one hop
neighbors of 4, if h = j, or neglected, if h # j. As soon
as ASSIGN(j, k) has been received from all j € H2(i), the
buffer is inspected, and the smallest indexed code, say &’, not
in the buffer, is self-assigned to station i. Then, a message
ASSIGN(i, k) is broadcast to i’s neighbors. A Pascal-like
description of such distributed algorithm for the station ¢ is
the following.

Algorithm DistributedCodeAssignment for Station i:

counter := |H2(i)[;
while counter > 0 do
if ASSIGN(y, k) is received from node j
then broadcast ASSIGN(j, k)
else if ASSIGN(j, k) is received and j € H2(i) then
counter := counter —1;
add k to assignedcodeset,

endif

endif
enddo
k=1
while j €assignedcodeset do

k= k+1

enddo
code[i] := k;

send ASSIGN(i, k).

As an example of execution of the distributed algorithm,
consider again the seven station network depicted in Fig. 4(a).
Initially, the seven sets H2(3), 1 <4 <7, are the following:
H2(1) = 0, H2(2) = 0, H2(3) = {2}, H2(4) = {1},
H2(5) = {1,3}, H2(6) = {2,4}, and H2(7) = {5}.
Here is a possible sequence of events that may occur during
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the (asynchronous) execution of the distributed algorithm
(broadcasting messages coming from one hop neighbors are
not reported).

1) Station 2 starts execution; since H2(2) = @, it sets
code[2] to 1, sends an ASSIGN(2.,1) control message,
and stops its execution;

2) Stations 4 and 5 start execution, also. Since H2(4) =
{1}, and H2(5) = {1,3}, they wait for ASSIGN
messages from stations 1 and 3;

3) Station 3 receives ASSIGN(2,1). Since this is the only
ASSIGN message on wait , it assigns 2 to code[3],
sends an ASSIGN(3,2) control message, and stops its
execution;

4) Station 1 sets code[l1] to 1 ( H2(1) =
ASSIGN(1,1), and terminates its execution;

5) Upon activating, Station 7 waits for a message from
station 5;

6) Station 6 is the last station to activate. As H2(6) =
{2,4}, it waits for two messages from stations 2 and 4;

7) Station 5 receives ASSIGN(3,2), and place it in the
buffer. Once ASSIGN(1,1) is also received, code[5] is
set to 3, ASSIGN(S,3) is broadcast, and the computation
is halted;

8) Station 4, after receiving ASSIGN(1,1) sets its code to
2, sends ASSIGN(4,2), and stops;

9) Station 6 waits for messages. Then, it receives AS-
SIGN(2,1) and ASSIGN(4,2). Subsequently, it assigns
3 to code[6], sends ASSIGN(6,3), and terminates;

10) Finally, station 7 receives ASSIGN(S,3), and sets

code[7] to 1, sends ASSIGN(7,1), and halts.

The code assignment found by the distributed algorithm
for this example is exactly the same assignment found by its
centralized counterpart (see Fig. 4(b)): stations 1, 2, and 7 are
assigned code 1, stations 3 and 4 are assigned code 2, and
stations 5 and 6 have code 3.

To validate the correctness of the proposed distributed code
assignment algorithm, only note that:

# ), sends

a) Each station tries the codes for a strictly increasing
sequence of values of k;

b) Each station waits for control messages coming from

stations having smaller identifiers;

¢) There is at least one station having an empty H?2 set,

which can thus be immediately assigned code 1;

d) At most n different codes (i.e, one different code per

station) are needed in the worst possible assignment.

Conditions a)-d) together guarantee that no deadlock or
livelock can occur, that the distributed algorithm converges
within a finite amount of time, and that the code assignment
is valid.

To evaluate the complexity of the proposed algorithm, let
us count the number of control messages that are exchanged
among the stations of the network in the worst case. Each time
a generic station, say station ¢, is assigned a code, say k, it
sends an ASSIGN(z, k) control message to its neighbors. Since
this control message is broadcast by the one hop neighbors to
the two hops neighbors of ¢, there are at most O(d) copies
of such message travelling on the network, where d is the

maximum node degree in the network. Since there are n nodes,
the overall number of control messages which are exchanged
among the nodes of the network is upper bounded by O(dn).

Finally, to evaluate the performance of the code assignment
produced by the algorithm, only observe that such assignment
is the same as that produced by its centralized version.
Therefore, all the considerations on the number of codes which
were made in Section III-B still hold true.

1IV. CONCLUSIONS

In this paper, we considered the hidden terminal interference
avoidance by means of Code Division Multiple Access. The
problem of minimizing the number of orthogonal codes needed
to eliminate the above interference was investigated. We estab-
lished the problem NP-completeness even for very restricted
but very realistic cases. Then, we proposed optimal algorithms
for special network topologies, and presented centralized and
distributed sub-optimal heuristic algorithms, together with the
results of simulation experiments set up to derive the average
algorithms performances.

Further work on this subject should be directed to devise
new better heuristic algorithms, and to obtain mathematical
tools for an analytical average performance evaluation of such
heuristics.

APPENDIX

Proof of Theorem 1: Given a straight line planar graph
G = (V, E), we shall construct a 3-Euclidean Network N such
that the vertices of G can be colored with three colors if and
only if three orthogonal codes are sufficient to eliminate the
hidden terminal interference in N. Without loss of generality,
we shall consider a segment diagram for G such that the
horizontal distance between any two vertical segments, and
thus the length of any horizontal segment, is either zero or a
multiple of 24 units, and the vertical distance between any two
horizontal segments, i.e., the length of any vertical segment,
is either zero or a multiple of 12 units, even if their endpoints
share a common vertical segment but do not lie on the same
side with respect to that vertical segment. Besides, we also
assume that the segments endpoints have coordinates multiple
of 12.

The technique employed in the reduction is the so called
component design [4]. We firstly assume that the station
transmission range r is greater than v/13 and smaller than
4 units. We define four component types for the 3-Euclidean
network N: vertical, interior, leftmost, and rightmost. These
components are shown in Fig. 9.

The vertical and interior components are identical, but are
90° rotate. The vertices (i.e., stations) distances are depicted in
the figure. Any code assignment for these components requires
three codes at least (the vertices T, IL and IR need different
codes, being mutually at distance 2), and in any three code
assignment the vertices B and T must have the same code,
since B must bear a code different from that of the vertices IL
and IR, by symmetry. The leftmost component has the same
code assignment features of the previous two components,
since it differs from them only in vertex R, which is one unit
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Fig. 9. The four components used in the NP-completeness proof.

closer to R1. This, however, does not alter the code assignment
at all. Finally, the rightmost component needs three codes,
also. Note that the portion of this component from vertex L
to vertex R1 is isomorphic to the vertical component, with
all horizontal distances reduced from 3 to 2. Such a reduction
does not modify the adjacency relation between the vertices.
Thus, L and R1 must be assigned the same code, and so vertex
R must have a code different from that of vertices R1 and L.
A three code assignment for the above components is shown
in Fig. 9, where the codes are represented by black, white,
and dashed vertices.

Given a segment diagram for G, we substitute each horizon-
tal segment (whose length is k£ x 24) with a chain consisting of
one leftmost, 2(k — 1) interior, and one rightmost components,
which are connected in series, from left to right. The chain is
such that the rightmost vertex of a component and the leftmost
vertex of its right adjacent component are the same (see
Fig. 10(a)). Besides, we substitute each vertical segment, of
length h x 12, with a chain of h vertical components, connected
like the previous chain (see Fig. 10(b)). Note that the leftmost
and the rightmost vertices of a horizontal chain must have
different codes, while the top and the bottom vertices of a
vertical chain must be assigned the same code.

Horizontal and vertical chains are joined at points with
multiple of 12 coordinates, like the corresponding segments.
Thus, in these junctions a leftmost or rightmost horizontal
component vertex and a top or bottom vertical component
vertex are superimposed. Such superimposed vertices are
merged into a unique one. Fig. 10(c) shows such a junction.
The junctions do not alter the adjacency relation between
vertices since vertices in different joined components are at
least 3v/2 > 4 units apart.

We now show that the given segment diagram can be
colored with 3 colors if and only if three codes are sufficient
to eliminate the hidden terminal interference in the so built
3-Euclidean network N.
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Fig. 10. Component substitutions in the segment diagram. (a) Horizontal
substitution. (b) Vertical substitution. (c) Horizontal-vertical substitution.

Let us assume that colors and codes are represented by
the same symbols, that the segment diagram can be colored
with 3 colors, and that such a coloring be given. Then, if a
vertical segment has been colored with color ¢, we assign the
associated code ¢ to the top vertex in the chain corresponding
to that segment, and we assign the codes to the other vertices
in that chain according to the scheme given in Fig. 9. Note
that all the top and bottom vertices of the components of
the chain get the same code ¢. Similarly, horizontal chains
are code assigned according to the Fig. 9 scheme. Junction
vertices, which are the merging of two exireme vertices, one
of a vertical chain, and the other of a horizontal chain, will get
the code of their vertical image, i.e., according to the vertical
chain code assignment.

We claim that the above code assignment is legal, i.e.,
with no hidden terminal interference. It is easy to see that
the only critical code assignment is that of junction vertices,
since the others are derived from these according to the
schemes given in Fig. 9. Junction nodes are assigned the code
associated to their vertical segment color. Any horizontal chain
connects (on junction vertices) two vertical chains representing
a pair of horizontally connected vertical segments. These
segments have been assigned different colors, and so the
corresponding junction vertices have been assigned different
codes. Remembering the shape of horizontal chains, i.e., one
leftmost, some interior, and one rightmost components, it is
easy to see that all the extreme vertices of these components
have the same code of the left junction vertex, but the
right junction vertex (the rightmost vertex of the rightmost
component) has a different code, which is legal.

Conversely, let us assume now that the 3-Euclidean network
N has been successfully assigned three codes. Then, we
color a vertical segment with the color associated with the
code assigned to the junction vertices in the vertical chain
corresponding to this segment. An argument similar to the
above can be easily used to prove that the coloring meets the
coloring constraints, i.e., that horizontally connected vertical
segments have different colors.
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Finally, it is a simple task to verify that the transformation
given above can be carried out in polynomial time, and that
our 3-Euclidean network code assignment problem belongs to

NP,

(1
12]

(3]

[4]
[5]
(6]
(71
(8]

(91

(10]

(1]
L12]
[13]

[14]

thus completing the proof.
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