IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 2, FEBRUARY 1987

A VLSI Implementation of the Simplex Algorithm
ALAN A BERTOSSI ano MAURIZIO A, BONUCCELLI

Abstract—The use of a special-purpose YLSI chip for solving a linear
programming problem is presented. The chip is structured as a mesh of
trees and is designed (o implement the well-known simplex algorithm. A
high degree of parallelism is introduced in each pivot step, which can be
carried out in £ {log #) time using an m = & mesh of trees having an
(Mmn log m log® n) area where i — | and # — | are the number of
constraints and variables, respectively. Two variants of the simplex
algorithm are also considered: the two-phase method and the revised one.
The proposed chip is intended as being a possible basic block for a YLSI
operations research machine.

Index Terms—Linear programming, mesh of trees, simplex algorithm,
time complexity, ¥LS1.

I. INTRODUCTION

The proposal for highly dedicated parallel systems, based on very
farge scale integration (VLSI) technology, are becoming more and
more realistic [10]. In fact, the number of gates that can be integrated
in a single VLSI chip is steadily increasing and the processing
capability of the chip is superior to conventional integrated circuits,
even in terms of higher reliability, parallelism and speed, smaller
dimension, reduced cost for packaging different subsystemns, and low
power consumption. The main problem remains the high cost of
designing a VLSI chip, which becomes competitive only for large
production quantities. Therefore, only application areas whose use is
clearly consolidated can be envisaged for VLSI realization. A very
important one is that of linegr programming, namely, find a real (n
— I}-vector x (the varighle vector) to

minimize z=cx

subject 0 Ax=4d

x=0 (1.1)
where A is an (m — 1) % {n — 1) integer matrix (the constraint
matrix). d is an integer (# — 1)-vector (the right-hand side), and ¢
is an integer (row)(n — 1)-vector (the cosf vector).

The well-known Dantzig's simplex algorithm is widely used to
find an optimal solution to a linear programming problem. This
algorithm is based on the idea of repeatedly improving the cost of the
objective function z by moving from a basic feasible solution (bfs)
to another bfs which differ by one variable. Such moving is
performed by means of a quite costly pivor step (for an explanation
of these terms and a detailed description of the algorithm we refer to
[zn.

Despite its practical relevance, linear programming has received
very little attention so far in the VLSI literature. In this paper, our
aim is to partly fill this gap, by presenting a design of a VLSI chip for
this problem. To begin, we consider a VLSI implementation of the
simplex algorithm, in which a high degree of parallelism is
introduced to perform each pivot step. However, this is intended only
as a first contribution in this area. Indeed, our hope is to initiate a new
vain of research, which could lead to the realization of a number of
specialized VLSI chips spanning a large range of operations research
topics, including, e.g., branch-and-bound computations, algorithms
for finding maximum flows, shortest paths (which can be solved via
matrix multiplications [13]) and minimum spanning trees [11]. etc.

Manuscript received September 30, 1985; revised February 9, 1986. This
work was supported by a grant from the Ministry of Public Instruction, Italy.

The authors are with the Depantment of Computer Science, University of
Pisa, 56100 Pisa, Ttaly.

IEEE Log Number 8611453,

241

Ideally, the goal should be the realization of an operarions research
machine, in which such specialized VLSI chips are attached to a
general-purpose host computer. Thus far, machines of this kind have
already been successfully realized, for instance, for database process-
ing (e.g., see [1], [2], [4]. [B]).

Briefly, this correspondence is organized in the following fashion.
In Section II we give a detailed description of the system architecture
we will deal with. This architecture is based on the well-known
interconnection pattern called mesh of trees [11]. In Section HI we
define a set of elementary operations and (ree procedures which
constitute the building blocks of our VLSI design. In Section IV we
consider the simplex algorithm in which an # x n mesh of trees is
used to store and process the linear programming data. We assume
there that an initial bfs to start with is already known and that data
{i.e., A, ¢, d) have been accordingly shaped. We show how to
perform each pivot step in © (log n) time using an @ (mn log m
log® n) area. It is well known that sequential implementations of the
simplex algorithm require © (mn) time per pivot step while the
number of such steps grows linearly in m, on the average, and
exponentially, in the worst case. Thus our VLSI implementation
takes in practice a time proportional to m log a for solving a linear
programming problem. In Section V we consider the fwo-phase
method, which allows to get an initial bfs. In Section VI we also
sketch a VLSI realization of the revised simplex method. Lastly, we
present in Section VII some concluding remarks as well as directions
for future research,

II. SYSTEM ARCHITECTURE

The basic computational structure considered in the present paper
consists of elementary processing units (also called modes) whose
interconnection pattern is an m = n mesh of trees (MT, for short).
In other words, there are mn processing units arranged as an m X
array. Usually, m and n are powers of 2 and m = n. Then, the nodes

inthe throw, i = 0, 1, --+, m — 1, of the array are the leaves of a
complete binary tree (rf;, for short). Similarly, the nodes in the jth
column, j = 0, 1, ---, n = 1, are the leaves of a complete binary

tree (denoted by cf;). Nonleaf nodes are called internal nodes. For
the sake of clarity, we shall denote with A the leaf which lies on row §
and column j of the mesh of trees, i = 0, 1, =-- . m — 1,/ =0, 1,
*-+, 1 — 1. We shall also denote with p; the root of rr; and with +; the
root of cf;. An example of a 4 = 4 mesh of trees is illustrated in Fig.
1-

A structure of this type was originally introduced by Leighton [9]
and by Nath er al. [11]. We share the electronic assumptions of those
papers. In particular, we assume that all processing elements operate
in a s¥nchronous fashion. This is accomplished by the use of a main
clock broadeasting its pulses to every node in MT. We assume also
that MT is connected 1o a general-purpose hosr processor, which
supervises MT s computations, and to its main memory.

A. Why Mesh of Trees

The choice of the mesh of trees architecture is dictated by its
peculiar interconnection pattern which allows fast (O (log #))
communication among nodes. Indeed, under our fairly general
assumptions, namely that each node stores one entry of (1.1)(or a
constant number of them), the following results hold.

Theorem I: Any p % qarray (p x g = O(mn)) requires at least
max{p, g}) time to perform a pivot step.

Theorem 2: Any binary tree requires at least Q(m) time to
perform a pivot step.

The proofs of the above theorems are given in the Appendix.

Theorem 1 allows us to derive lower bounds on the time needed by
two very common YLSI arrays. In particular, a finear array takes at
least Q(ma) time per pivot step and thus its performance is no better
than that of a sequential implementation, while a sguare array with
side O(+/(mn)) gets an 2(-/(mn)) lower bound. All these architec-
tures behave poorly compared to the mesh of trees one which, as

0018-9340/87/0200-0241501.00 & 1987 IEEE

Fig. 1.

A 4 x4 mesh of trees.

shown in Section IV, can perform a pivot step in @ (log #) time still
requiring only a slightly higher area.

B. Node Architecture

Basically, only the communication pattern of the architecture
would be important in order to achieve the desired time bounds for
the simplex algorithm. Thus we could assume any kind of general
processor organization at each node. However we sketch here a
possible structure for the single nodes of MT, in order to show the
attainment of a reasonable low area.

The architecture of a node can consist of a few registers, an
arithmetic and logic unit and a control unif. Registers can be used
to {temporarily or permanently) store data and column or row
indexes. Thus their size equals either b, that of data to be processed,
or log m or log a bits. Of course, each node has an operation code
register, whose size 5 amounts to a few bits.

The communication among nodes of each binary (row or column)
tree is carried out through bidirectional busses, each capable of
transmitting the content of a register in parallel. Thus busses have
bandwidth equal to &; log m, log # or 5. We assume that data, indexes
and operation codes are transferred through distinct busses. In this
way, each node is connected to its parent and children in a row
(column) tree via nine busses. Of course, each leaf is connected to
both its parenits in the corresponding row and column trees via six
busses.

We assume that the host processor is the parent of each (row and
column) root in MT and that it can communicate with such a root by
means of three appropriate busses.

By observing the elementary operations that will be defined in the
next section, one can easily check that only a constant number of
registers is required at each node. In particular, only three b-bit
registers and one (log m or log nr)-bit register suffice for each
internal node, while only two b-bit registers, one (log m)-bit register
and one (log n)-bit register (for permanently storing its row and
column indexes) are enough for each leaf.

I, Nopg OFERATIONS AND TREE PROCEDURES

We now present a set of elementary operations that can be
executed by the nodes in MT. The execution of most such operations
is usually initiated by the host processor by issuing operation codes to
some roots of MT.

Once a node has received a new operation code, it broadcasts such
code to its children (the only exception for the SENDDOWN operation
whose code, as described later, is sent to only one child). Afierwards,
it starts the execution of an appropriate program corresponding to the
operation (o be performed. Such a program is stored in the memory
of its own control unit, Operation codes are eventually followed by

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 2, FEBRUARY 1987

some parameters. We assume that the nodes not involved in
performing an clementary operation always output a string of zeroes.

A. Internal Node Efementary Operations

The basic set of elementary operations for internal nodes can
consist of five operations: BROADCAST, MIN, MINPOS, SENDUF, and
SENDDOWN,

BROADCAST is used to make two copies of a datum and an (row or
column) index received from its parent and send them to its children.

MIN has the purpose of performing a comparison between two
values coming from the children and returning the minimum one to
the parent, along with an incoming index associated with it. MINPOS is
the nonnegative analogue of MIN: the smaller nonnegative value
coming from the children is returned to the parent along with the
associated index. If a negative value (which always is — 1) comes
from both children, it is sent up to the parent along with an index
value set to — 1. When MIN or MINPOS is performed by a node in a
column {row) tree, data coming from a leaf of row (column) zero are
neglected.

SENDUP simply allows the execution of a logical orR on the data
received by the children, returning the result to the parent.

SENDDOWN is used whenever a datum must be transferred from the
root of a tree to a specific leaf. This is accomplished by associating
the datum with the row index (if the involved tree is a column tree) or
the column index (if the tree 15 a row one) of the destination leaf. This
index is used to locate the leaf as follows. The operation code of
SENDDOWN is sent to the left or right child, depending on the value, 0
or 1, respectively, of the lefimost bit of the index. Such an operation
code is followed by the datum itself and by the index shifted by one
bit to the left.

It is easy to verify that the above operations can all be carried out in
constant time. For the sake of simplicity, we assume that each of
them takes exactly the same time, say T clock cycles, to be
performed by a node. Besides it is clear that the program for all the
above operations require constant memaory space.

B. Leaf Elementary Operations

The basic set of elementary operations for the leaves comprises six
operations; STORECOL, SENDUPROW, SENDUPCOL, DIV, SIMPLEDIV,
and COMPUTE,

STORECOL has the purpose of storing data coming from column
trees. The datum to be stored is transmitted along with a row index.
The incoming index is compared to the content of the appropriate row
register of the leaf. If these values match, the datum is permanently
stored into the leaf.

SENDUPROW and SENDUPCOL are used for transmitting up a row or
column tree, respectively, a copy of the resident datum along with
that of the column or row register.

A division operation has two versions: SIMPLEDIV and piv. The
former is used to divide the resident datum by the value coming from
the row tree, provided that this value is not zero. The result is then
permanently stored. The latter, instead, is used to divide the value
coming from the row tree by the resident datum, provided that this
latter is positive, If it is nonpositive, the result is set to =1,

The last elementary operation, namely COMPUTE, is used to update
the resident datum by subtracting from it the result of the mudtiplica-
tion between the two values coming from the row and column trees.

These operations can all be executed in constant time, since the
operands involved cannot be more than & bits long and b is a constant
(see Section I0). In particular, let Ty, Ty, and Ty be the clock cyeles
taken by an addition, a division, and a multiplication, respectively.
Then, DIV and SIMPLEDIV require Ty clock cycles, while cOMPUTE
can be carried out in Ty + Ty clock cycles. As before, we assume
that all th: remaining operations take exactly T clock cycles.
Besides, the programs for all the above operations require constant
MEmory space.

C. Tree Procedures

We now describe how the foregoing elementary operations can be
combined in a few standard operation patterns which operate on the

IEEE TRANSACTIONS ON COMPUTERS. VOL. C-16, NO. 1, FEBRUARY 1987

row and column trees. We c¢all such operation patterns free
procedures. The complete simplex algorithm will result from proper
sequences of these procedures.

We distinguish seven procedures, namely, INPUT-AND-STORE,
INPUT-AND-DIVIDE, BROADCAST-AND-COMPUTE. each of which
[INPUT-AND=-STORE excepted) can be performed either on a row or a
column tree.

INPUT-AND-STORE 15 performed on a column tree to transfer a
datum from a root to a specific leaf. To do this on the generic ¢, the
host processor puts the STORECOL operation code into +; and, one
clock cycle later, a SENDDOWN one. After one more clock cycle, the
datum & and the index § of the destination leaf are fed into +;. After T
log mr clock cycles, & reaches Ay, which permanently stores it by
executing STORECOL. OFf course, T clock cycles after / and § are fed
into v, another index-datum pair can be sent down the tree in a
pipelined fashion.

INPUT-AND-DIVIDE i5 analogous to INPUT-AND-STORE, the only
difference being that piv is used instead of STORECOL. In this way, it
is possible to divide & by the entry resident in A;. This procedure
takes T-log n + Ty (or Telog m + Tp) time when performed on a
row (or column) tree.

OUTPUT is used to transfer a copy of the resident datum and column
(row) index from a leaf h; to the root of rt;{ct;). To do this on r#;, the
host processor inputs a SENDUP operation code into p;. This code is
then broadcast to all nodes in rf;. After log m - log m clock cycles, the
host processor inputs a SENDUPROW code into ;. Such a code is
broadecast in of; and after log m clock cycles is received by its leaves.
In this way, at time log m, each b, 0 = &k = m — 1, sends up a copy
of the resident datum to its parent in rf,. However, only the internal
nodes in rf; do perform a SENDUP, and, attime (T + 1)logn + T,
p; receives the proper data. OFf course, this procedure can be done in
parallel on more than one tree. For instance, to accomplish this on rf;
and riy, the host processor has only to input the SENDUP code into g
and pg. As a result, p; and g will receive at the same time data
coming, respectively, from h;; and k.

ABSOLUTE-MINIMUM has the purpose of finding the minimum entry
among those stored in the leaves of a tree. To do this task on ri;, the
host processor issues the operation code for SENDUPROW and, one
clock cycle later, that for MIN. Such operation codes are input into g;,
and broadcast to all the nodes in rr;. After log ® clock cveles, the
leaves of rt; receive the code for sSENpUPROW. Then, each leaf sends
to its parent in rf; a copy of the resident datum and column index.
Upon receiving indexes and data from its children. each internal node
in rf; selects the smaller datum and the relative column index and
sends them to its parent. Therefore, after additional T log n clock
cycles, p; sends to the host processor the desired minimum.

POSITIVE-MINIMUM is the nonnegative analogue of the previous
procedure, in which MINPOS substitutes MIN, If there is no nonnega-
tive entry in the leaves, the root will receive data equal to — 1.

BROADCAST-AND-DIVIDE is used to transfer a datum from the roou
of a tree o all its leaves. Moreover, entries resident in some selected
leaves are divided by the incoming daum. For instance, to update the
entries in A; and Ay, the operation code of BROADCAST is input by the
host processor imto p; along with, one clock cycle later, the
appropriate datum 4. After T log n - log m clock cycles, the
SIMPLEDIV code is input into +; and .. In this way, at time log n, A
and h; receive the code for SIMPLEDIV (from cit; and er) and the
daturn & (from rr;). Only data resident in h; and h; are updated, since
all other leaves in r¥; do not receive the SIMPLEDIV code and all the
other leaves in cf; and cf, receive data equal to zero. The time needed
is Telogn + T

Lastly, BROADCAST-AND-COMPUTE is similar to the previous
procedure, in which COMPUTE substitutes SIMPLEDIV. The main
difference, however, is that the selected leaves, say A; and My, have
to receive two data at the same time in order to perform COMPUTE.
One datum has to come from the row tree and the other from the
column tree. This is accomplished by putting at time T (log # -
fog m) the BROADCAST operation code into +; and v, followed by the
proper parameters. (T — 1) log m — 1 clock cycles later, the code

243

for COMPUTE is also input into f; and ji. In this way, leaves Ay and by
do receive at time T log # — 1 the code for COMPUTE and, one clock
cycle later, both their operands coming from the corresponding row
and column trees. Data resident in these leaves are then updated.

Note that all the above procedures require O (log #) time to be
performed.

I'V. THE SIMPLEX ALGORITHM

Let the linear programming problem to be solved be in the form
{1.1), with m = n. We assume that data, i.e., A, ¢, and &, are
permanently stored in an # % n mesh of trees. The entries of ¢ are
stored in the leaves of the first row tree, namely iy, while vector d is
maintained in the leaves of the first column tree, namely cfy. The
generic entry a;; of the constraint matrix is stored in the leaf b, 1 = i
=m— 1,1 =j=n— 1. Moreover, the value — 7 of the objective
function (with changed sign) is maintained in Ay. Secondly, we
assume #1 and 1 to be powers of two. If it is not the case, we assume
that the problem’s data have been filled with **dummy " variables and
constraints 5o 1o reach the appropriate dimensions. Clearly, in doing
so the time and area bounds that will follow change only by a constant
factor. Thirdly, we assume that data are represented as b bits
numbers (see Section IT). It is well known that the total area occupied
by an m x n mesh of trees having constant area nodes and constant
width communication lines is O(m n log m log a)[9]. Since b is
constant, nodes and communication lines require at most & (log n)
area and width, respectively, in our proposal. Therefore, it is easy to
see by an argument similar to that of [9] that the mesh of trees
proposed in this paper can be laid out on an O(m n log m log? 1) area
silicon chip. Finally, we assume throughout this section that a bfs for
the linear programming problem is already known and that the data
have been accordingly shaped. In particular, this means that matrix 4
containg a permutation of the (m — 1) % (m — 1) identity matrix
and ¢ contains the reduced costs relative to the current basis [12]. We
suppose that the basis is kept by the host processor, e.g.. by using a
vector whose kth entry is the index of the &th basic variable,

We now give a detailed deseription of how the single stages of the
simplex algorithm can be realized by using the proposed mesh of
trees.

A, Dara Loading

The first task to be faced consists in loading the linear program-
ming problem’s data into MT. Since m = n, it is convenient to load
data one row at a time, by using column trees. We assume that all
data are initially resident in the main memory and that /O between
MT and the main memory can be carried out at a rate of bn bits per
clock eyele, thus allowing simultaneouws transfer of n data.

Loading a row can be done by performing n INPUT-AND-STORE
procedures simultancously, one for each column tree. The overall
loading can be achieved by iterating this m times in a pipelined
fashion. The first time +; will receive the index 0 and .l s j=n
— 1, while v, will receive 0 and —z. T¢ clock cycles later v, will
receive the index land @y, 1 = j = n = 1, while 4, will receive 1
and oy, and 50 on.

It is clear that after O({m + log m) time data loading is over and
the computation of the real simplex algorithm can start.

B. Pivar Column Selection

Firstly, the column of the pivot has to be selected. A classical rale
for finding such a column is to determine the minimum reduced cost.
If such a cost is nonnegative, then the current bfs is optimal;
otherwise, the desired column has been found. This rule is known as
the moast negative pricing rule and can be implemented simply by
performing an ABSOLUTE-MINIMUM procedure on i (see Fig. 2). If
the final result in g is negative, then the associated index, say &, is
taken by the host processor in order to keep track that x, will enter the
basis. Otherwise, no further decrease in the objective function is
possible, and the actual bfs is optimal. In this latter case, the host
processor initiates the output stage (see Subsection I'V-F).

It is easy to convince ourselves that the overall running time to
select the smallest reduced cost is thus O (log n).

244

MIN .. MIH
N
1 |
-Z] Ted G2 Cs| rty
SENDIPE0M SEMDUPEDM SENDUPRTL SENOUPRTA

Fig. 2. ABSDLUTE-MINIMUM on #f; to select the pivot column.

C. Pivol Row Selection

Once the pivot column has been selected, the pivot row can be
located as follows. Let k be the just selected column index. Then the
pivor is the entry @y, if any, such that
min { o @y }]

1sism—1
A=l

The pivot row index can be found in the following way. Firstly, the
entries of o are sent to the row tree roots by means of m — 1 oUTPUT
procedures done in parallel on row trees rt, | = f = m — 1, in
which the SENDUPROW operation code is put into . Afterwards, the
host processor initiates m — 1 INPUT-AND-DIVIDE procedures
simultaneously on the same row trees, but using & as column index.
Finally, the desired minimum is obtained in -, after executing a
POSITIVE-MINIMUM on cf;. An example is given in Fig. 3. Therefore,
it is clear that after @ (log n) clock cycles the pivot row index, say A,
is available in +y;. The host processor can thus keep track of this and
determine the variable leaving the basis (i.e. the fith one). Of course,
if the received index is — I, then the linear programming problem is
unbounded and the host processor initiates the output stage.

dy/ gy = (4.1)

0. Greatest Decrement Rule

In the last two subscctions, we have seen how to locate the pivot
entry in O (log n) time. In particular, we chose the pivot column by
selecting the most negative reduced cost. In doing so there is no
guarantee that after pivoting the improvement of the objective
funetion will be the best possible. This goal, instead, can be achieved
by choosing as pivot the entry ay, for which

c',,d_;,.-"a,,*=rriig {; min {di/a;}}. {4.2)
oy t=izm=1
ap=0

This rule is known as the grearest decrement rule. It is never used
in sequential implementations of the simplex algorithm because
requires O(mn) time in the worst case. When properly implemented
with our MT, however, it takes O (log n) time only. We now sketch
how this time bound can be achieved,

The greatest decrement rule can be implemented by means of a
proper combination of the procedures developed in the last two
subsections for finding the pivot column and row indexes. In
particular, one can firstly perform this latter procedure in parallel,
over all column indexes f, | = f = m — 1. This solves the inner
minima in (4.2) for all /. Then, the just found minimum ratios are
sent in parallel through column trees to the leaves of r#y. In this way,
each leal Ag;, which stores the reduced cost ¢, receives the
appropriate minimum ratio, 1 = j = m - 1. Successively, each My
multiplies the resident datum by the incoming value, provided that the
former is negative and the latter nonnegative, and transmits the result
up 1o riy. If some operand has not the proper sign, a positive number
is sent up riy. Finally, the outer minimum in (4.2) is performed in rf;
as for the most negative rule.

E. Pivoting

Once the pivot has been located, all problem’s data have to be
changed to reflect the fact that we are moving to another bfs. This can
be done by means of pivoting. Let gy, be the selected pivot, Data are
changed in two stages. Firstly, each entry in row A is divided by the
pivot. Successively, every otherentry ay, 1= ism — 1,1 % i, |

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 7. FEBRUARY 1957

SENDDOHY |T

= y
SENNR - HINOS }{ qﬁ;h

. SERDICHN
"ff(ﬁ\\\. I;M
e |
L4 BBy rL;
SENNPATH ; _." LRIV, SEMEPCOL
= mc‘ni_*-.l—— o s
Hp iy 33

i
Sy
"b"'
\a

Sequence of OUTPUT, INPUT-AND-DIVIDE (on all rt,, { % 0) and
FOSITIVE-MINIMUM (on cfy) to select the pivot row.

Fig. 3.

=J=n— 1, is set to gy —ayay. Entries of d, ¢, and —z are
similarly updated [12]. These two stages can be implemented by MT
as follows.

The host processor initiates an OUTPUT procedure on rty, with & as
column index, so to transfer the pivot g to py. Then a BROADCAST-
AND-DIVIDE is performed: agy is the datum to be broadeast to every
leaf in riy, while the code for SIMPLEDIV and index £ are fed into cach
e, 0 = f = n — 1. (See Fig. 4 for an example).

This completes the execution of the first stage. The second stage
can now be carried out as follows. The host processor issues m — 1
OUTPUT procedures in parallel in every row tree other than rty. The
selected leaves are, of course, those lying on column k. At time (T
+ 1}log n + Ty, the datum transmitted by by, 0 = i< m — 1,i #
h, is available in p;. Then the host processor initiates a BROADCAST-
AND-COMPUTE procedure in the same row trees, the selected leaves
being simply all the leaves. In the meanwhile, the host processor
starts, at time (2T + 1) (log # — log m), » OUTPUT procedures in
parallel on every column tree. As a result, cach leaf by, 0 s i = m
—Li#h0=/7=n— 1,doesreceiveattime (2T- + l)logn —
1 the operation code for COMPUTE and, one clock cyele later, both the
data which reside in Ay, (namely ay., ifi # 0, or ¢ if i = 0) and in Ay
(namely ay;, if j + 0, or d, if j = () coming, respectively, from rt;
and cf;. The datum resident in &, is then updated. An example can be
seen in Fig. 5.

A complete pivot step is thus over. A new pivot step can be carried
out by repeating the procedures seen in Subsections IV-B through E
until either an optimal bfs is found or the problem is discovered to be
unbounded.

It is easy to see that pivoting requires O (log n) time. Hence, the
overall time taken by a complete pivot step is also O (log n).

F. Outpur of the Optimal Solution

When the simplex algorithm is over, the host processor receives
proper data either from gy or from a column tree root (see Subsections
IV-B and C). Then, the current bfs can be output from MT. Since
nonbasic variables have to be set to zero, only the values to be
assigned to the basic variables are needed. If x; is the Ath basic
variable, then its value is available in Ay, while the value of the
objective function {with sign changed) is available in Agg. Since the
host processor took note of all changes in the successive bases, the
output of all entries in the leaves of ¢t is enough. This can be done by
performing # OUTPUT procedures in parallel, one for each row,
selecting only those entrics having column index equal to 0.

The output step is thus performed in @ (log #) time and MT is
now ready for processing a new linear programming problem.

¥. Two-PHASE METHOD

In the previous section, we assumed that a bfs to start with was
already known. When this is not the case, one bfs can be found by
means of the so called fwo-phase method [12].

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 2, FEBRUARY 1957

L= T
J’awmsr
= =
BROADCAST -"'f H‘* ak:;{.ucnr
o
o R B
LIsPLEDIV SIMPFLEDIY SIWFLEDIY SIWFLERLY
d a
d,— —4 SR
Bhy Ohi =

Fig. 4.

BROADCAST-AND-DIVIDE 10 update pivot row f.

ct;

Fig. 5. BROADCAST-AND-COMPUTE to update all rows but row /.

The first phase consists in solving (by the ordinary simplex
algorithm) the following auxiliary problem: find an m — 1 real
vector ¥ (the arfificial variable vector) to

m—1
minimize w= %, y;
i=1

subject to Ax+Iy=d

x, y=0 (5.1)

where [is the (m — 1) x (m — 1) identity matrix, and A4 and d are
the original data of (1.1).

An initial basis for the auxiliary problem consists of exactly all the
artificial variables. Then (5.1) can be solved by means of an m x (n
+ m — 1) mesh of trees. OF course, some additional procedures,
very similar to those of Subsection [II-C, are required. We leave their
detailed implementation to the reader as an exercise.

As before, let us assume that both meand 7 + m — 1 are powers of
two. We can load the data for the first phase as usual. As a result,
each leaf hy; will contain zero, if0 = j=n — l,orl,ifn=j=n
+ m — 1. To apply the simplex algorithm, however, the reduced
costs relative to the (basic) artificial variables have to become zero.
This can be accomplished in O (log #) time by subtracting to the
zeroth row of MT the sum of the remaining rows as follows.

Firstly, data resident in the leaves of each column tree cf; are
summed up, by means of n properly defined SUMMATION procedures
similar to ABSOLUTE-MINIMUM (thus neglecting data coming from row
0). These procedures are performed in parallel on all cf;’s. Secondly,
n properly defined INFUT-AND-SUBSTRACT procedures are performed
on the same column trees.

In this way, MT is now ready to perform the computation of the
usual simplex algorithm as seen above., When this is over, the
following three cases may arise [12].

i) The objective function w is greater than zero.

245

it) w is zero, but some artificial variable is basic (at zero value).

i) w is zero, and no artificial variable is basic,

In Case i), the original problem is infeasible since it has no bfs, and
no further processing is needed. In Case ii), before starting phase
two, the artificial variables have to be replaced by original ones.
Assume ¥; is the fith basic variable. A procedure similar to POSITIVE-
MINIMUM is performed on rfy, in which MINPOS is substituted by an
appropriate operation which selects the datum (and the index) coming
from the right child, if it is nonzero and the left one is zero, or from
the left child, otherwise. As a result, the host processor will receive a
column index, say k. If & = m, then row h is a linear combination of
the others (since ay = by = 0 for all j) and can thus be deleted.
Otherwise, pivoting can be performed as described in Subsection I'V-
E, the {possibly negative) pivot being @y (in such a case, ¥, will be
replaced in the basis by xi, while the objective function will continue
to be zero). This procedure is repeated for every basic artificial
variable. Since the above replacing takes O (log) time, a bfs for the
original problem (1.1) is obtained in (s log n) time. if there are 5
basic artificial variables. In this way, Case ii) is reduced to Case iii).

Finally, in Case iii) we have to restore the original objective
function, compute the appropriate reduced costs, and reapply the
simplex algorithm to perform phase two. In this case, however, all
data resident in the leaves previously associated to artificial variables
have to be filled with zeroes to guarantee correctness.

The transition between phase one and phase two is begun by
loading the original cost vector ¢ in the leaves of rip. This can be
done, as usual, in O (log n) time. Like at the beginning of phase one,
however, the reduced costs relative to basic variables have to become
zero. This can be done in O (log #) time by first multiplying each
row I by the cost of the fth basic variable, say ci;(e.g. by means of an
appropriately defined BROADCAST-AND-MULTIPLY), and then sub-
stracting to the zeroth row the sum of the so updated rows (as we
already saw at the beginning of phase one).

It is easily seen that the transition between phase one and phase two
is carried out in @ (log n) time. Now, phase two can be performed as
shown in Section IV.

VI. REVISED SIMPLEX ALGORITHM

In this section. we shall sketch a VLSI implementation of the so
called revised method (for a description of this method we refer to
[12]). The motivation for this is two-fold. On one hand, the revised
method tries to wse the original linear programming data whenever
possible. As a result, rounding errors due to arithmetical operations
are partly reduced. On the other hand, the revised method needs only
to maintain in a fast memory an (m = 1) »x (m — 1) submatrix
instead of the whole {(m — 1)} x (n — 1) matrix A. This saving in
space is particularly relevant from a VLSI viewpoint. Indeed,
whenever m — 1 is much smaller than n = 1, the meshes of trees
proposed in the previous sections must be laid out on chips with very
small height-to-width ratio and their cost can be exceedingly high
[10]. As we shall see in this section, however, the revised method can
be implemented in VLSI by using one (m + 1) % (m + 1) MT, thus
overcoming the above drawback. Of course, the saving in chip area is
got by trading time for it, and a single pivot siep can take at most
O((n — m) log m) and at least O (log m) time.

Assume an initial basis is already known and let B be the (m — 1)
®x (m - 1) submatrix of A containing only basic columns.
Similarly, denote with cg the m — 1 (row) subvector of ¢ having only
basic components. Finally, denote with = the (row) vector cg B!,
where B~! is the inverse of B.

Since the revised method updates only o, B-!, — =, and —z, we
store them in one (m + 1) = (m + 1) MT. Specifically, — = and &
are stored in the leaves of row 0 and column 0, respectively, —z is
stored as usual in Ay, and the element which lies in row § and column
jof B lisstoredinh;, 1l =i=m— 1,1 = j=m — 1. Rowand
column m are devoted to bookkeeping processing. All other problem
data are stored in the main memory.

Of course, data loading into MT can be carried out in Q(m) time
as shown in Subsection IV-A. To perform a pivot step, we firstly
need to select the pivot column. Let A; be the jth column of A, The

246

above selection can be done by generating the reduced costs

(6.1)

one at a time, until one which is negative, if any, is found. To do this,
the host processor initiates in parallel m — 1, properly defined
INPUT-AND-MULTIPLY procedures on column trees ¢f;, | = j = m
— 1, by transmitting ay; from v, to Ay, (because — w is maintained in
row 0). Then a SUMMATION procedure can be performed on rf and
pp can thus compute r;. The overall time spent is O (log m).

The above procedure is repeated for cach nonbasic variable until a
negative reduced cost is found, if any. In the wrost case, at most n —
m — 2 iterations are needed, and the time spent for finding the pivot
column is @{{n = m) log m). If no negative reduced cost is found,
the optimum bfs has been reached, and the output stage follows as
described in Subsection IV-F.

Now, assume that a negative reduced cost, say ry, has been found
and that it is stored in Ay .. Then A, has to be loaded into MT from
the main memory 50 to evaluate B~ 'A4,. This can be done with m —
1 BROADCAST-AND-MULTIPLY procedures performed in parallel on
¢ty 1 = j = m — 1, followed by m — 1 SUMMATION procedures on
rl, 1 =i=m— 1. As aresult, p; will send to the host processor the
ith entry of B~ 4. The just computed entries can then be stored into
¢l It is easy to realize that the generation and storing of B~'4;
takes O (log m) time.

The pivot row can be selected as described in Subsection [V-C
remembering that the pivot column corresponds to the (nonbasic)
variable x; but is stored in the leaves of cf,,. This can be done in
O (log m) time.

Assume that the selected pivot is stored in Mg Then pivoting is
performed as described in Subsection [V-E. As a result, the Oth row
and column of MT will contain the updated — = and d, respectively,
while the leaves in rows and columns | to m — 1 will store the
updated B~ '. Of course, the host processor will keep track of the new
basis, by replacing the hth basic variable with x;. In order to reduce
rounding errors, a VLSI chip for matrix inversion [7] could be used
to periodically recompute B!, using the original matrix A, and store
it into MT.

To get an initial B~ " to start with, a two-phase method can be used.
The revised algorithm then starts with an initial basis comprising
exactly all the artificial variables (see Section V.) In this case, B~! =
B = I, the (m — 1) x {m — 1) identity matrix. To use phase one,
however, artifical variables have to be at zero cost. This is
accomplished by substracting all the rows of A from the cost vector,
so that in phase one the reduced costs r; are calculated by

rj=¢j—®A;

m—1
==Y a;-%A;. (6.2)
fm

When using our MT, it is not necessary to compute the summation
in (6.2) beforehand. In fact, it can be computed whenever needed by
slightly changing the procedure presented above. The overall running
time remains & (log m) per nonbasic variable.

When we enter phase two, the rule to compute the reduced costs
becomes (6.1), instead of (6.2). Besides, the vector —x = — ¢!
must be generated and placed into the leaves of rfp. This last
computation is similar to that of B~'4; and can be carried out in
O (log m) time.

VII. CONCLUSIONS

In this correspondence, we have seen how a VLSI chip composed
as a mesh of trees can be effectively used to implement the well-
known simplex algorithm for linear programming. In particular, the
concept of using the chip itself to store data, besides processing them,
has permitted the artainment of a low O (log n) execution time per
pivot step, while still maintaining a reasonable low O(mn log m
log*n) area.

It is well known that the simplex algorithm requires in practice a

IEEE TRANSACTIONS ON COMPUTERS. VOL. C-36, NO. 2, FEBRUARY 1987

total number of pivot steps which grows linearly in m (even if there
are instances for which such number grows exponentially) [6]. Since
sequential implementations of this algorithm take O(mn) time per
pivot step [12], their average total running time is O(s°n). Our
WVLSI chip, instead, takes on the average an overall running time
proportional to m log # 10 solve a linear programming problem,
achieving an O (mn/log n) speedup. Since we use O(mn} node
processors, the resulting average processor utilization is O (1/log n).

We have also seen a VLSI implementation of the revised simplex
method which, besides partly reducing rounding errors, has the great
advantage of requiring only square MT s, which can be laid out at a
reasonable cost.

A severe limitation in our design arises mainly in the size of
meshes of trees that can be laid out on a single chip. Indeed, while all
the functions assigned to MT in this correspondence can be
implemented with current VLSI technology, only small MT's could
be built on a chip with current or imminent technology. The fact that
small MT’s are becoming feasible, however, demonstrates that our
proposal could become an attractive one, if VLSI technology will
keep increasing performance and space properties.

Anyhow, assume that only small, say ¢ % g, with g* < n, meshes
of trees can be laid out with present technology. Then a partitioning
approach can be addressed. Since no more than g entries can be
updated simultaneously, data can be no more resident in MT and each
pivot step then requires several successive data inputs and outputs. It
is easy (o see that segmented versions of the procedures presented in
Section IV can be effectively used. For instance, pivot column
selection can be performed as follows. The cost vector ¢ is input into
MT s rows, g entries at a time, and then sent to the leaves. Each leaf
will receive n/g® successive entries and computes the minimum
among them. Then, after O(n/g + log g) time, such minima are
sent up the row trees, where procedures are performed which in
O (log g) time find the minimum entry in each row tree. Finally, the
smallest among such minima can be computed by letting each row
tree root 1o send the just received minimum to the leaf which lies in
column 0. Successively, cfy will compute in additional @ (log g)
time the required minimum. Thus the pivotl column is selected in
O(n/g + log g) time. Similarly, the pivot row can be located in
O(m/q + log g) time, while pivoting takes O((g + log g)mn/g?)
= CHmn/qg) ume.

As already mentioned, the MT proposed in this correspondence is
intended as an initial contribution for the realization of a VLSI
operations research machine. In particular, we are currently planning
to continue our research in the following main directions. On one
hand it should be very interesting to give VLSI implementations of
further specializations of the simplex algorithm such as those using
LU factoring or Cholesky's decomposition (e.g., see [6]). On the
other hand, it should be even more interesting to consider an
algorithm for linear programming which is completely different from
the simplex one. Karmarkar's algorithm [5] seems a good candidate
for VLSI realization, since it includes a method for self-correcting
rounding errors and it modifies the current feasible solution by
introducing several variables ar once.

APPENDIX

Proof of Theorem i: The theorem will be proved by lower
bounding the time needed to update the problem's data A, ¢, d. Let us
assume first that a single copy of each entry is stored in the array. In
the following, we will call distance between two nodes of the array,
the minimum number of intermediate nodes met in going from one
node to the other. Such distance is a lower bound on the time needed
to transmit data between those nodes.

Letay bethepivot, l = h = m - 1,1 s k=n — 1. The
generic entry a, § # A, j # k, needs both g and ay; to be updated.
Clearly, if these entries are placed in nodes with distance Q({max{p,
g }) then the theorem is proved. Otherwise, assume that for any pair
Li,l=i=m-1,1=j=n— |, entries a; and a; are placed in
nodes with distance at most 8 = o(max{p, g}). Let Obethed x §
square subarray containing all the nodes storing the entries of row h

IEEE TRAMSACTIONS ON COMPUTERS, VOL. C-36, NO. 2, FEBRUARY 1987

and column k. Besides, let €, €, C;, and Cy be the square
subarrays, each containing pg/16 nodes in one corner of the array.
Thus, node f isinCyif l =w=p/dand] = v = g/4isin Cif 1
=u=sp/Ailgdsv=gisinGiflpd=u=pand]l =v =
g/disin C,if 3p/d = w = p,and 3g/d = v = gq.

At most one among the above four corner subarrays can have
nodes in common with (2, since otherwise § = fimax{p, g }). Let C,
be such subarray. Each entry ay stored in the other three subarrays
needs two entries in 0 to be updated. But the distance between the
node storing aj; and those in Q is INmax{p, g }). Hence, the updating
of a; reguires M(max{p, g} time.

Finally, if several copies of each entry are stored in the array, all of
them must be updated. Thus they can be seen as different entries, and
the above proofl can be used again.

Proaf af Theorem 2: This proof is based on the minimum
amount of data that must flow through the root during a pivot step.
Since data flow through the root is sequential, the above minimum is
a lower bound on the time needed to perform a pivot step.

A row (or column) of (1.1) will be called covered by the left {or
right) subtree whenever all the entries of that row (or column) are
stored in that subtree. If a row or a column is not covered by any
subtree, pivoting will require that at least one of its entries be
transmitted from a subtree to the other.

Let us assume that the left subtree stores mn/k entries, with &
being a constant number. If this is not the case, i.e., if one subtree
stores o (mn) entries, we substitute the other subtree to the whole tree
in the proof. Besides, let R and C,(R and Cy) be the number of rows
and columns, respectively, covered by the left (right) subtree. We
claim that either B, = Oand & = 0, 0or By = O and C; = 0.
Similarly, either Ry = 0and C; = 0, 0or B; = 0and C, = 0. In fact,
let By = 0, and let row 7 of (1.1) be covered by the left subtree. Then
ag, 1 = j=n — 1, and d; are stored in the left subtree. Thus no
column can be covered in the right subtree. Similar reasonings can be
done for the other cases. Therefore, only four further cases can arise.

Case [): By # 0and C) # 0(thus, R; = C; = 0). Since the
left subtree contains mn/k entries, we have

Rin+Cym—-R\Ci=mn/k.

Letus assumethat R, + Cy = o + {m + n)/k, with @ = 0. Then
Cy=a - R + (m + n)/k and substituting in the above inequality
we get

Rin+m*ik+mn/k+am—Rm<mn/k.
Thus we obtain

Riin=ms —mi/ k—am<0

which is a contradiction, since n = m. Thus B; + C, < (m + n)/
k, and at least (m + n)Mk — 1k = @ (m + n) rows and columns
are not covered by any subtree.

Case 2): C) # 0and C; # 0 (thus, Ry = R; = 0). Since
+ C; = n, at least m rows are not covered by any subtree.

The remaining two cases are analogous to the previous ones, and
similar conclusions can be derived.

It follows that at least {3 m) entries must be transferred between the
two subtrees during a pivot step.

Finally, we observe again that whenever the entries are stored in
multiple copies, each of them must be updated, and so they can be
treated as different eniries, Besides, it is easy to see that this proof
holds also for non-binary trees, provided that each node has constant
degree.

REFERENCES

[1] M. A. Bonuccelli, E. Lodi, F. Luccio, P. Maestrini, and L. Pagli, “A
L3I tree machine for relational data bases,”” in Proc. [k Ann,
IEEE Symp. Compui. Architect., 1983, pp. 67-T3.

12]
[3]
[4]

[5]

I5]

71

[%]

(%]
[

[

(2]

(13

247

—""A VLSI mesh of trees for database processing,” Lect. Notes
Comput. Sci., no. 159, pp. 155-166, 1983,

D. Dobkin, R. J. Lipton, and 5. Reiss, *'Linear programming is log-
space hard for P," Inferm. Processing Lett. . vol. 8, pp. 96-97, 1979,
D. K. Hsiao, “*Database computers,”” in Advances in Computers, vol,
19, M. C. Yovits Ed. New York: Academic, 1982,

N. Karmarkar, **A new polynomial time algorithm for linear program-
ming,” in Proc. 16th Ann. ACM Symp. Theory of Comput., 1984,
pp. 302-311,

K. Murty, Linear and Combinarorial Programming. MNew York:
Wiley, 1976.

M. RE. Kramer and J. Van Lecuwen, “‘Systolic computation and
VLSL,"" in Foundations of Computer Science, IV, 1. de Bakker and J,
Van Lesuwen Eds. Amsterdam: Mathematische Centrum Tracts,
1983, pt. 1.

H. T. Kung and P. L. Lehman, **Systolic (VLSI) arrays for relational
database operations,™ in Proc, ACM—SIGMOD Int, Conf. Man-
age. Data, 1980, pp. 105-116.

F. T. Leighton, **New lower bound techniques for VLSL" in Proc.
22nd Ann. IEEE Symp. Found. Comput, Sci., 1981, pp. 1-12,

C. Mead and L. Conway, Introduction to VLSI Systems. Reading,
MA: Addison Wesley, 1980,

D. D. Math, 5. N. Mgaheshwari, and P. C. Bhaut, “Efficient VLSI
networks for parallel processing based on onthogonal trees,” JEEE
Trans, Comput., vol. C-32, pp. 569-581, 1983,

C. H. Papadimitriou and K. 5. Steiglitz, Combinatarial Optimiza-
tion; Algorithms and Complexity. Englewood Cliffs, N1: Prentice-
Hall, 1983,

F. P. Preparata and J. E. Vuillemin, “*Arca-time optimal VLSI
networks for matrix multiplication,” in Proc. I4th Princeton Conf,
Inform. Sci. Syst., 1980,

