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Abstract—The use of a fault-tolerant VLSI system for storing and
solving linear programming problems is presented. The system can bear
multiple faults in processing elements and/or links and still function with
an acceptable performance degradation. It is based on an interconnection
pattern consisting of a complete binary tree in which spare links between
cousin nodes are added so as to reconfigure it as a ternary tree. At any
given time of a computation, faulty processing elements and/or links are
circumvented by using such spare links. We show that the total silicon
area required by this structure is only a constant factor higher than that of
a complete binary tree. We then use it to give an efficient implementation
of the simplex algorithm in which the time required to perform a single
pivot step matches a previously established lower bound for tree
machines, in spite of faults.

Index Terms—Cousin-connected tree, fault tolerance, gracefully de-
gradable system, linear programming, simplex algorithm, time complex-
ity, VLSI.

1. INTRODUCTION

VLSI technology is expected to allow the construction of chips
with hundreds of thousands to millions of gates in the near future.
Since the cost of designing such chips is very high and their
production yield is very low, the VLSI technique can be effectively
used only for large production quantities of the same chip. Thus, only
application areas of prominent importance can be realistically
addressed in a VLSI setting. Among them are sorting [22], [4],
matrix multiplication [16], DFT [17], dictionary and database
processing [2], [14], [21], [5], and linear programming [3]. This
last application consists of finding a real (n — 1) vector x (the
variable vector) to

minimize Z=CX
subject to Ax=d

x=0

(1.1)

where A is an (im — 1) X (n — 1) integer matrix (the constraint
matrix), d is an integer (m — 1) vector, and c is an integer (row) (n
— 1) vector (the cost vector).

Linear programming has been envisaged for VLSI realization only
very recently. Lower bounds on the time required to perform a single
pivot step of the well-known simplex algorithm were given for
several interconnection patterns among processing elements (PE's,
for short). In particular, it has been shown that trees have much better
lower bounds than systolic arrays [3]. Thus, trees represent suitable
interconnection patterns for systems implementing the simplex
algorithm. In addition, trees have other nice properties from a VLSI
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viewpoint. Indeed, whenever the so called *‘H-layout™ is adopted
[6]). [23], the resulting chip is highly modular and very compact. and
requires a few I/O pads (in fact, only the root of the tree
communicates with the outside world). This last feature is particu-
larly relevant, since physicalJimits lower the number of I/O pins on a
chip. In practice, it can be hard or even impossible to produce VLSI
chips for systems requiring many I/O pads, like systolic arrays.

A problem of paramount importance in VLSI chip design and
production is fault tolerance. Indeed, defects in the silicon chip and
production errors make PE’s and communication links faulty. This
may cause computation fails, in spite of a high number of good
devices. In practice, the probability that a chip has faulty devices
increases exponentially with its integration density and area [23].
Since faulty devices on a VLSI chip cannot be replaced, the
production yield can become unacceptably low. To overcome these
drawbacks, fault-tolerance techniques have to be used in the design
stage.

The most studied fault-tolerance technique is to hardware confi-
gure most of the good devices according to the target interconnection
pattern by using extra wires and switches laid out on the chip. As an
example, the system Diogenes [19] follows this approach; other
examples can be found in [12], [20], [8]. [13]. [18], and [10].
(Unfortunately, if we wish to configure all the good PE’s into a
binary tree, the problem is computationally intractable [24].)

An aiternative technique, instead, is to configure good devices into
an irregular interconnection pattern and to design ‘‘ad hoc™
algorithms that are able to operate under such a changing pattern. Of
course, extra links and/or PE’s are required to reduce degradation in
performance due to faults. This approach has been usefully adopted
for arrays of PE’s [25], [7] and hierarchical network storage systems
[9].

In the present paper, this latter fault-tolerance technique is used to
provide a gracefully degradable tree-based VLSI system for solving
linear programming problems as defined in (1.1). Such a system is
based upon an interconnection pattern previously proposed for back-
end storage networks [9], although employed in a different manner.
We call this pattern cousin-connected tree (CCT, for short). It
consists of a complete binary tree in which spare links between cousin
nodes are introduced in order to get a graceful degradation of the
system performance when faults occur. At any given time of a
computation, faulty PE’s and/or links are circumvented by using such
spare links. In this way, the system is actually reconfigured into an
(incomplete) ternary tree.

The remainder of the paper is subdivided into six sections. Section
IT contains a formal definition as well as topological properties of
CCT’s. In particular, we compare CCT’s with complete binary trees,
showing that a CCT with N unit area nodes and unit width wires can
be optimally laid out in a square of O(N ) area. Therefore, CCT’s do
not asymptotically require more area than binary trees. We also
present experimental results on performance degradation of both
CCT's and binary trees, showing that CCT’s allow on the average a
far lower degradation due to faults. In Section III, we sketch the
system architecture we will deal with, while in Section IV we define a
set of basic procedure schemes. Section V contains some system
configuration procedures, while Section VI is devoted to the
implementation of the simplex algorithm. All the procedures given in
these last two sections are described in terms of the basic schemes
previously defined. We show how to perform a single pivot step in
O(m) time, thus attaining the previously proved Q(m) time lower
bound for tree machines [3], in spite of faults. Finally. additional
remarks and open questions terminate the paper in Section VII.
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Fig. 1.

A 31-node live CCT. Faulty, dead, and live nodes are black, shaded.

and white, respectively.

II. THE INTERCONNECTION PATTERN

The basic interconnection pattern considered in this paper consists
of a complete binary tree in which the left (right) son of a generic
node 7 is directly connected by a link to the left (right) son of the
brother of i. The so connected nodes are called cousins. More
formally, a cousin-connected tree (CCT) with N = 27 — 1 nodes,
indexed 1, 2, - - -, N, is a graph in which node / is connected as usual
to nodes 2i and 2i + 1 (its left and right sons, respectively);
moreover, whenever /2] is even and greater than zero, node i is
also connected to node i + 2 (its cousin). A live CCT is one whose
nodes are labeled either faulty, live, or dead as follows.

1) Some nodes in the set {4, 5, -+ -, N } are firstly labeled fauity.

2) A node is successively labeled /ive if and only if it is reachable
from node 1 (the root) via a simple path of nonfaulty nodes each of
which is either the father or the cousin of its successor.

3) All the remaining nodes are finally labeled dead.

Of course, a CCT represents a system whose PE’s and communica-
tion links correspond to nodes and edges, while a live CCT represents
a system with some faulty PE’s (assuming, as usual, that the root and
its sons cannot fail [9]). An example is shown in Fig. 1. Note that a
node is dead if and only if either its father and cousin (as for node 8)
or one ancestor and the brother of the ancestor (as for nodes 28, 29,
and 31) are both faulty.

A. Reconfigured Topology

In using a CCT for a computational task, one has to choose a
configuration of nonfaulty PE’s into a working interconnection
pattern. One choice is to rearrange the live nodes into a tree.
Formally, a reconfigured ternary tree (RTT) is a tree which is
obtained from a live CCT as follows.

1) Every faulty or dead node is deleted, together with its incident
edges.

2) Every edge joining two live cousins both having live fathers is
also deleted.

An example is provided in Fig. 2. Of course, if all PE’s of a CCT
are nonfaulty, the resulting RTT is a complete binary tree.
Otherwise, it is easy to realize that RTT comes out to be a ternary
tree, in which any live node in the CCT having a faulty or dead father
becomes an additional son of its cousin.

B. Topological Features

We now give some topological features of CCT’s and RTT’s.
Theorem 1 [9]: The number of edges in a CCT is BN — 5)/2.R
Theorem 2: The degree of a node in a CCT is at most 4.

Both these quantities, being quite low, contribute to the reliability
of the system. In particular, nodes whose degree is a low constant are
well suitable for VLSI realization.

Recall that the level of node i in a tree is the number of edges in a
simple path from the root to /. We get the following result.

Theorem 3: The level of node i in an RTT is at most 2/ — 1, where
/ is the level of node i in the complete binary tree upon which the
corresponding live CCT is set up.

Fig. 2. The RTT obtained from the live CCT of Fig. 1. Intercousin links

used in the reconfiguration are shown by heavy lines.

Proof: Let node / have level £ in RTT and let 1 = JosJ1s Tt s Jk
= i be the resulting simple path from the root to /. Node j; is the son
of the root. Moreover, for A = 1,2, -+ -, k — 1, node jj is either the
father or the cousin of jj | in CCT. However, if j, | is the cousin of
Jn, then jj, has to be the father of j, .. Thus, there are in the path at
most | (k — 1)/2] pairs of successive nodes both at the same level in
the corresponding binary tree. Hence, [(k — 1)/2] + 1 = /and so k
<2l - 1. ]

Since / < logN — 1 in an N-node complete binary tree, it is
possible in a CCT to reach any live node from the root (and vice
versa) by passing through at most 2logN — 3 links and 2logN — 4
intermediate live nodes. Thus, the communication between any two
live PE’s in a system reconfigured as an RTT is O(logN), as for
complete binary tree.

C. Area Occupancy

We now show that the introduction of extra links between cousins
does not asymptotically increase the silicon area required to lay out a
CCT with respect to a complete binary tree having the same number
of nodes.

First of all, let us observe that the terms *‘left’” and *‘right”” reflect
a logical organization of the nodes. However, in the VLSI layout ofa
binary tree, the left and right sons of a node can be physically placed
anywhere in the chip.

The layout of a CCT is obtained from that of a complete binary tree
as follows. We start with an H-shaped layout for the tree [6], [23], in
which the left (right) son of a node which is in turn a right son is
physically placed on the right (left) of its father. We then add links
between cousins as shown in Fig. 3. Assuming the classical
rectangular grid, two-layer model for VLSI layout [23], the following
result holds.
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Fig. 3. H-shaped layout for a 31-node CCT. Right sons are black.

Intercousin links are shown by broken lines.

Fig. 4. (a) An O(7) area layout for a seven-node CCT. (b) How to set up H,
from four H,_,’s. Intercousin links are shown by broken lines.

Theorem 4: Any CCT with unit area nodes and unit width edges
can be optimally laid out in a square having O(N ) area.

Proof: The proof is by induction on the level j of the nodes
having highest level (which we call leaves, as for trees). The initial
induction steps for j = 1 and j = 2 are easily established. For
instance, Fig. 4(a) shows a square layout for a seven-node CCT
requiring 25 < 4-7 = O(7) area. Now assume the theorem is true
for all i = j — 1 and let H; denote a square layout with O(2/*')
area for an / leaf level CCT. If j is greater than two, then Hj can be set
up from four H;_,’s as shown in Fig. 4(b). In words, let Aj_;bethe
area of H;_,. We start with a 2\/(Aj;3) side square and place four
H;_3’s, each in one corner quarter of the square. We insert two 1 X
NV j-2) + 1) strips in the middle of the square, one vertically and
the other horizontally. We place the root of H; in the intersection of
the two strips and put along the vertical strip the link connecting such
a root to the outside world. We place the two sons of the root in the
center of each half horizontal strip, putting in such strips the links
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connecting them to the root. Moreover, such nodes are connected
with the roots of the H;_,’s by their links for the external world. We
add a unit frame around the square, which is used to connect the roots
of the four H;_,’s which become cousins in H;. Finally, we stretch
the square by four horizontal and vertical units, without breaking the
existing links, in order to have enough space for the new links
between the sons of the roots of the H;_,'s which become cousins.
This completes the layout of H;, which is inscribed in a square with
side 2V(A4,5) + 7. Thus, its area is QN(A4, 5) + 7)° = 4A,_, +
28\/(A,-2) + 49. Since by assumption A, , is O(2/7"), the area
required by H; is O(4-2/-1) = O@2/+). |

Another good feature of CCT’s is modularity. In practice, a larger
CCT can be built by grouping together four smaller existing CCT’s in
a manner similar to that seen in Theorem 4. It is indeed sufficient to
lay out intercousin links among the roots by surrounding the four
chips, instead of stretching them. Clearly, this does not increase the
given area bound.

D. Graceful Performance Degradation

Theorems 3 and 4 tell us that CCT’s increase the requirement of
area and node-to-node communication time, in presence of failures,
only by a small constant factor over those of binary trees. This is a
relevant feature, since the system performance degradation in
the presence of faults is much lower in CCT’s than in binary trees.

To show this, we set up simulation experiments to measure the
average performance degradation of both CCT’s and binary trees in
terms of dead nodes. (Let us define /ive binary trees in an obvious
way, as for CCT’s).

We considered pairs of complete binary trees and CCT's both
having the same number N of nodes. We chose three values of N,
namely 1023, 32767, and 131071. For each value of N, we divided
the simulation in subparts, depending on the value F of distinct faulty
nodes. Five values of F were chosen, ranging from logN to N/4. For
each of the 15 subparts, we generated F distinct integer random
numbers, drawn from a uniform distribution between 4 and N. We
then deleted the corresponding nodes from both the binary tree and
CCT, along with their incident edges. Successively, we labeled the
remaining nodes as /ive or dead as previously defined. The above
procedure was repeated 500 times for each subpart. Notice that in a
binary tree, a failure of node i implies that all the nodes belonging to
the subtree rooted at / are dead. For a CCT, instead. this happens
only if also the brother of i is faulty (e.g., see nodes 14 and 15 of Fig.
1), because of the presence of extra intercousin links. Observe that in
both cases dead nodes are not reachable from the root. Thus, they are
useless for any computation, since, as in most realistic VLSI systems,
the root is the only PE we allow to communicate with the external
world. There is only one case in which a reachable node ; is labeled
dead, namely, when both its father and cousin are simultaneously
faulty (e.g., see nodes 4 and 10 of Fig. 1). In this case, however, all
the descendants of / in CCT still remain alive, whereas they obviously
result to be dead in the binary tree.

The simulation programs were written in Pascal and ran on a VAX
11/780 computer. The trial results are summarized in Table I,
reporting the average number of dead PE’s for each subpart of the
experiment. By observing them, it is easy to see that the number of
dead nodes in binary trees is much higher than in CCT’s. This is
remarkable when the number F of faulty nodes is not too high, say
logN or v/N.

III. SYSTEM ARCHITECTURE

The fault-tolerant system considered in this paper to solve linear
programming problems consists of N processing elements whose
interconnection pattern is a CCT. In order to bear several faulty PE’s,
the system is designed so as to reconfigure its live PE’s in an RTT.
Such reconfiguration can be trivially done on a local basis, provided
each PE knows the status (faulty/good) of its neighbors. We shall not
give computational details here. We only observe that four one-bit
flags, say FF, CF, LSF, and RSF, are sufficient for each PE to know
the status of its father, cousin, left son, and right son, respectively.
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TABLE 1
AVERAGE NUMBER OF DEAD PE’S IN PRESENCE OF F FAULTS

BINARY
TREE 58.35 164 303.1 422.8 619.2
ceT 0.33 5.99 23.04 70.9 343.6
£ 10=Togh | 32=}'N 60 100 255=N/4
N=1023
BINARY
TREE 182.1 1827 12717 22408 23439
cer 0.01 1.8 862 6113 16175.5
F 15=T0gN | 181= N 1500 4000 | 8192=N/4
N=32767
BINARY | 174,07 | as75.58 | 48563.3 | 92902 95784
cct 0.1 15.67 3570.48 | 24731.1 71473
F 17-Togh | 363= |'N 5000 15000 | 32767=N/4
N=131071

When a PE becomes faulty, its status change has to be communicated
to all its neighbors. Upon receiving this notice, each good son has to
become a new son of its cousin (provided its cousin is good) and
inform it of this fact. To do this, each PE needs two more one-bit
flags, say RC and SC. Of course, the father (and cousin) of the faulty
PE, if not itself faulty, will interpret the notice by avoiding to
communicate with its faulty neighbor. We assume failures to occur
only in PE’s and not also in links. The reason for this is twofold.
First, the probability of link failures is negligibly small compared to
that of PE’s. since PE’s are much more complex. Second, a link
failure can be treated as each PE at the end of the link considers the
other PE faulty. This allows us to reconfigure the system by letting
the son PE communicate with its cousin instead of its father.

Since our system has to be able to permanently store data of linear
programming problems, namely, 4, ¢, d, and z, each PE needs a few
more flags. For the sake of conciseness, we assume hereafter data as
being logically organized in an m X narray M = [m;] (m < n),
whose rows and columns are indexed from Otom — landn — 1,
respectively, such that me = —z2, Mo; = ¢; (j=1,mo=4d (i =
1), and my; = a; (i, j = 1). We will store each column of M, one
entry per PE, in a subtree of the RTT called storage subtree (SS, for
short). In order to store the maximum number of columns, it is
convenient to choose as SS’s those which are as far as possible from
the CCT root. This can be achieved by selecting as root of an SS one
PE with at least m good PE’s under it such that no one of its sons has
the same property. In this way, the lower portion of the system will
form a storing forest SE. In contrast, the upper portion will be used
as a communication tree CT to transfer data between the CCT root
and SF, and between different SS’s. Since the borderline between SF
and CT is not fixed, each PE must be able to perform either as a
storing node or as a communication one. Therefore, each PE is
equipped with two additional one-bit flags, say STORE and COMM,
indicating whether it is in SF (STORE = 1 and COMM = 0) or in
CT (STORE = 0 and COMM = 1). Besides, two more one-bit flags
are needed: RSST and VACANCY. The former points out whether a
PE is the root of an SS or not, while the latter indicates whether a PE,
although being in an SS, is actually storing one entry (VACANCY =
0) or not (=1).

It may happen that a PE is neither in CT nor in an SS. For instance,
assume there are less than 71 good PE’s in the subtree rooted at PE i,
but at least m good PE’s in that rooted at i’s brother. Then is father
is in CT and i’s brother in SS, but / is neither in CT nor in SS. Thus,
the subtree rooted at i will be not involved in any useful computation.
This is denoted by STORE = 0 and COMM = 0 in each PE of such a
subtree.
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Summarizing, the basic structure of a PE can consist in the above
ten flags, along with a few registers, an ALU, and a control unit
(CU). By observing the operations that will be described later, onc
can easily check that only a constant number of registers is required
in order to store operation codes, entries of M, row and column
indexes. and other values needed for bookkeeping purposes. Regis-
ters have a size either equal to b, that of data to be processed. or
log N. Operation code registers are only a few bits wide. For the sake
of conciseness, we shall not enter into the details of PE architecture in
the following. The interested reader can easily come up with a
specific architecture after reading the description of the procedures
that will follow.

The communication between adjacent PE’s is carried out through
bidirectional bit-parallel buses. A data bus whose bandwidth b is
used to transmit entries of M, while a row and a column bus, both
with bandwidth equal to logN, are used to transmit. respectively, row
and column indexes of the entries. Finally, there are also an
operation code bus and a control bus. This last bus consists of only
one bit line which is used to inform whether the associated data have
to be taken into account for processing or not.

Lastly, we assume that all PE’s operate synchronously, by means
of a main clock broadcasting its pulses to every PE. Besides, we
assume that the chip is attached to a general purpose host processor.
The host processor can directly communicate with the CCT root. It
oversees CCT’s processing, by initiating new procedures, loading
and unloading data, checking partial results, etc. We assume the data
size b to be that of the host processor word. Typical values for it
might be 32 or 64. Thus, throughout this paper, we assume b to be a
constant.

Since the size of registers is either a constant or logV, while the
bandwidth of buses is also at most log/V, the total area required by
our system is O(Nlog?N ).

IV. BASIC PROCEDURE SCHEMES

We now define six types of basic procedures that can be performed
on the proposed system, assuming it is already reconfigured as an
RTT. Procedures of the same type follow the same communication
scheme among PE's, but require slightly different computations
inside the PE’s. In this section, we shall stress such communication
schemes, leaving the details of the specific computations to the next
sections.

Each scheme is initiated by the host processor, which communi-
cates an operation code to the CCT root. This operation code is
broadcast to all PE’s in RTT via operation code buses. After sending
an operation code to its sons, or after receiving it in case of a leaf,
each PE starts the execution of a suitable program, stored in its CU
memory. It keeps executing that program until a new operation code
is received. An operation code is often broadcast along with other
data, which travel on data, row, and column buses. In particular, row
and column indexes are often used as parameters, in the sense that the
actions taken by one program may depend on whether or not the
incoming indexes match row and/or column indexes stored inside the
PE.

The irregularity of the reconfigured topology. due to faults, does
not allow a fully synchronous processing. For instance, data coming
from different leaves cannot always reach the same PE simultane-
ously, since they may travel along paths of different length. Thus.
data are associated to a control bit, say CB. Whenever CB is 1, the
associated data have to be considered for processing, otherwise they
will be discarded. PE’s store receiving data whose associated CB is
equal to 1 and then perform useful computations. In particular, if they
expect data to come from the sons, they perform useful computations
only when data with CB = 1 have been received from all the sons. of
course, meaningful data are output by a PE only if their CB is set to 1.
Otherwise. useless data with CB reset to 0 are output, which will be
neglected by the receiving PE’s. This allows us to synchronize
operations in the PE’s, in spite of the irregularity of the topology.

The six types of procedure schemes are: BROADCAST. SE-
LECT, SENDUP, SENDOWN, OUTPUT, and FLAGSET. We
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now sketch them, assuming, for the sake of simplicity, that only
meaningful data are received, processed, and transmitted.

BROADCAST is used to broadcast data from the root down to the
leaves. Each PE receives data from the father, (permanently or
temporarily) stores (part of) them in some registers, performs the
required computations, and then simuitaneously sends the received
data to its sons.

The opposite function is carried out by SELECT. Each PE waits
for data coming from the sons, performs a maximum, minimum, or
sum on the received data, and sends the result to its father.

SENDUP is analogue to SELECT, but each PE receives data
from only one son, stores and process them, and successively sends
data up to its father.

With SENDOWN, instead, each PE receives from its father data
which are used to modify the content of a register, and sends data to
just one of its sons.

The purpose of OUTPUT is to send up in a pipelined fashion
entries stored in several different PE’s. The scheme is planned in
such a way that a sequence of entries is contiguously sent by each PE
to its father without using buffer memories. To do this, each involved
PE uses a register as a timer, and sets it to a proper value upon
receiving the operation code. Then, the PE starts sending to its father
meaningful data, if any, received from the sons, and decreasing by
one its timer at each clock cycle. When the timer becomes zero, the
PE sends to its father the entry it is storing. Then, it restarts to send
entries coming from the sons.

Lastly, FLAGSET has the purpose of setting STORE and COMM
flags. Each PE gathers data from the sons and then makes a decision
about flag setting. This decision can also cause a command for flag
resetting to be sent to one (or more) or its sons.

It is casy to realize that all the above schemes, OUTPUT
excepted, require an overall time proportional to ToplogN to be
executed on RTT, where Top is the time needed by each PE to
perform the computation required by a specific operation code.
Indeed, according to Theorem 3, the transmission time of data
between the root and the other PE’s (and vice versa) is O(logN).
Since we assume the linear programming entries to be b bits long,
and b is a constant, also Top is a constant. Thus, the above schemes
require O(log/N ) time. Of course, to output k entries in a pipelined
fashion using an OUTPUT scheme requires O(k + logN) time
(see, e.g., Section VI for details).

V. PRELIMINARY SYSTEM PROCEDURES

The reconfigured topology of the system is not regular and may
change over time whenever failures occur. Therefore, before loading
linear programming data, i.e., the m X n array M, we must know
whether we have enough space to store M or not. This cannot be
deduced by the number of live PE’s, since the irregularity of the RTT
can cause some PE’s to be useless. However, the CCT itself can
gather information in a distributed way about the current RTT
topology. Depending on the outcome of this gathering, the RTT can
in turn be configured as a storing forest and a communication tree,
and finally M can be loaded.

A. Gathering Information about RTT

The purpose of this preliminary procedure is to gather information
about the current RTT, irrespective of the particular linear program-
ming data to be loaded. Thus, it can be performed only after a CCT
reconfiguration took place, because some PE became faulty.

This procedure is performed in two stages. First, the level of each
PE in RTT is found out. Second, the number of successors in the
subtree rooted at i is determined for each PE / in RTT.

The first stage is initiated by the host processor which gives an
appropriate operation code to the root, together with a datum set to
zero. A BROADCAST scheme is performed, in which each PE
stores the incoming value and sends it increased by one to its sons. In
this way, letting Tinc be the time required by a single PE to carry out
the above computation, each PE i will store its level /; after liTine +
1 clock cycles. Since the maximum level L cannot exceed 2logN — 3
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(by Theorem 3) and Txc is a constant, all the levels will be computed
and stored in O(logN) time. In the procedures that will follow, the
values L — /; will also be useful. We call such values colevels. To
evaluate colevels, PE i has to know L, which is the level of some leaf.
Therefore, the host processor communicates a new operation code to
the root, at least (Tine — 1)(2logN — 3) + 1 clock cycles later than
the code for the previous operation. The new code is broadcast to all
PE’s. As soon as a leaf receives the code, it sends its level to its
father. A SELECT scheme is performed on RTT. Each PE selects
the maximum value among those received from its sons, and sends it
to its father. After O(logN ) time, the host processor knows L. Then
another BROADCAST follows. Each PE receives L from its father
(assuming, of course, the host processor to be the root’s father),
subtracts its level to the incoming value, permanently stores the result
in a register, and sends L to its sons. The overall time needed is
O(logN).

The second stage is carried out by a SELECT scheme. The
processing is initiated by the leaves which, upon receiving the proper
operation code, store 1 in a register and send it to their fathers. Each
PE permanently stores the values coming from its sons in (three)
proper registers, which we call available sons registers (ASR’s).
These values are summed up. The result is increased by one and
stored in a fourth register, called AVAILABLE, whose content is
then sent upwards. In this way, PE 7 has in AVAILABLE the number
of its successors in the subtree rooted at i.

B. CT and SF Determination

Before loading M, RTT has to be properly configured into
communication tree and storing forest. In particular, n SS’s have to
be found, each comprising at least m PE’s (of course, assuming mn
< N). This is accomplished by setting the flags STORE, COMM,
RSST, and VACANCY as follows.

First of all, RTT executes a BROADCAST scheme. The value m
is broadcast to each PE, which temporarily stores it for future
reference. Then a FLAGSET scheme follows. As soon as each leaf
receives the proper operation code, it sets STORE and VACANCY to
1, and COMM and RSST to 0. Then, it sends the content of
AVAILABLE up to its father. Each other PE receives the values from
the sons and performs the following tests.

1) If all the received values are smaller than m, STORE and
VACANCY are set to 1, while COMM is set to 0. Besides, if the
content of AVAILABLE is greater than or equal to 2, RSST is set to
1; otherwise RSST is set to 0.

2) In contrast, whenever at least one of the received values is
greater than or equal to m, then COMM is set to 1 and both STORE
and RSST to O (in this case, VACANCY is useless). Moreover, as
observed in Section I, if a value smaller than m is received from a
son, the son in question cannot be either in CT or in SF. Then a
proper reset code is sent to this son which, as a consequence. will set
STORE and COMM to 0.

Since each PE takes constant time for setting its flags, the overall
time needed to configure RTT into CT and SF is O(logN). While
loading M, however, each PE in CT has to know how many SS's are
reachable through its sons and do not store any row of M. To do this,
a SELECT scheme is performed. As soon as a PE whose RSST and
STORE flags are both 1 receives the proper operation code, it sends 1
to its father. PE’s with RSST = 0 and STORE = 1 do no operation,
whereas those with STORE = 0 and COMM = 0 send zeros. In
contrast, PE’s in CT (i.e., having COMM = 1) permanently store
the values coming from the sons in distinct son vacant registers
(SVR’s), sum them up, and send the sum to their fathers. Clearly, if
the sum computed by the CCT root is smaller than 7, the linear
programming problem cannot be stored. One can easily realize that
also O(logN ) time suffices to execute this procedure on RTT.

C. Data Loading

We now show how linear programming data, i.e.. the array M, can
be loaded and permanently stored in RTT. We assume that the entries
of M are represented as b bit numbers (see Section III). Each column
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of M will be stored in an SS in such a way that —zand¢;, | =i <n
— 1, are maintained in the SS’s roots. Moreover, each entry of M
will be stored along with its own row and column indexes.

The entries of M are input by the host processor in the RTT root
column by column, one entry at a time, starting with column O and
ending with column 7 — 1. Column / is input starting with the entry
inrow m — 1 and ending with that in row 0. Since each entry is input
along with its row and column indexes, row index O can be used to
mark the end of a column.

During data loading, RTT performs a SENDOWN scheme as
follows.

1) PE’s with COMM = 1 send the received data to the leftmost son
whose SVR stores a positive value. When a row index equal to zero is
received, the SVR associated with that son is decreased by one. (We
assume the rightmost son to be the cousin, if any.)

2) PE’s with STORE = 1 send the received entries to their leftmost
son whose ASR stores a positive value, and decrease the content of
such register by one. If all the ASR’s are zero, the PE itself stores the
entry and sets VACANCY to 0.

3) PE’s with RSST = 1 (i.e., those being roots of SS’s) store the
entry received with row index zero, and set VACANCY to 0.

The above procedure allows us to store entries of M in a depth-first
manner. Of course, it is also possible to do this in a breadth-first way
by simply substituting the rule of data transmission to the leftmost son
with that of transmission one son after the other. Anyway, loading
one entry takes O(logN) time. Thus, the overall time required to
load all entries of M in a pipelined fashion is O(mn + logN). An
example of RTT storing a 2 X 2 linear programming problem is
shown in Fig. 5.

VI. THE SIMPLEX ALGORITHM

In this section, we show how the proposed fault-tolerant system
can be used to carry out the computation of the well known simplex
algorithm. This algorithm is based on the concept of a ‘‘basic
feasible solution.”> A basic solution for the system Ax = d is
obtained by solving it for m — 1 variables and by setting the
remaining n — m ones to zero (of course, we assume m =< n, as
usual [15]). The so selected m — 1 variables form an ordered set
called basis. A basic feasible solution (bfs) is a basic solution in
which all variables are nonnegative. The simplex algorithm moves
from a bfs to another bfs which differs by one variable so as to
improve the objective function z. This is accomplished by means of
a pivot step. For a detailed description of the algorithm we refer to
[151.

In this section, we assume first that a bfs to start with is already
known and data reflect this fact. Namely, matrix A contains a
permutation of the (m — 1) X (m — 1) identity matrix and ¢ the
reduced costs relative to the current basis [15]. We suppose that the
basis is kept by the host processor, e.g., by using a vector whose Ath
entry is the index of the /th basic variable. In Section VI-E, we will
show how to get a bfs to start with, by means of the classical rwo-
phase method [15].

A. Pivot Column Selection

The first thing to do is to detect the column of the pivot. A classical
rule consists in finding the minimum reduced cost. If such a cost is
nonnegative, the current bfs is optimal. Otherwise, the desired
column has been found.

This rule can be implemented in our RTT via the following
SELECT scheme. A proper operation code is broadcast in RTT,
along with both zero row and column indexes. As soon as a PE with
row index equal to zero and column index not equal to zero receives
the operation code, it sends a copy of the stored entry to its father
along with the associated column index. All the other PE’s having
COMM = 0 and STORE = 0 send a positive value, say 1. Each PE
with COMM = 1 waits for values from its sons, selects the
minimum, and sends it to its father, along with the associated column
index.

It is easy to convince ourselves that after O(log/V ) time the root of
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LEVEL COLEVEL

0 6
1 5
2 a4
3 3
4 2
5 1
6 0

Fig. 5. The RTT configured as CT and SF storing a 2 X 2 linear
programming problem. Numbers outside nodes indicate the contents of
AVAILABLE registers.

CCT will receive the minimum reduced cost. If it is negative, then the
associated column index, say k, is stored by the root, and will
successively be used to locate the pivot. The host processor takes
such index in order to keep track that x; will enter the basis.
Otherwise, no further decrease in the objective function is possible,
and the present bfs is optimal. In this latter case, the output stage will
follow (see Section VI-D).

B. Pivot Row Selection

Once the pivot column index k has been selected, the pivot row
index can then be located as follows. The pivot is that entry @, if
any, such that

dh/ahk: min {d,-/a;k}. (61)
l=sism-1

ay >0

The proposed system will find the pivot row index by properly
combining an QUTPUT scheme and a BROADCAST one. Row
index 0 and column index k are broadcast along with a proper
operation code. Upon receiving this code, each PE with mismatching
row index and matching column index sets its timer to i + 27y, where
i is its stored row index, and 7 is its colevel (see Section V).
Intuitively, y has the purpose of normalizing the distance from the
root to the different PE’s, as this would be the same for all of them. It
is considered twice since first operation codes have to flow down the
tree, and successively entries have to come up. In contrast,  is used to
properly sequence these outcoming entries. In this way, entries in
column k and their associated row indexes will be output from the
proper SS root as a contiguous stream, in increasing row index order,
as shown in Fig. 6. As soon as each one of these entries reaches the
RTT root, it is broadcast downwards along with column index zero
and its own row index. Therefore, PE’s in CCT simultaneously send
up data coming from their sons, and broadcast down data received
from their fathers. Note that this is possible because of the assumed
architecture. based on double directional buses: see Section III. PE’s
whose row and column indexes do not match the incoming ones only
broadcast the received entries. In contrast, whenever a PE gets row
and column indexes both matching its own indexes. it divides the
resident entry by the incoming one, provided that this latter is
positive, and temporarily stores the result in a register. If the
incoming entry is nonpositive, — 1 is stored. Since m entries are
serially transmitted through the CCT root, after O(m + logN) time,
each PE storing d; has performed the required division d;/a;.
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Fig. 6. Output of entries as a continuous stream. Numbers inside nodes
indicate timer values.

Then, a SELECT scheme follows, in which each PE having
nonzero row index and zero column index waits for data coming from
the sons, computes the minimum among them and the stored entry,
but neglecting negative entries, and sends the result to its father,
along with the associated row index. If all the involved entries are —
1, then — 1 is sent up. The PE with row index zero does the same, but
considering of course only the entries coming from the sons. Clearly,
also PE’s with VACANCY = 1, i.e., those storing no entry, will
send up — 1, while each PE in CT will only transmit the received data
upwards.

It is clear that after additional O(logN ) time the pivot row index A
and the proper value dj/ap; reach the CCT root. If the received value
is — 1, then the linear programming problem is unbounded, and the
output stage can follow. Otherwise, the host processor takes such row
index in order to update the current basis by substituting the Ath
variable (that leaving the basis) with x;.

C. Pivoting

Once the pivot a, has been located, all problem data must be
updated so to keep track that we are moving to another bfs. Such an
updating is called pivoting and can be performed in two stages. First,
each entry in row h of M is divided by the pivot. Thus, each my,; is set
10 my;/ay, for all j. Successively, every other entry not in row A is
updated as follows: my; is set to my; — mymy;, for all iand j (i # h)
[15].

The first stage is done by a SENDUP scheme, followed by a
BROADCAST one. The pivot row and column indexes are
broadcast along with the operation code. Thus, the PE storing the
pivot will send it to its father, while the remaining PE’s will simply
transmit upwards the (eventually) received entry. As soon as dp
reaches the CCT root, it is broadcast downwards with row index h.
Each PE in the SS whose row index matches the incoming one
performs the required division, thus updating its resident entry. This
completes the first stage, which therefore takes O(logN ) time.

In the second stage, each PE storing entry m;of M, 0 < i < m —
1,0 <j<n—1,i # h, needs two other entries for updating: m;,
which is stored in its own SS, and m;;, which must be received from
the SS storing the pivot. In particular, m,; is needed by all but one PE
in the SS storing column j of M. This can be done by broadcasting in

parallel for all j as follows. A SENDUP scheme is carried out, in
which row index A is broadcast, as for the first stage. The only
difference is that once the selected entries reach their SS roots, they
are temporarily stored there. Then, a BROADCAST scheme follows
(using row index A, again). Each SS root broadcasts downwards the
entry it previously stored, and then each PE whose row index
mismatches the incoming pivot row index /4 temporarily stores the
received entry. When this procedure is over, all (but one) entries of
column & have to be distributed all over the RTT. This can be done in
a pipelined fashion by combining an OUTPUT and a BROADCAST
scheme in a manner very similar to that already used in pivot row
selection. The only difference in the OUTPUT scheme is that row
index A is broadcast so that @ is not output. To do this, the involved
PE’s will set their timers eitherto/ + 2y,ifl < i< h — 1, orto/
+ 2y — 1,ifh+ 1 <i=<m~— 1. Inthe BROADCAST scheme,
instead, each entry travels with its own indexes. When it reaches a PE
having the same row index and a different column index, it is
temporarily stored.

In this way, after O(m + logN) time, each PE permanently
storing my;, i # h, has both my and m,; stored in two registers.
Then, updating can take place. To do this, a proper operation code is
broadcast together with pivot row index h. As soon as a PE with
VACANCY = 0 and whose row index mismatches the incoming one
receives the operation code, it updates my; by setting it to m; —
MMy,

A complete pivot step is thus over. A new pivot step can be carried
out by repeating the procedures seen above until either an optimal bfs
is found, or the problem is discovered to be unbounded.

Since the time for pivoting is dominated by broadcasting entries of
column £ all over the RTT, it is O(m + logN ). Hence, the overall
time taken by a complete pivot step is also O(m + logN). This
matches the previously established () lower bound for tree
machines [3], unless m is o(log/NV ), a very unlikely event.

D. Output of the Optimal Solution

When an optimal solution has been detected, the current values of
the basic variables must be output. Of course, nonbasic variables
have to be set to zero, while the value of the Ath basic variable is dj
(clearly, if the problem is unbounded, nonbasic variable x; may
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assume any positive value, e.g., see [15]). Since the host processor
took note of all changes in successive bases, the output of all entries
stored in the leftmost SS is enough. This can obviously be
accomplished by means of an QUTPUT scheme, in which each PE
with column index zero sets its timer to i + 2y, where i and vy are its
row index and colevel, respectively. All PE’s in CT simply send
upwards the entries received from their sons.

After O(logN ) time, the first entry, namely —z, will be sent by
the CCT to root to the host processor. The remaining m — 1 entries
dy, **+, dy_y will successively follow, one after the other and
without gaps. in increasing row index order. Thus, the output stage is
performed in O(m + logN ) time, and the system is now ready for
loading and solving a new linear programming problem.

E. Two-Phase Method

In the simplex algorithm implementation just seen, we assumed
that a bfs to start with was known in advance. Whenever this does not
happen, we can find a bfs by means of the two-phase method [15].

The first phase consists in solving, by the ordinary simplex
algorithm, the following auxiliary problem: find an m — 1 real
vector y (the artificial variable vector) to

m-—1
minimize w= Y, ;

i=1
subject to Ax+Iy=d

x, y=0 (6.2)
where 1 is the (m — 1) x (m — 1) identity matrix, and 4 and d are
the original problem data of (1.1). Obviously, an initial basis for (6.2)
consists of vector y. Thus, (6.2) can be loaded as seen in Section V.
Of course, the problem size is now m X (n + m) and therefore n +
m SS’s, each containing at least m PE’s, have to be determined. To
apply the simplex algorithm, however, reduced costs relative to the
basic variables have to become zero. This can be accomplished by
subtracting to the row zero of (6.2) the sum of all the other rows. To
do this, a SELECT scheme is performed in which every PE in SS
sums up the entries received from the sons and its own entry, and then
sends the result to its father. Each SS root, instead. subtracts from its
entry the sum of the incoming values. Of course, this scheme can be
performed in parallel over all $8's, and the total time required is
O(logN ) only. Then, RTT is ready to perform the computation of
the usual simplex algorithm, as seen above.

When the first phase is over, three cases may arise [15]:

1) the objective function w is greater than zero;

2) w is zero, but some artificial variable is basic (at zero value):

3) w is zero, and no artificial variable is basic.

In case 1), the original problem (1.1) has no bfs and hence is
infeasible. Thus, the second phase must not be carried out. In case 2),
basic artificial variables have to be replaced by original ones before
starting phase two. Let y; be the hth basic variable. Then y; can be
replaced in the basis by any nonbasic variable x, for which ;. # 0 at
the end of phase one. If no such a exists, then row /& of (1.1) isa
linear combination of the others, and can thus be deleted.

A SELECT scheme allows us to replace y;,. Row index A and
column index O are broadcast. PE’s with matching row index and
mismatching column index send up their stored entries along with the
associated column index. The remaining PE’s in SF only send
upwards the received entry, if any. PE’s with COMM = 0 and
STORE = 0 send up zeros. Every PE in CT, instead, sends to its
father one nonzero entry among those received from the sons. To
break ties, the entry whose associated column index is minimum (and
positive) is transmitted, together with the index itself. If all the
involved entries are zero, then zero is sent upwards. Therefore, after
O(logN ) time the host processor receives the desired entry and its
column index, say k. If kK > m, row A is a linear combination of the
others. Otherwise, pivoting can be performed as described in Section
VI-C, the (possibly negative) pivot being a. After pivoting, y; will
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be replaced by x; and w will still be zero. This procedure is repeated
for each of the at most m — 2 artificial basic variables. If there are p
such variables, we can get rid of them in O( pm + p-logN) time. In
this way, case 2) is reduced to case 3).

Finally, in case 3) we have to substitute the current objective
function with the original one. This is done by loading vector ¢ and
storing it in the proper SS’s as seen in Section V. Moreover, to
prevent incorrect computations. y variables have to be neglected.
This can be easily done by commanding PE’s in SF with VACANCY
= 0 and column index greater than m — 110 set VACANCY = 1|.
After ¢ is stored, its entries relative to basic variables have to become
zero. This can be done in O(m + logN) time by first multiplying
each row of (1.1) by the cost of the ith basic variable ¢y (via a
proper combination of OUTPUT and BROADCAST schemes. as
we did for pivoting) and then subtracting to the zeroth row the sum of
the so updated rows (as we already saw at the beginning of phase
one).

F. Time Complexity

Let us now briefly analyze the overall time required by our fault-
tolerant VLSI system to solve a linear programming problem.

Loading data either for phasc one or two takes O(mn + logN)
time. Properly computing the reduced costs to start with phase one
requires O(logN ) time. Getting rid of the eventual artificial basic
variables is done in at most O(m? + m-logN) time. Restoring the
original objective function and properly computing the reduced costs
for phase two needs O(m + logN) time. Finally. performing a
single pivot step takes O(m + logN ) time. Since the number of pivot
steps to solve either phase one or phase two is O(/m) on the average
[1] (even if there are artificially devised problems for which such a
number grows exponentially in the worst case [15]), the average time
for repeatedly pivoting is O(m? + m-logN ). Assuming m = logN,
the overall running time results to be O(mn), and is due to data
loading, in which we allowed to input only one entry at a time into the
CCT root.

Since sequential implementations of the simplex algorithm require
O(mn) time per pivot step, their average running time is O(m*n).
Thus. we achieve an O(rm) speedup. in spite of faults. Since we use N
> mn PE’s, the resulting average processor utilization is O(m/N).

Whenever it is possible to input several entries at a time. the
overall running time can be reduced. For instance, if the CCT is used
as an interconnection pattern of a multiprocessor system instead of a
VLSI one. we can assume each entry already be stored in the proper
PE. Thus, data loading is O(1) and the running time reduces to
O(@m?). In this case, the speedup and average processor utilization
become, respectively, O(n) and O(n/N).

VII. CONCLUSIONS

In this paper, we proposed a tree-based fault-tolerant system for
solving linear programming problems by means of the well-known
simplex algorithm. The system presents several characteristics that
make it suitable for practical VLSI (or even WSI) realization.
Summarizing:

1) It can bear multiple faults in PE’s and allow graceful average
degradation in performance;

2y It is based on a (slightly modified) complete binary tree. which
is one of the most widely used VLSI interconnection patterns:

3) It requires a few 1/O pads (indeed. being a modified tree, only
one PE communicates with the outside world):

4) It can be compactly laid out in an H-shaped manner with no
extra (asymptotical) area with respect to binary trees;

5) It is also modular, since smaller systems can be combined
together to form a larger one.

6) Tt performs a single pivot step in O(m) time, thus attaining a
previously proved Q(:n) lower bound for tree machines implementing
the simplex algorithm;

7) It achieves an O(m) speedup with respect to the total running
time required by sequential implementations of the simplex ai-
gorithm.
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The proposed system is intended as a contribution in the direction
of designing VLSI chips for solving operations research problems. In
practice, we should implement several specialized chips spanning a
large range of outstanding topics, such as, for instance, finding a
maximum flow, a maximum matching, or solving a linear program-
ming problem via Karmarkar’s algorithm. Ideally, the purpose
should be the setting up of an operations research machine, in which
such specialized VLSI chips are attached to a general purpose host
computer. Thus far, machines of this kind have already been
successfully realized, for instance, for database processing [11].
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A Note on Detecting Sneak Paths in Transistor Networks

S. CHAKRAVARTY AND H. B. HUNT 1II

Abstract—The problem of detecting sneak paths in transistor networks
arises in the minimization of transistor networks [2]. [3]. It is shown
that the problem of detecting consistent sneak paths in ‘‘very simple”
transistor networks is co-NP-complete.

Index Terms—Co-NP-complete, 1-graphs, minimization of transistor
networks, sneak paths.

I. INTRODUCTION

The problem of detecting sneak paths in transistor networks is
considered. This problem arises in the minimization of transistor
networks [2], [3]. In [2], a polynomial time heuristic for this problem
is discussed. The heuristic in [2] is pessimistic in that it very often
fails to determine that a sneak path does not exist. This leads us to
the question: Does a polynomial time algorithm exist for detecting
sneak paths? We show that for very simple transistor networks the
problem of determining sneak paths is co-NO-complete. Thus, unless
P = NP. there does not exist a polynomial time algorithm for
determining sneak paths.

Before we can define the notion of sneak paths, we need some
definitions. Consider the example in Fig. 1. The pulldown network
can be represented by a graph [6] shown in Fig. 2. The graph in Fig.
2 has one source node and one sink node. Every edge is labeled by an
input variable or its complement. We will refer to such graphs as / —
graphs. It is not difficult to see that I-graphs are a representation of
Boolean functions. The l-graph in Fig. 2 represents the complement
of the function implemented by the NMOS gate in Fig. 1. If G is an
l-graph, then we use f(G ) to denote the Boolean function represented
by G.

A path in a l-graph is a sequence of edges (SO. ny), (ny, ny), -
{ny. SI), where SO and SI are the source and sink nodes, respec-
tively, and n; # n; if i # j. An I-path in an l-graph is a sequence
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