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INTRODUCTION

The introduction to Growing Artificial Societies offers the following
thought on the future of explanation:

What constitutes an explanation of an observed social phenomenon?
Perhaps one day people will interpret the question, “Can you explain
it?” as asking “Can you grow it?” Artificial society modeling allows
us to “grow” social structures in silico demonstrating that certain sets
of microspecifications are sufficient to generate the macrophenomena of
interest . . . . We can, of course, use statistics to test the match between
the true, observed, structures and the ones we grow. But the ability to
grow them . . . is what is new. Indeed, it holds out the prospect of a new,
generative, kind of social science.1

A concluding section of the same work, entitled “Generative Social
Science,” restates the point even more broadly:

In effect, we are proposing a generative program for the social sciences and
see the artificial society as its principal scientific instrument. (177)

This book presents some of the achievements of that, now quite
vibrant, program, and illustrates the scope of (at least my own) agent-
based computational research since Growing Artificial Societies. Indeed,
one candidate title for the present volume was Growing Artificial
Societies II. But that book had its own flavor. While it made a substantial
number of concrete claims (some of which will be recalled here), it was
more a general “call to arms” than a concerted attack on any particular
problem, more methodological than applied, more a laboratory than any
particular experiment.

By contrast, the chapters that follow are much more focused stud-
ies in particular areas: the history of the Anasazi; the emergence of
economic classes; the timing of retirement; the evolution of norms; the
dynamics of ethnic conflict; the spread of epidemics, and organizational
adaptation among them. While the chapters span the social sciences
from archaeology to economics to epidemiology, there is unity to the
volume. Indeed, each subsequent chapter illustrates core points made in
the overarching methodological statement of chapter 1: “Agent-Based

1Joshua M. Epstein and Robert Axtell, Growing Artificial Societies: Social Science from
the Bottom Up (Cambridge: MIT Press, 1996), 20.
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Computational Models and Generative Social Science.”2 As such, the
book is more than a collection; it makes an argument.

The Stakes: Explanation

To me, the core of that argument concerns the notion of a scientific
explanation. This is really what is “at stake,” if you will, in the advent of
agent-based models: What is to be the accepted standard of explanation
in the social sciences? In this book, I define and argue for a generative
standard and highlight a tool—the agent-based computational model,
or artificial society—that facilitates the construction of scientific models
satisfying that standard. The notion of a generative explanation, which
was not defined at any length in Growing Artificial Societies, is discussed
at length in the opening chapter below, but is encapsulated nicely in the
motto: “If you didn’t grow it, you didn’t explain it.”3 Or, under the
obvious interpretation of the symbols:

∀x(¬Gx ⊃ ¬Ex) (1)

Dynamic Attainment versus Static Existence of Equilibrium

This represents a sharp departure from prevailing practice. While
there are notable dynamic exceptions, game theory and mathematical
economics (the twin pillars of contemporary social science) are over-
whelmingly concerned with equilibria, Nash equilibrium being the most
important example. Indeed, in these quarters, “explaining an observed
social pattern” is basically understood to mean “demonstrating that it
is the Nash equilibrium (or a distinguished Nash equilibrium) of some
game.” However, these are mere demonstrations of existence. Per se,
they do not demonstrate that the configurations of interest—the patterns
allegedly explained—are attainable at all, much less attainable on time
scales of interest to humans.4 Moreover, standard equilibrium models
impose very stringent demands on the individual’s information and

2Joshua M. Epstein, “Agent-Based Computational Models and Generative Social
Science,” Complexity 4, no. 5 (1999): 41–60.

3Epstein, “Agent-Based Computational Models,” 43. For an eloquent statement and
powerful defense of this same generative explanatory standard in the field of linguistics,
see Samuel David Epstein and T. Daniel Seely, eds., Derivation and Explanation in the
Minimalist Program (Oxford: Blackwell, 2002), 1–18 (introduction) and 65–67.

4Debreu is like Proust: more noted than read. Debreu himself was actually very attentive
to the problem of attainability, but did not resolve it in his seminal work, Gerard Debreu,
Theory of Value (New York: Wiley, 1959). Later, Simon and Saari would show that
he was right not to try—equilibrium was not attainable given inescapable limits on
information and computing power. See Donald G. Saari and Carl P. Simon, “Effective Price
Mechanisms,” Econometrica 46(5) (1978): 1097–1125.
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computing (optimizing) power. They often ignore space, assume global
(not local) interactions, and involve little if any heterogeneity.

To the generativist, this is unsatisfactory; to explain a pattern, it does
not suffice to demonstrate that—under this ensemble of strictures—if
society is placed in that pattern, no (rational) individual would unilater-
ally depart (which is the Nash equilibrium condition). Rather, one must
show how a population of boundedly rational (i.e., cognitively plausible)
and heterogeneous agents, interacting locally in some space, could
actually arrive at the pattern on time scales of interest—be it a wealth
distribution, spatial settlement pattern, or pattern of violence. Hence, to
explain macroscopic social patterns, we try to “grow” them in multi-
agent models.

Nonequilibrium Systems

The preceding critique applies even when the pattern to be explained is
an equilibrium. But what if it isn’t? What if the social pattern of interest
is itself a nonequilibrium dynamic? What if equilibrium exists, but is not
attainable on acceptable time scales, or is unattainable outright? I hope
the book demonstrates that the agent-based generative approach can
be explanatory even in such cases—where “the equilibrium approach,”
if I may call it that, is either infeasible or is devoid of explanatory
significance.

The Computer Is Not the Point

It is certainly true that recent advances in computing permit this
agent-based generative social science programme to be pursued with
unprecedented scope and vigor. The computer is a powerful laboratory
in which to conduct experiments concerning the generative sufficiency of
agent specifications. That is its contribution. But the essential move is
conceptual, not technological. Using a computer to calculate equilibrium
does not challenge equilibrium as an explanatory standard. Likewise,
building an agent-based computational model in which all agents behave
exactly as in neoclassical microeconomic theory does not constitute a
departure from that field. The computer is not the point. The point
is whether one’s explanatory standards are generative or not. Indeed,
the genre’s pioneering models (e.g., Schelling’s segregation model) were
developed without computers at all. There are other misconceptions
worth early rebuttal.

Agent Models Are Expressible as Equations

For one, the oft-claimed distinction between computational models
and equation-based models is, in principle, illusory. Every agent-based



July 13, 2006 Time: 01:40pm prelims.tex

xiv INTRODUCTION

computational model is, after all, a computer program, typically written
in an object-oriented programming language, such as C++ or Java.
Any such model is clearly Turing computable—computable by a Turing
machine. But, it is a central result in logic and computability that
for every Turing Machine, there exists a unique corresponding and
equivalent recursive (partial) function. So, in principle, one could cast
any agent-based computational model as an explicit set of mathematical
formulas (recursive functions). In practice, these mathematical formulas
would be gargantuan in size and imposingly complex, but in principle,
they exist. One could have called the approach “recursive social science,”
or “effectively computable social science,” “constructive social science,”
or any number of other equivalent things. The use of “generative” was
inspired by Chomsky’s usage. In any event, the issue is not whether equiv-
alent equations exist, but which representation (equations or programs)
is most illuminating. To all but the most adept practitioners, and perhaps
to them as well, the recursive function representation would be utterly
unrecognizable as a model of social interaction, while the equivalent
agent model is immediately intelligible as such.

Agent Models Deduce

Another misconception is that the equation-based (or “axiom-theorem-
proof”) approach is deductive, whereas the agent-based computational
approach is not. This is also incorrect. Every realization of an agent-
based model is a strict deduction. Indeed, three demonstrations of this
point are offered in chapter 2, which seeks to clarify a set of basic
foundational issues, among them the following:

1. Generative sufficiency versus explanatory necessity
2. Generative agent-based models versus explicit mathematical models
3. Generative explanation versus deductive explanation
4. Generative explanation versus inductive explanation
5. Incompleteness and uncomputability in mathematical social science
6. Generality of agent models
7. Beauty of agent models

The last of these topics should not be underestimated. G. H. Hardy
wrote that, in mathematics, “Beauty is the first test: there is no permanent
place in the world for ugly mathematics.”5 And at first blush, agent-based

5G. H. Hardy, A Mathematician’s Apology (1940), Canto version (Cambridge: Cam-
bridge University Press, 1992), 85.
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computational models may appear to lack the kind of parsimonious ele-
gance toward which theoretical minds are drawn, and toward which the
best mathematical social science aspires. However, I argue in chapter 2
and its prelude that agent models can be parsimonious, elegant, minimal,
and beautiful in the mathematician’s sense, a sense (by the way) that
has nothing to do with the colorful visualizations associated with the
approach.

The Plan of the Book

The opening chapter, “Agent-Based Computational Models and Gen-
erative Social Science,” sets the stage for all the chapters that follow.
Indeed, they function as supporting evidence for the argument advanced
in that overarching Generative statement. Chapter 1 argues in detail
that the agent-based computational model—the artificial society—is a
new scientific instrument, and that it permits a distinctive approach
to social science, for which the term generative is appropriate. While
the chapter is focused on foundational issues, each of the subsequent
chapters is discussed there in some connection, or (if published more
recently) reinforces core points made there.6 For example, the Generative
chapter argues that the artificial society permits data-driven empirical
research. The Artificial Anasazi research (chapters 4–6) and the Small-
pox epidemic model (chapter 12) are examples. The more theoretical
Classes model (chapter 8) is discussed in connection with nonequilibrium
social dynamics. Some chapters are more exploratory than explanatory,
“Growing Adaptive Organizations” (chapter 13) being a case in point.
Chapter 2, “Remarks on the Foundations of Agent-Based Generative
Social Science,” amplifies on, and extends, a number of epistemological
points made in the overarching first chapter. It also discusses the sense in
which agent models can be beautiful.

Chapters 2 and 13 have not been previously published. The others
appeared in far-flung books and journals where their relations to one
another are obscure. Here interconnections are emphasized. From very
diverse quarters, these studies are assembled here under one roof, and in
support of one particular argument.

6Some of the previously published chapters contain references to works that were
forthcoming when the chapters were first published. Many of these have been published
since the original chapter’s publication. For the reader’s convenience, these references have
been updated. This explains the occasional appearance of references more recent than the
original chapter’s publication date.
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The Preludes

Preceding each chapter, I offer a brief discourse, or prelude, highlighting
those points in the Generative essay, chapter 1, the model is illustrating,
and identifying what phenomena it is generating. (Where pertinent or
interesting, I also recall how the project got started.) The intended result
is a unified statement in which theory (the Generative chapter) and
applications (the subsequent chapters) enhance and amplify one another.

Rather than give a précis of each chapter, it may be more inter-
esting to now review some ways in which the models illustrate the
distinguishing features of agent-based models, as enumerated in the
Generative statement. In addition to autonomous agents (which all
the models display), the typical artificial society model involves hetero-
geneous agents, bounded rationality, explicit space, local interactions,
and (often) nonequilibrium dynamics. The way in which the various
models handle these things is itself quite heterogeneous!

Heterogeneity

To begin, the agents differ differently in the different models. In the
Anasazi chapters they differ by age and fertility. In the Retirement model,
they have different decision rules. Some decide by tossing coins; some
(very few!) decide like homo economicus; and some play a coordination
game in their social networks, where the social networks are themselves
heterogeneous and dynamic. In the Classes model, agents differ by what
they store in their memory (their recent interactions). In the model of
Thoughtless conformity, they differ by dynamic search radius. In the
Demographic Prisoner’s Dilemma, they exhibit diversity in ages and
levels of accumulated wealth. Civil Violence agents are heterogeneous
by economic hardship, as well as by local information and political
grievance, both of which are dynamic. Agents differ by disease stage
in the Smallpox model. In the adaptive organizations of chapter 13,
managers control different sets of resources, and face different and
dynamic local environments.

Bounded Rationality

While all the models assume bounded rationality, the way in which it is
bounded varies widely. In the Classes model, agents play best reply to
recent sample evidence, where the sample is of a fixed size on the order
of 10 percent of the population—bounded. In the model of Thoughtless
conformity, the sample size itself is dynamic and can shrink to zero. In the
extreme case of the Demographic Prisoner’s Dilemma, agents are pegged
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at zero: they are hardwired to play a given strategy. One’s rationality can’t
be more bounded than that! By contrast, in the Retirement model, a few
agents decide when to retire by tossing a coin each year and retiring if it’s
heads. The preponderance plays a coordination game (retire, work) in
their dynamic social network. Neither strategy is economically rational.
In the Civil Violence model, agents use only local information and play
“rebel” (or not) based on a type of expected utility calculation, but (as in
the voting paradox) do not consider how their individual choice affects
the stability of the ruling regime (the probability of successful revolution).

Space and Local Interactions

The interaction spaces used range from the very concrete to the abstract.
In the Anasazi models, the space is real—a reconstructed landscape with
estimated values of environmental variables (hydrology, maize potential,
topsoil aggradation, etc). In the Retirement model, the space in which
agents interact is a dynamic social network. In the Civil Violence and
Prisoner’s Dilemma models, it is a 2-dimensional lattice (a topological
torus). In the Thoughtless conformity model it is a 1-dimensional ring.
In the Smallpox epidemic model, it is a realistic two-town county
with homes, workplaces, schools, and a hospital (from the pathogen’s
viewpoint, it is a landscape of hosts moving around this space!). In
the model of Adaptive Organizations, the space is a variable geometry
graph. In all cases, agents interact locally with others in the space of
interest—within a finite vision for Civil Violence, Prisoner’s Dilemma,
and Thoughtless conformity; within social networks for Retirement and
Epidemics; on a subgraph for Organizations.

Nonequilibrium Dynamics

Only one chapter focuses on equilibrium, and it does so in large
part to highlight its weakness as an explanatory tool. Chapter 3,
entitled “Non-Explanatory Equilibria,” presents a simple game most
of whose equilibria are unattainable outright. Moreover, for most of
the remaining equilibria, convergence times scale exponentially in the
number of agents, making them unattainable in any practical sense.
The other models included exhibit various types of nonequilibrium
dynamics. The Civil Violence and Thoughtless conformity models show
punctuated equilibrium, or intermittence, depending on one’s definition.
The Prisoner’s Dilemma and Organization models show cycling. Even
where—as in the Classes model—asymptotic equilibrium can be proven,
waiting times are astronomical, and the long-lived transients are studied
computationally. The Smallpox model is concerned with spatiotemporal
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epidemic dynamics and “quenching” phenomena, not equilibrium. Since
they are calibrated to historical data, the Smallpox and Anasazi models
are both examples of empirical nonequilibrium social science.

The book, then, offers a kind of gallery of ways in which agent models
can display the distinctive characteristics of the general approach, as
identified in the opening chapter.

The CD

The book also includes a CD, which can be used in a variety of modes.7

play movies

The CD Movies folder contains roughly forty movies (primarily Quick-
Time) published here for the first time. Each movie is an animated
realization of an agent-based model presented in one of the chapters. One
can simply play the movies corresponding to model runs discussed in the
various chapters. The movies are read-only and cannot be modified.

run and modify models parametrically

However, all the models in the book are implemented in the Ascape
agent-based modeling environment.8 One can run selected models as
Ascape applets9 from the CD, adjusting parameters at will, exploring
how changes in assumptions affect model outcomes. One does not need
to know any computer programming (coding) to run the models in this
mode. Simply open the Ascape Applets folder and double-click on the
Ascape.exe file. A dialog box then appears from which one can select
models from the pull-down menu. In courses on agent-based modeling,
one could read a book chapter and play the movies of runs discussed
in the text. Then, as projects, students could load the models in Ascape
and alter the assumptions, explore sensitivities, or analyze variations.10

For example, the Demographic Prisoners’ Dilemma (PD) Ascape code is
completely general. To explore the Demographic Coordination Game,11

simply load the PD Model, change the payoffs, and re-run. Beyond their
pedagogical applications, the same models can obviously be used for
research. The variations possible in this mode, while extensive, are largely

7As discussed on the CD’s Read Me file, administrative privileges may be required in
some cases.

8Ascape was developed at The Brookings Institution by Miles T. Parker.
9All applets on this CD download with Ascape, and were implemented at The Brookings

Institution by Miles T. Parker.
10Full instructions for doing this are given on the CD’s Read Me file.
11See the Appendix to Chapter 9.
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parametric. To change a particular model’s agent rules syntactically,
or to make up completely new ones, access to the model’s source
code is required. Subject to the copyright restrictions noted below (and
elaborated on the CD’s Read Me file), source code for all models is
available from the author on request.

the read me file

Instructions for using the CD are provided in full detail in the CD’s
Read Me file. Beyond that, a detailed description of Ascape and its
runtime functionality is also available at: http://jasss.soc.surrey.ac.uk/
4/1/5.html.12 In addition to most of the models in this book, a “positive
externality” is that certain models not in this book also download
with Ascape, and are hence included as applets on this CD. These
are: The Epstein-Axtell Sugarscape model and Conway’s Game of Life.
Sugarscape (and Schelling Segregation model) movies are available on the
CD accompanying Epstein and Axtell (1996).

copyright restrictions

Note that the CD’s Read Me file contains important copyright restric-
tions. Ascape is copyright 1998–2000, The Brookings Institution. This
software may be used without fee for noncommercial purposes. For more
information, please refer to the full copyright statement on the CD.

Colleagues

The argument for, and the terminology of, generative explanation elab-
orated in chapter 1 are mine; each of the subsequent chapters functions
here as supporting evidence—as “exhibits A, B, and C”—for that overall
generative “case.” Neither that case nor the generative terminology is
necessarily shared by my coauthors on various chapters. These schol-
ars, of course, are credited fully where those chapters were originally
published, and again here. Here, however, the chapters function as
supporting evidence, as data, for the generative argument I alone am
making. Hence, Princeton University Press considers the book to be an
authored (rather than an edited) work and I appear as the book’s author.
But I wish to emphasize my profound debt to all chapter coauthors,
and to underscore that they deserve full credit on the individual models
presented. At the same time they are absolved of any responsibility for

12Miles T. Parker, “What is Ascape and Why Should You Care?” Journal of Artificial
Societies and Social Simulation 4(1)(2001).
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the overarching argument I am making here, and for the use to which
those models are being put in this volume.

A second point is also worth making. My assignment was to con-
solidate work in which I have been directly involved since Growing
Artificial Societies. It was not to collect what I consider to be the best
pieces of agent-based social science and edit the collection. Had that
been my charge, the result would certainly include seminal solo agent-
based articles by my coauthors in the present volume and doubtless by
others with whom I have never directly worked. Whether that “greatest
agent hits” book would rightfully include all—indeed any of—the present
work’s chapters, I leave it for the reader to judge.
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Prelude to Chapter 1

THE GENERATIVIST MANIFESTO

Every so often, there is a special conference of the Santa Fe Institute
External Faculty. Initially called the Integrative Themes Workshops, their
laudable purpose has been to explore crosscutting, unifying aspects of all
the diverse efforts underway in the far-flung Institute, from physics, to
computer science, to evolutionary ecology, to archaeology, to economics,
to immunology.

Over the years, these external faculty conferences have continued. Just
as one would expect of a high-powered transdisciplinary community like
SFI, the areas of disagreement probably dominate those of consensus.
And so, with a healthy self-deprecating sense of its own heterogeneity
(if not incoherence), the Institute took to calling these external faculty
conferences the Disintegrative Themes Workshops.

It was for the 1998 workshop that I wrote the first chapter. I had a
number of narrower topics in mind, but I became convinced that the time
was ripe for a manifesto on agent-based social science. Truth be known,
not everyone in the SFI community shared either my interpretation of,
or my enthusiasm for, the approach. And I wrote the chapter as much to
sway Institute colleagues—or at least “clear the air”—as for the external
audience.

The chapter is the overarching statement for this entire book. Its
function, in relation to the other chapters, is well described in the
volume’s Introduction above, and its own abstract offers a concise précis
of its contents. I will not repeat those here. However, one topic I
especially wanted to “clear the air” about in Santa Fe was “emergence,”
a central term in the complexity community, and one I thought was
being used uncritically. Unexpectedly, the “emergence” section of the
chapter may prove to be among its more controversial, which is fine
with me, so long as the controversy is not founded on misinterpretation.
To ensure that it isn’t, a few new words on that old topic may be
permissible.

Emergence

W. V. Quine insightfully observed: “The less a science is advanced,
the more its terminology rests on an uncritical assumption of mutual
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understanding.”1 It seems to me that in our young field of complexity, the
terms “emergence” and “emergent phenomena” are excellent examples
of Quine’s point. My own gedankenexperiment, having attended a great
many complexity conferences, is this: Everyone at the conference is
handed a piece of paper with the following five statements on it, and
they are asked the check those with which they agree:

1. Emergent phenomena are undeducible.
2. Emergent phenomena are unexplainable.
3. Emergent phenomena are unpredictable.
4. Emergent phenomena are unreducible.
5. Emergent phenomena are none of the above.

Leaving aside the obvious questions of what, exactly, any of these
statements asserts and how they may be related (e.g., does 1 imply
4?), my strong suspicion is that the set of responses would be far
from uniform. I do not insist that the term “emergent phenomenon”
cannot be defined clearly. And when so defined (perhaps as in Growing
Artificial Societies),2 I certainly do not object to its use; but neither do
I see that it denotes anything particularly new. The general questions
of interest to all of us—how ensembles achieve functionalities (or
properties) their constituents lack3—are certainly important, deep, and
fascinating; and the new techniques will shed fundamentally new light on
them, but the questions themselves are not new. Neither, unfortunately,
is the terminology of “emergence.” However, its intellectual pedigree
is dreadful, beginning in the 1920s with antiscientific deists like Lloyd
Morgan (who would have checked 1 at the very least), whose works were
appropriately savaged by the philosophical likes of Bertrand Russell4 and
Ernest Nagel.5

1W. V. Quine, “Truth by Convention” (1936), in Philosophy of Mathematics: Selected
Readings, ed. Paul Benacerraf and Hilary Putnam, 2nd ed. (Cambridge: Cambridge
University Press, 1983).

2Joshua M. Epstein and Robert L. Axtell, Growing Artificial Societies: Social Science
from the Ground Up (Washington, DC: Brookings Institution Press; Cambridge: MIT Press,
1996).

3I am prepared to grant that this is what is meant when people use the vague terminology
of a “whole exceeding the sum of its parts.” I wonder if the whole also exceeds the product
of its parts.

4Russell’s critique is characteristically biting and colorful. Referring to Morgan’s 1923
treatise, Emergent Evolution, Russell, The Scientific Outlook (New York: W. W. Norton),
(1931) writes:

Lloyd Morgan believes that there is a Divine Purpose underlying the course of
evolution, more particularly of what he calls “emergent evolution.” The definition
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While granting that contemporary complexity researchers are not all
using the term “emergence” exactly as the classical emergentists did, I
also felt that a discussion of the latter’s many confusions should be of
more than antiquarian interest. As Santayana admonished, “Those who
cannot remember the past are condemned to repeat it.”

All of that said, the overarching Generative chapter that follows is
focused on agent-based modeling and its many potential applications
in the social sciences, a number of which are offered in the subsequent
chapters.

of emergent evolution, if I understand it rightly, is as follows:

It sometimes happens that a collection of objects arranged in a suitable pattern will
have a new property which does not belong to the objects singly, and which cannot,
as far as we can see, be deduced from their several properties together with the way
in which they are arranged.

He [Morgan] considers that there are examples of the same kind of thing even in the
inorganic realm. The atom, the molecule, and the crystal will all have properties which,
if I understand Lloyd Morgan right, he regards as not deductible from the properties
of their constituents. The same holds in a higher degree of living organisms, and most
of all with those higher organisms which possess what are called minds. . . “Emergent
evolution,” he [Morgan] says, “is from first to last a revelation and manifestation of
that which I speak of as Divine Purpose.” (129–30; emphasis added)

It seems to me that the central italicized passage is identical to much contemporary usage,
to which position Russell responds:

It would be easier to deal with this view if any reasons were advanced in its favor, but so
far as I have been able to discover from professor Lloyd Morgan’s pages, he considers
that the doctrine is its own recommendation and does not need to be demonstrated by
appeals to the mere understanding.

5See the discussion in Ernest Nagel, The Structure of Science (New York: Harcourt,
Brace, and World), 1961.
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Chapter 1

AGENT-BASED COMPUTATIONAL MODELS AND

GENERATIVE SOCIAL SCIENCE

JOSHUA M. EPSTEIN*

This article argues that the agent-based computational model permits a distinctive

approach to social science for which the term “generative” is suitable. In defend-

ing this terminology, features distinguishing the approach from both “inductive”

and “deductive” science are given. Then, the following specific contributions to

social science are discussed: The agent-based computational model is a new tool

for empirical research. It offers a natural environment for the study of connection-

ist phenomena in social science. Agent-based modeling provides a powerful way

to address certain enduring—and especially interdisciplinary—questions. It allows

one to subject certain core theories—such as neoclassical microeconomics—to

important types of stress (e.g., the effect of evolving preferences). It permits one to

study how rules of individual behavior give rise—or “map up”—to macroscopic

regularities and organizations. In turn, one can employ laboratory behavioral

research findings to select among competing agent-based (“bottom up”) models.

The agent-based approach may well have the important effect of decoupling

individual rationality from macroscopic equilibrium and of separating decision

science from social science more generally. Agent-based modeling offers powerful

new forms of hybrid theoretical-computational work; these are particularly

relevant to the study of non-equilibrium systems. The agent-based approach

invites the interpretation of society as a distributed computational device, and

in turn the interpretation of social dynamics as a type of computation. This

interpretation raises important foundational issues in social science—some related

to intractability, and some to undecidability proper. Finally, since “emergence”

*The author is a senior fellow in Economic Studies at The Brookings Institution and a
member of the External Faculty of the Santa Fe Institute.

For insightful comments and valuable discussions, the author thanks George Akerlof,
Robert Axtell, Bruce Blair, Samuel Bowles, Art DeVany, Malcolm DeBevoise, Steven
Durlauf, Samuel David Epstein, Herbert Gintis, Alvin Goldman, Scott Page, Miles Parker,
Brian Skyrms, Elliott Sober, Leigh Tesfatsion, Eric Verhoogen, and Peyton Young. For
production assistance he thanks David Hines.

This essay was published previously in Complexity 4(5): 41–60.
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figures prominently in this literature, I take up the connection between agent-

based modeling and classical emergentism, criticizing the latter and arguing that

the two are incompatible.

Generative Social Science

The agent-based computational model—or artificial society—is a new
scientific instrument.1 It can powerfully advance a distinctive approach
to social science, one for which the term “generative” seems appropriate.
I will discuss this term more fully below, but in a strong form, the central
idea is this: To the generativist, explaining the emergence2 of macroscopic
societal regularities, such as norms or price equilibria, requires that one
answer the following question:

The Generativist’s Question

*How could the decentralized local interactions of heterogeneous
autonomous agents generate the given regularity?

The agent-based computational model is well-suited to the study of this
question since the following features are characteristic:3

heterogeneity

Representative agent methods—common in macroeconomics—are not
used in agent-based models (see Kirman 1992). Nor are agents

1A basic exposure to agent-based computational modeling—or artificial societies—is
assumed. For an introduction to agent-based modeling and a discussion of its intellectual
lineage, see Epstein and Axtell 1996. I use the term “computational” to distinguish artificial
societies from various equation-based models in mathematical economics, n-person game
theory, and mathematical ecology that (while not computational) can legitimately be called
agent-based. These equation-based models typically lack one or more of the characteristic
features of computational agent models noted below. Equation based models are often
called “analytical” (as distinct from computational), which occasions no confusion so
long as one understands that “analytical” does not mean analytically tractable. Indeed,
computer simulation is often needed to approximate the behavior of particular solutions.
The relationship of agent-based models and equations is discussed further below.

2The term “emergence” and its history are discussed at length below. Here, I use the term
“emergent” as defined in Epstein and Axtell (1996, 35), to mean simply “arising from the
local interaction of agents.”

3The features noted here are not meant as a rigid definition; not all agent-based models
exhibit all these features. Hence, I note that the exposition is in a strong form. The point is
that these characteristics are easily arranged in agent-based models.
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aggregated into a few homogeneous pools. Rather, agent populations
are heterogeneous; individuals may differ in myriad ways—genetically,
culturally, by social network, by preferences—all of which may change
or adapt endogenously over time.

autonomy

There is no central, or “top-down,” control over individual behavior
in agent-based models. Of course, there will generally be feedback
from macrostructures to microstructures, as where newborn agents
are conditioned by social norms or institutions that have taken shape
endogenously through earlier agent interactions. In this sense, micro
and macro will typically co-evolve. But as a matter of model speci-
fication, no central controllers or other higher authorities are posited
ab initio.

explicit space

Events typically transpire on an explicit space, which may be a landscape
of renewable resources, as in Epstein and Axtell (1996), an n-dimensional
lattice, or a dynamic social network. The main desideratum is that the
notion of “local” be well posed.

local interactions

Typically, agents interact with neighbors in this space (and perhaps with
environmental sites in their vicinity). Uniform mixing is generically not
the rule.4 It is worth noting that although this next feature is logically
distinct from generativity, many computational agent-based models also
assume:

bounded rationality

There are two components of this: bounded information and bounded
computing power. Agents do not have global information, and they
do not have infinite computational power. Typically, they make use of
simple rules based on local information (see Simon 1982 and Rubinstein
1998).

The agent-based model, then, is especially powerful in representing
spatially distributed systems of heterogeneous autonomous actors with
bounded information and computing capacity who interact locally.

4For analytical models of local interactions, see Blume and Durlauf 2001.
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The Generativist’s Experiment

In turn, given some macroscopic explanandum—a regularity to be
explained—the canonical agent-based experiment is as follows:

**Situate an initial population of autonomous heterogeneous agents
in a relevant spatial environment; allow them to interact according
to simple local rules, and thereby generate—or “grow”—the macro-
scopic regularity from the bottom up.5

Concisely, ** is the way generative social scientists answer *. In
fact, this type of experiment is not new6 and, in principle, it does not
necessarily involve computers.7 However, recent advances in computing,
and the advent of large-scale agent-based computational modeling,
permit a generative research program to be pursued with unprecedented
scope and vigor.

Examples

A range of important social phenomena have been generated in agent-
based computational models, including: right-skewed wealth distribu-
tions (Epstein and Axtell 1996), right-skewed firm size and growth rate
distributions (Axtell 1999), price distributions (Bak et al. 1993), spatial
settlement patterns (Dean et al. 1999), economic classes (Axtell et al.
2001), price equilibria in decentralized markets (Albin and Foley 1990;
Epstein and Axtell 1996), trade networks (Tesfatsion 1995; Epstein
and Axtell 1996), spatial unemployment patterns (Topa 1997), excess
volatility in returns to capital (Bullard and Duffy 1998), military tactics
(Ilachinski 1997), organizational behaviors (Prietula, Carley, and Gasser

5We will refer to an initial agent-environment specification as a microspecification.
While, subject to outright computational constraints, agent-based modeling permits
extreme methodological individualism, the “agents” in agent-based computational mod-
els are not always individual humans. Thus, the term “microspecification” implies
substantial—but not necessarily complete—disaggregation. Agent-based models are nat-
urally implemented in object-oriented programming languages in which agents and
environmental sites are objects with fixed and variable internal states (called instance
variables), such as location or wealth, and behavioral rules (called methods) governing,
for example, movement, trade, or reproduction. For more on software engineering aspects
of agent-based modeling, see Epstein and Axtell 1996.

6Though he does not use this terminology, Schelling’s (1971) segregation model is a
pioneering example.

7In fact, Schelling did his early experiments without a computer. More to the point, one
might argue that, for example, Uzawa’s (1962) analytical model of non-equilibrium trade
in a population of agents with heterogeneous endowments is generative.
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1998), epidemics (Epstein and Axtell 1996), traffic congestion patterns
(Nagel and Rasmussen 1994), cultural patterns (Axelrod 1997c; Epstein
and Axtell 1996), alliances (Axelrod and Bennett 1993; Cederman
1997), stock market price time series (Arthur et al. 1997), voting
behaviors (Kollman, Miller, and Page 1992), cooperation in spatial games
(Lindgren and Nordahl 1994; Epstein 1998; Huberman and Glance
1993; Nowak and May 1992; Miller 1996), and demographic histories
(Dean et al. 1999). These examples manifest a wide range of (often
implicit) objectives and levels of quantitative testing.

Before discussing specific models, it will be useful to identify certain
changes in perspective that this approach may impose on the social
sciences. Perhaps the most fundamental of these changes involves expla-
nation itself.

Explanation and Generative Sufficiency

Agent-based models provide computational demonstrations that a given
microspecification is in fact sufficient to generate a macrostructure of
interest. Agent-based modelers may use statistics to gauge the generative
sufficiency of a given microspecification—to test the agreement between
real-world and generated macro structures. (On levels of agreement,
see Axtell and Epstein 1994.) A good fit demonstrates that the target
macrostructure—the explanandum—be it a wealth distribution, segre-
gation pattern, price equilibrium, norm, or some other macrostructure,
is effectively attainable under repeated application of agent-interaction
rules: It is effectively computable by agent society. (The view of society
as a distributed computational device is developed more fully below.)
Indeed, this demonstration is taken as a necessary condition for expla-
nation itself. To the generativist—concerned with formation dynamics—
it does not suffice to establish that, if deposited in some macroconfig-
uration, the system will stay there. Rather, the generativist wants an
account of the configuration’s attainment by a decentralized system of
heterogeneous autonomous agents. Thus, the motto of generative social
science, if you will, is: If you didn’t grow it, you didn’t explain its
emergence. Or, in the notation of first-order logic:

(∀x)(¬Gx ⊃ ¬Ex) (1)

It must be emphasized that the motto applies only to that domain
of problems involving the formation or emergence of macroscopic
regularities. Proving that some configuration is a Nash equilibrium, for



July 6, 2006 Time: 01:51pm chapter1.tex

AGENT-BASED COMPUTATIONAL MODELS 9

example, arguably does explain its persistence, but does not account for
its attainment.8

Regarding the converse of expression (1), if a microspecification, m,
generates a macrostructure of interest, then m is a candidate explana-
tion. But it may be a relatively weak candidate; merely generating a
macrostructure does not necessarily explain its formation particularly
well. Perhaps Barnsley’s fern (Barnsley 1988) is a good mathematical
example. The limit object indeed looks very much like a black spleen-
wort fern. But—under iteration of a certain affine function system—it
assembles itself in a completely unbiological way, with the tip first, then
a few outer branches, eventually a chunk of root, back to the tip, and so
forth—not connectedly from the bottom up (now speaking literally).

It may happen that there are distinct microspecifications having
equivalent generative power (their generated macrostructures fit the
macro-data equally well). Then, as in any other science, one must
do more work, figuring out which of the microspecifications is most
tenable empirically. In the context of social science, this may dictate
that competing microspecifications with equal generative power be
adjudicated experimentally—perhaps in the psychology lab.

In summary, if the microspecification m does not generate the
macrostructure x, then m is not a candidate explanation. If m does
generate x, it is a candidate.9 If there is more than one candidate, further
work is required at the micro-level to determine which m is the most
tenable explanation empirically.10

8Likewise, it would be wrong to claim that Arrow-Debreu general equilibrium theory is
devoid of explanatory power because it is not generative. It addresses different questions
than those of primary concern here.

9For expository purposes, I write as though a macrostructure is either generated or not.
In practice, it will generally be a question of degree.

10Locating this (admittedly informal) usage of “explanation” in the vast and contentious
literature on that topic is not simple and requires a separate essay. For a good collection
on scientific explanation, see Pitt 1988. See also Salmon 1984, Cartwright 1983, and
Hausman 1992. Very briefly, because no general scientific (covering) laws are involved,
generative sufficiency would clearly fail one of Hempel and Oppenheim’s (1948) classic
deductive-nomological requirements. Perhaps surprisingly, however, it meets the deduction
requirement itself, as shown by the Theorem below. That being the case, the approach
would appear to fall within the hypothetico-deductive framework described in Hausman
(1992, 304). A microspecification’s failure to generate a macrostructure falsifies the
hypothesis of its sufficiency and disqualifies it as an explanatory candidate, consistent with
Popper (1959). Of course, sorting out exactly what component of the microspecification—
core agent rules or auxiliary conditions—is producing the generative failure is the Duhem
problem. Our weak requirements for explanatory candidacy would seem to have much
in common with the constructive empiricism of van Fraassen (1980). On this antirealist
position, truth (assuming it has been acceptably defined) is eschewed as a goal. Rather,
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For most of the social sciences, it must be said, the problem of multiple
competing generative accounts would be an embarrassment of riches.
The immediate agenda is to produce generative accounts per se. The
principal instrument in this research program is the agent-based com-
putational model. And as the earlier examples suggest, the effort is
underway.

This agenda imposes a constructivist (intuitionistic) philosophy on
social science.11 In the air is a foundational debate on the nature of
explanation reminiscent of the controversy on foundations of mathe-
matics in the 1920s–30s. Central to that debate was the intuitionists’
rejection of nonconstructive existence proofs (see below): their insistence
that meaningful “existence in mathematics coincides with constructibil-
ity” (Fraenkel and Bar-Hillel 1958, 207). While the specifics are of course
different here—and I am not discussing intuitionism in mathematics
proper—this is the impulse, the spirit, of the agent-based modelers: If the
distributed interactions of heterogeneous agents can’t generate it, then
we haven’t explained its emergence.

Generative versus Inductive and Deductive

From an epistemological standpoint, generative social science, while
empirical (see below), is not inductive, at least as that term is typically
used in the social sciences (e.g., as where one assembles macroeconomic
data and estimates aggregate relations econometrically). (For a nice
introduction to general problems of induction, beginning with Hume, see
Chalmers 1982. On inductive logic, see Skyrms 1986. For Bayesians and
their critics, see, respectively, Howson and Urbach 1993 and Glymour
1980.)

The relation of generative social science to deduction is more subtle.
The connection is of particular interest because there is an intellectual
tradition in which we account an observation as explained precisely when
we can deduce the proposition expressing that observation from other,
more general, propositions. For example, we explain Galileo’s leaning

“science aims to give us theories which are empirically adequate; and acceptance of a theory
involves as belief only that it is empirically adequate” (von Fraassen 1980, 12). However,
faced with competing microspecifications that are equally adequate empirically (i.e., do
equally well in generating a macro target), one would choose by the criterion of empirical
plausibility at the micro level, as determined experimentally. On realism in social science,
see Hausman 1998.

11Constructivism in this mathematical sense should not be confused with the doctrine
of social constructionism sometimes identified with so-called “post-modernism” in other
fields.
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Tower of Pisa observation (that heavy and light objects dropped from
the same height hit the ground simultaneously) by strictly deducing,
from Newton’s Second Law and the Law of Universal Gravitation, the
following proposition: “The acceleration of a freely falling body near
the surface of the earth is independent of its mass.” In the present
connection, we seek to explain macroscopic social phenomena. And we
are requiring that they be generated in an agent-based computational
model. Surprisingly, in that event, we can legitimately claim that they are
strictly deducible. In particular, if one accepts the Church-Turing thesis,
then every computation—including every agent-based computation—can
be executed by a suitable register machine (Hodel 1995; Jeffrey 1991).
It is then a theorem of logic and computability that every program can
be simulated by a first-order language. In particular, with N denoting the
natural numbers:

Theorem. Let P be a program. There is a first-order language L, and
for each a ∈ N a sentence C(a) of L, such that for all a ∈ N, the
P-computation with input a halts ⇔ the sentence C(a) is logically valid.

This theorem allows one to use the recursive unsolvability of the
halting problem to establish the recursive unsolvability of the validity
problem in first-order logic (see Kleene 1967). Explicit constructions
of the correspondence between register machine programs and the
associated logical arguments are laid out in detail by Jeffrey (1991)
and Hodel (1995). The point here is that for every computation,
there is a corresponding logical deduction. (And this holds even when
the computation involves “stochastic” features, since, on a computer,
these are produced by deterministic pseudo-random number generation
(see Knuth 1969). Even if one conducts a statistical analysis over some
distribution of runs—using different random seeds—each run is itself a
deduction. Indeed, it would be quite legitimate to speak, in that case, of
a distribution of theorems.)12 In any case, from a technical standpoint,
generative implies deductive, a point that will loom large later, when
we argue that agent-based modeling and classical emergentism are
incompatible.

Importantly, however, the converse does not apply: Not all deduc-
tive argument has the constructive character of agent-based modeling.
Nonconstructive existence proofs are obvious examples. These work as
follows: Suppose we wish to prove the existence of an x with some

12In such applications, it may be accurate to speak of an inductive statistical (see Salmon
1984) account over many realizations, each one of which is, technically, a deduction (by
the Theorem above).
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property (e.g., that it is an equilibrium). We take as an axiom the so-
called Law of the Excluded Middle that (i) either x exists or x does
not exist. Next, we (ii) assume that x does not exist, and (iii) derive
a contradiction. From this we conclude that (iv) x must exist. But we
have failed to exhibit x, or indicate any algorithm that would generate it,
patently violating the generative motto (1).13 The same holds for many
nonconstructive proofs in mathematical economics and game theory
(e.g., deductions establishing the existence of equilibria using fixed-
point theorems). See Lewis 1985. In summary, then, generative implies
deductive, but the converse is not true.

Given the differences between agent-based modeling and both induc-
tive and deductive social science, a distinguishing term seems appropri-
ate. The choice of “generative” was inspired by Chomsky’s (1965) early
usage: Syntactic theory seeks minimal rule systems that are sufficient
to generate the structures of interest, grammatical constructions among
them.14 The generated structures of interest here are, of course, social.

Now, at the outset, I claimed that the agent-based computational
model was a scientific instrument. A fair question, then, is whether
agent-based computational modeling offers a powerful new way to do
empirical research. I will argue that it does. Interestingly, one of the early
efforts involves the seemingly remote fields of archaeology and agent-
based computation.

Empirical Agent-Based Research

The Artificial Anasazi project of Dean, Gumerman, Epstein, Axtell,
Swedlund, McCarroll, and Parker aims to grow an actual 500-year
spatio-temporal demographic history—the population time series and
spatial settlement dynamics of the Anasazi—testing against data. The
Artificial Anasazi computational model proper is a hybrid in which the
physical environment is “real” (reconstructed from dendroclimatalogical
and other data) and the agents are artificial. In particular, we are
attempting to model the Kayenta Anasazi of Long House Valley, a small
region in northeastern Arizona, over the period 800 to 1300 AD, at
which point the Anasazi mysteriously vanished from the Valley. The

13An agent-based model can be interpreted as furnishing a kind of constructive existence
proof. See Axelrod 1997.

14See Chomsky 1965, 3. The “syntactic component of a generative grammar,” he writes,
is concerned with “rules that specify the well formed strings of minimal syntactically
functioning units . . . .” I thank Samuel David Epstein for many fruitful discussions of this
parallel.
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enigma of the Anasazi has long been a central question in Southwestern
archaeology. One basic issue is whether environmental (i.e., subsistence)
factors alone can account for their sudden disappearance. Or do other
factors—property rights, clan relationships, conflict, disease—have to be
admitted to generate the true history? In bringing agents to bear on this
controversy, we have the benefits of (a) a very accurate reconstruction of
the physical environment (hydrology, aggradation, maize potential, and
drought severity) on a square hectare basis for each year of the study
period, and (b) an excellent reconstruction of household numbers and
locations.

The logic of the exercise has been, first, to digitize the true history—
we can now watch it unfold on a digitized map of Longhouse Valley.
This data set (what really happened) is the target—the explanandum.
The aim is to develop, in collaboration with anthropologists, micro-
specifications—ethnographically plausible rules of agent behavior—that
will generate the true history. The computational challenge, in other
words, is to place artificial Anasazi where the true ones were in 800
AD and see if—under the postulated rules—the simulated evolution
matches the true one. Is the microspecification empirically adequate,
to use van Fraassen’s (1980) phrase?15 From a contemporary social
science standpoint, the research also bears on the adequacy of simple
“satisficing” rules—rather than elaborate optimizing ones—to account
for the observed behavior.

A comprehensive report on Phase 1 (environmental rules only) of this
research is given in Dean et al. 1999. The full microspecification, includ-
ing hypothesized agent rules for choosing residences and farming plots,
is elaborated there. The central result is that the purely environmental
rules explored thus far account for (retrodict) important features of the
Anasazi’s demography, including the observed coupling between environ-
mental and population fluctuations, as well as important observed spatial
dynamics: agglomerations and zonal occupation series. These rules also
generate a precipitous decline in population around 1300. However,
they do not generate the outright disappearance that occurred. One
interpretation of this finding is that subsistence considerations alone do
not fully explain the Anasazi’s departure, and that institutional or other
cultural factors were likely involved. This work thus suggests the power

15More precisely, for each candidate rule (or agent specification), one runs a large
population of simulated histories—each with its own random seed. The question then
becomes: where, in the population of simulated histories is the true history? Rules that
generate distributions with the true history (i.e., its statistic) at the mean enjoy more
explanatory power than rules generating distributions with the true history at a tail.
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Figure 1.1. Actual and simulated Anasazi compared. (Source: Dean et al. 1999,
204.)

and limits of a purely environmental account, a finding that advances the
archaeological debate.

Simply to convey the flavor of these simulations—which unfold as
animations on the computer—figure 1.1 gives a comparison.16 Each dot
is an Anasazi household. The graphic shows the true situation on the
right and a simulation outcome on the left for the year 1144. In both
cases, agents are located at the border of the central farming area—
associated with a high water table (dark shade)—and the household
numbers are interestingly related.

The population time series (see Dean et al. 1999) comparing actual and
simulated for a typical run is also revealing. The simulated Anasazi curve
is qualitatively encouraging, matching the turning points, including a big
crash in 1300, but quantitatively inaccurate, generally overestimating
population levels, and failing to generate the “extinction” event of
interest.

16The complete animation is included on this book’s CD.
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As noted earlier, one intriguing interpretation of these results is that the
Valley could have supported the Anasazi in fact, so their departure may
have been the result of institutional factors not captured in the purely
environmental account.

The claim is not that the current model has solved—or that the planned
extensions will ultimately solve—the mystery of the Anasazi. Rather,
the point is that agent-based modeling permits a new kind of empirical
research (and, it might be noted, a novel kind of interdisciplinary
collaboration).

This is by no means the only example of data-driven empirical
research with agents. For example, Axtell (1999) gives an agent-based
computational model of firm formation that generates distributions of
firm sizes and growth rates close to those observed in the U.S. economy.
Specifically, citing the work of Stanley et al. (1996, 806), Axtell writes
that “there are three important empirical facts that an accurate theory
of the firm should reproduce: (a) firm sizes must be right-skewed,
approximating a power law; (b) firm growth rates must be Laplace
distributed; (c) the standard deviation in log growth rates as a function
of size must follow a power law with exponent −0.15 ± 0.03.” He
further requires that the model be written at the level of individual human
agents—that it be methodologically individualist. Aside from his own
agent-based computational model, Axtell writes, “. . . theories of the firm
that satisfy all these requirements are unknown to us” (1999, 88).

Similarly, observed empirical size-frequency distributions for traffic
jams are generated in the agent-based model of Nagel and Rasmussen
(1994). Bak, Paczuski, and Shubik (1996) present an agent-based trading
model that succeeds in generating the relevant statistical distribution of
prices.

Axelrod (1993) develops an agent-based model of alliance formation
that generates the alignment of seventeen nations in the Second World
War with high fidelity. Other exercises in which agent-based models are
confronted with data include Kirman and Vriend 1998 and Arthur et al.
1997.

As in the case of the Anasazi work, I am not claiming that any
of these models permanently resolves the empirical question it ad-
dresses. The claim, rather, is that agent-based modeling is a powerful
empirical technique. In some of these cases (e.g., Axtell 1999), the
agents are individual humans, and in others (Dean et al. 1999; Axelrod
1993) they are not. But, in all these cases, the empirical issue is the
same: Does the hypothesized microspecification suffice to generate the
observed phenomenon?—be it a stationary firm size distribution, a
pattern of alliances, or a nonequilibrium price time series. The answer
may be yes and, crucially, it may be no. Indeed, it is precisely the
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latter possibility—empirical falsifiability—that qualifies the agent-based
computational model as a scientific instrument.

In addition to “hard” quantitative empirical targets, agent-based
computational models may aim to generate important social phenomena
qualitatively. Examples of “stylized facts” generated in such models
include: right-skewed wealth distributions (Epstein and Axtell 1996),
cultural differentiation (Epstein and Axtell 1996; Axelrod 1997c),
multi-polarity in interstate systems (Cederman 1997), new political
actors (Axelrod 1997d), epidemics (Epstein and Axtell 1996), economic
classes (Axtell, Epstein, and Young 2001), and the dynamics of retire-
ment (Axtell and Epstein 1999) to name a few. This “computational
theorizing,”17 if you will, can offer basic insights of the sort exemplified
in Schelling’s (1971) pioneering models of racial segregation, and may, of
course, evolve into models directly comparable to data. Indeed, they may
inspire the collection of data not yet in hand. (Without theory, it is not
always clear what data to collect.) Turning from empirical phenomena,
the generated phenomenon may be computation itself.

Connectionist Social Science

Certain social systems, such as trade networks (markets), are essentially
computational architectures. They are distributed, asynchronous, and
decentralized and have endogenous dynamic connection topologies. For
example, the CD-ROM version of Epstein and Axtell 1996 presents
animations of dynamic endogenous trade networks. (For other work
on endogenous trade networks, see Tesfatsion 1995.) There, agents are
represented as nodes, and lines joining agents represent trades. The
connection pattern—computing architecture—changes as agents move
about and interact economically, as shown in figure 1.2.

Whether they realize it or not, when economists say “the market
arrives at equilibrium,” they are asserting that this type of dynamic
“social neural net” has executed a computation—it has computed P*,
an equilibrium price vector. No individual has tried to compute this,
but the society of agents does so nonetheless. Similarly, convergence to
social norms, convergence to strategy distributions (in n-person games),
or convergence to stable cultural or even settlement patterns (as in the
Anasazi case) are all social computations in this sense.

It is clear that the efficiency—indeed the very feasibility—of a social
computation may depend on the way in which agents are connected.

17I thank Robert Axtell for this term.
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Network statistics_______________
Transactions: 0
Sugar traded: 0
Spice traded: 0

Network statistics_______________
Transactions: 602
Sugar traded: 679
Spice traded: 706

Network statistics_______________
Transactions: 307
Sugar traded: 358
Spice traded: 373

Network statistics_______________
Transactions: 242
Sugar traded: 323
Spice traded: 287

Network statistics_______________
Transactions: 192
Sugar traded: 230
Spice traded: 208

Network statistics_______________
Transactions: 134
Sugar traded: 147
Spice traded: 147

Figure 1.2. Endogenous trade network. (Source: Epstein and Axtell 1996, 132.)

After all, information in society is not manna from heaven; it is
collected and processed at the agent level and transmitted through in-
teraction structures that are endogenous. How then does the endogenous
connectivity—the topology—of a social network affect its performance
as a distributed computational device, one that, for example, computes
price equilibria, or converges to (computes) social norms, or converges
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to spatial settlement patterns such as cities?18 Agent-based models allow
us to pursue such connectionist social science questions in new and
systematic ways.

Interdisciplinary Social Science

Many important social processes are not neatly decomposable into sep-
arate subprocesses—economic, demographic, cultural, spatial—whose
isolated analysis can be somehow “aggregated” to yield an adequate
analysis of the process as whole. Yet this is exactly how academic
social science is organized—into more or less insular departments and
journals of economics, demography, anthropology, and so on. While
many social scientists would agree that these divisions are artificial, they
would argue that there is no “natural methodology” for studying these
processes together, as they interact, though attempts have been made.
Social scientists have taken highly aggregated mathematical models—
of entire national economies, political systems, and so on—and have
“connected” them, yielding “mega-models” that have been attacked on
several grounds (see Nordhaus 1992). But attacks on specific models have
had the effect of discrediting interdisciplinary inquiry itself, and this is
most unfortunate. The line of inquiry remains crucially important. And
agent-based modeling offers an alternative, and very natural, technique.

For example, in the agent-based model Sugarscape (Epstein and Axtell
1996), each individual agent has simple local rules governing movement,
sexual reproduction, trading behavior, combat, interaction with the
environment, and the transmission of cultural attributes and diseases.
These rules can all be “active” at once. When an initial population of
such agents is released into an artificial environment in which, and with
which, they interact, the resulting artificial society unavoidably links
demography, economics, cultural adaptation, genetic evolution, combat,
environmental effects, and epidemiology. Because the individual is multi-
dimensional, so is the society.

Now, obviously, not all social phenomena involve such diverse spheres
of life. If one is interested in modeling short-term price dynamics in a
local fish market, then human immune learning and epidemic processes
may not be relevant. But if one wishes to capture long-term social
dynamics of the sort discussed in William McNeill’s 1976 book Plagues
and Peoples, they are essential. Agent-based modelers do not insist that
everything be studied all at once. The claim is that the new techniques

18In a different context, the sensitivity to network topology is studied computationally
by Bagley and Farmer (1992).
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allow us to transcend certain artificial boundaries that may limit our
insight.

Nature-Nurture

For example, Sugarscape agents (Epstein and Axtell 1996) engage in
sexual reproduction, transmitting genes for, inter alia, vision (the distance
they can see in foraging for sugar). An offspring’s vision is determined by
strictly Mendelian (one locus–two allele) genetics, with equal probability
of inheriting the father’s or mother’s vision. One can easily plot average
vision in society over time. Selection will favor agents with relatively high
vision—since they’ll do better in the competition to find sugar—and, as
good Darwinians, we expect to see average vision increase over time,
which it does. Now, suppose we wish to study the effect of various social
conventions on this biological evolution. What, for example, is the effect
of inheritance—the social convention of passing on accumulated sugar
wealth to offspring—on the curve of average vision? Neither traditional
economics nor traditional population genetics offer particularly natural
ways to study this sort of “nature-nurture” problem. But they are
naturally studied in an agent-based artificial society: Just turn inheritance
“off” in one run and “on” in another, and compare!19 Figure 1.3 gives a
typical realization.

With inheritance, the average vision curve (gray) is lower: Inheritance
“dilutes” selection. Because they inherit sugar, the offspring of wealthy
agents are buffered from selection pressure. Hence, low-vision genes
persist that would be selected out in the absence of this social convention.
We do not offer this as a general law, nor are we claiming that
agent-based models are the only ones permitting exploration of such
topics.20 The claim is that they offer a new, and particularly natural,
methodology for approaching certain interdisciplinary questions, includ-
ing this one. Some of these questions can be posed in ways that subject
dominant theories to stress.

Theory Stressing

One can use agent-based models to test the robustness of standard
theory. Specifically, one can relax assumptions about individual—micro

19This is shorthand for the appropriate procedure in which one would generate
distributions of outcomes for the two assumptions and test the hypothesis that these are
indistinguishable statistically.

20For deep work on gene-culture co-evolution generally, using different techniques, see
Feldman and Laland 1996.
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Figure 1.3. Effect of inheritance on selection. (Source: Epstein and Axtell 1996,
68.)

level—behavior and see if standard results on macro behavior col-
lapse. For example, in neoclassical microeconomic theory, individual
preferences are assumed to be fixed for the lifetime of the agent. On
this assumption (and certain others), individual utility maximization
leads to price equilibrium and allocative efficiency (the First Welfare
Theorem). But, what if individual preferences are not fixed but vary
culturally? In Epstein and Axtell 1996, we introduce this assumption into
trading agents who are neoclassical in all other respects (e.g., they have
Cobb-Douglas utility functions and engage only in Pareto-improving
trades with neighbors). The result is far-from-equilibrium markets. The
standard theory is not robust to this relaxation in a core assumption
about individual behavior. For a review of the literature on this central
fixed preferences assumption, see Bowles 1998.

Agents, Behavioral Social Science, and the
Micro-Macro Mapping

What can agent-based modeling and behavioral research do for one
another? It is hard to pinpoint the dawn of experimental economics,
though Simon (1996) credits Katona (1951) with the fundamental studies
of expectation formation. In any event, there has been a resurgence
of important laboratory and other experimental work on individual
decision making over the last two decades. See, for example, Camerer
1997, Rabin 1998, Camerer and Thaler 1995, Tversky and Kahneman
1986, and Kagel and Roth 1995. This body of laboratory social science,
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if I may call it that, is giving us an ever-clearer picture of how homo
sapiens—as against homo economicus—actually makes decisions. How-
ever, a crucial lesson of Schelling’s segregation model, and of many
subsequent Cellular Automaton models, such as “Life”—not to mention
agent-based models themselves—is that even perfect knowledge of indi-
vidual decision rules does not always allow us to predict macroscopic
structure. We get macro-surprises despite complete micro-knowledge.
Agent-based models allow us to study the micro-to-macro mapping. It is
obviously essential to begin with solid foundations regarding individual
behavior, and behavioral research is closing in on these. However, we will
still need techniques for “projecting up” to the macro level from there
(particularly for spatially-distributed systems of heterogeneous individ-
uals). Agent modeling offers behavioral social science a powerful way
to do that.

Agent-based models may also furnish laboratory research with coun-
terintuitive hypotheses regarding individual behavior. Some, apparently
bizarre, system of individual agent rules may generate macrostructures
that mimic the observed ones. Is it possible that those are, in fact,
the operative micro-rules? It might be fruitful to design laboratory
experiments to test hypotheses arising from the unexpected generative
sufficiency of certain rules.

What does behavioral research offer agent-based modeling? Earlier,
we noted that different agent-based models might have equal generative
(explanatory) power and that, in such cases, further work would be
necessary to adjudicate between them. But if two models are doing
equally well in generating the macrostructure, preference should go
to the one that is best at the micro level. So, if we took the two
microspecifications as competing hypotheses about individual behavior,
then—apropos of the preceding remark—behavioral experiments might
be designed to identify the better hypothesis (microspecification) and,
in turn, the better agent model. These, then, are further ways in which
agent-based computational modeling can contribute to empirical social
science research.

Decouplings

As noted earlier, to adopt agent-based modeling does not compel one to
adopt methodological individualism. However, extreme methodological
individualism is certainly possible (indeed common) in agent-based
models. And individual-based models may have the important effect
of decoupling individual rationality from macroscopic equilibrium. For
example, in the individual-based retirement model of Axtell and Epstein
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(1999), macroscopic equilibrium is attained—through a process of
imitation in social networks—even though the vast preponderance of
individuals are not rational. Hence—as in much evolutionary modeling—
micro rationality is not a necessary condition for the attainment of macro
equilibrium.21 Now, we also have agent-models in which macroscopic
equilibrium is not attained despite orthodox utility maximization at the
individual level. The non-equilibrium economy under evolving prefer-
ences (Epstein and Axtell 1996) noted earlier is an example. Hence,
micro rationality is not a sufficient condition for macro equilibrium.
But if individual rationality is thus neither necessary nor sufficient for
macro equilibrium, the two are logically independent—or decoupled,
if you will.

Now, the fraction of agents in an imitative system (such as the
retirement model) who are rational will definitely affect the rate at which
any selected equilibrium sets in. But the asymptotic equilibrium behavior
per se does not depend on the dial of rationality, despite much behavioral
research on this latter topic. Perhaps the main issue is not how much
rationality there is (at the micro level), but how little is enough to
generate the macro equilibrium.

In passing, it is worth noting that this is of course a huge issue
for policy, where “fad creation” may be far more effective than real
education. Often, the aim is not to equip target populations with the data
and analytical tools needed to make rational choices; rather, one displays
exemplars and then presses for mindless imitation. “Just say no to drugs”
not because it’s rational—in a calculus of expected lifetime earnings—but
because a famous athlete says “no” and it’s a norm to imitate him. The
manipulation of uncritical imitative impulses may be more effective in
getting to a desired macro equilibrium than policies based on individual
rationality. The social problem, of course, is that populations of uncritical
imitators are also easy fodder for lynch mobs, witch hunts, Nazi parties,
and so forth. Agent-based modeling is certainly not the only way to study
social contagion (see, for example, Kuran 1989), but it is a particularly
powerful way when the phenomenon is spatial and the population in
question is heterogeneous.

Relatedly, agent-based approaches may decouple social science from
decision science. In the main, individuals do not decide—they do not
choose—in any sensible meaning of that term, to be ethnic Serbs, to
be native Spanish speakers, or to consider monkey brain a delicacy.
Game theory may do an interesting job explaining the decision of one

21More precisely, micro rationality is not necessary for some equilibrium, but it may a
different equilibrium from the one that would occur were agents rational.



July 6, 2006 Time: 01:51pm chapter1.tex

AGENT-BASED COMPUTATIONAL MODELS 23

ethnic group to attack another at a certain place or time, but it doesn’t
explain how the ethnic group arises in the first place or how the ethnic
divisions are transmitted across the generations. Similarly for economics,
what makes monkey brain a delicacy in one society and not in another?
Cultural (including preference) patterns, and their nonlinear tippings, are
topics of study in their own right with agents.22 See Axelrod 1997b and
Epstein and Axtell 1996.

Analytical-Computational Approach to Non-Equilibrium
Social Systems

For many social systems, it is possible to prove deep theorems about
asymptotic equilibria. However, the time required for the system to
attain (or closely approximate) such equilibria can be astronomical.
The transient, out-of-equilibrium dynamics of the system are then of
fundamental interest. A powerful approach is to combine analytical
proofs regarding asymptotic equilibria with agent-based computational
analyses of long-lived transient behaviors, the meta-stability of certain
attractors, and broken ergodicity in social systems.

One example of this hybrid analytical-computational approach is
Axtell, Epstein, and Young 2001. We develop an agent-based model to
study the emergence and stability of equity norms in society. (In that
article, we explicitly define the term “emergent” to mean simply “arising
from decentralized bilateral agent-interactions.”) Specifically, agents
with finite memory play Best Reply to Recent Sample Evidence (Young
1995, 1998) in a three-strategy Nash Demand Game, and condition on
an arbitrary “tag” (e.g., a color) that initially has no social or economic
significance—it is simply a distinguishing mark. Expectations are gener-
ated endogenously through bilateral interactions. And, over time, these
tags acquire socially organizing salience. In particular, tag-based classes
arise. (The phenomenon is akin to the evolution of meaning discussed in
Skyrms 1998.)

Now, introducing noise, it is possible to cast the entire model as a
Markov process and to prove rigorously that it has a unique stationary
strategy distribution. When the noise level is positive and sufficiently
small, the following asymptotic result can be proved: The state with the
highest long-run probability is the equity norm, both between and within
groups.

22Again, as a policy application, agent-based modeling might suggest ways to operate
on—or “tip”—ethnic animosity itself.
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Salutary as this asymptotic result may appear, the transition from
inequitable states to these equitable ones can be subject to tremendous
inertia. Agent-based models allow us to systematically study long-lived
transient behaviors. We know that, beginning in an inequitable regime,
the system will ultimately “tip” into the equity norm. But how does the
waiting time to this transition depend on the number of agents and on
memory length? In this case, the waiting time scales exponentially in
memory length, m, and exponentially in N, the number of agents. Over-
all, then, the waiting time is immense for m= 10 and merely N= 100,
for example.

Speaking rigorously, the equity norm is stochastically stable (see Young
1998). The agent-based computational model reveals, however, that—
depending on the number of agents and their memory lengths—the
waiting time to transit from an inequitable regime to the equitable one
may be astronomically long.

This combination of formal (asymptotic) and agent-based (non-
equilibrium) analysis seems to offer insights unavailable from either
approach alone, and to represent a useful hybrid form of analytical-
computational study. For sophisticated work relating individual-based
models to analytical ones in biology, see Flierl et al. 1999.

Foundational Issues

We noted earlier that markets can be seen as massively parallel spatially
distributed computational devices with agents as processing nodes. To
say that “the market clears” is to say that this device has completed
a computation. Similarly, convergence to social norms, convergence to
strategy distributions (in n-person games), or convergence to stable
cultural or settlement patterns, are all social computations in this sense.
Minsky’s (1985) famous phrase was “the Society of Mind.” What I’m
interested in here is “the Society as Mind,” society as a computational
device. (On that strain of functionalism which would be involved in
literally asserting that a society could be a mind, see Sober 1996.)

Now, once we say “computation” we think of Turing machines (or,
equivalently, of partial recursive functions). In the context of n-person
games, for example, the isomorphism with societies is direct: Initial
strategies are tallies on a Turing machine’s input tape; agent interactions
function to update the strategies (tallies) and thus represent the machine’s
state transition function; an equilibrium is a halting state of the machine;
the equilibrium strategy distribution is given by the tape contents in the
halting state; and initial strategy distributions that run to equilibrium are
languages accepted by the machine. The isomorphism is clear. Now, we
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know what makes for an intractable, or “hard,” computational problem.
So, given our isomorphism, is there a computational answer to the
question, “What’s a hard social problem?”

A Computational Characterization of Hard Social Problems

In the model of tag-based classes discussed earlier (Axtell, Epstein, and
Young 2001), we prove rigorously that, asymptotically, the equity norm
will set in. However, beginning from any other (meta-stable) equilibrium,
the time to transit into the equitable state scales exponentially in the
number of agents and exponentially in the agents’ memory length. If we
adopt the definition that social states are hard to attain if they are not
effectively computable by agent society in polynomial time, then equity
is hard. (The point applies to this particular setup; I am emphatically
not claiming that there is anything immutable about social inequity.) In
a number of models, the analogous point applies to economic equilibria:
There are nonconstructive proofs of their existence but computational
arguments that their attainment requires time that scales exponentially
in, for instance, the dimension of the commodity space.23 On our
tentative definition, then, computation of (attainment of) economic
equilibria would qualify as another hard social problem.

So far we have been concerned with the question, “Does an initial
social state run to equilibrium?” or, equivalently, “Does the machine halt
given input tape x?” Now, like satisfiability, or truth-table validity in
sentential logic, these problems are in principle decidable (that is, the
equilibria are effectively computable), but not on time scales of interest
to humans. (Here, with Simon [1978], we use the term “time” to denote
“the number of elementary computation steps that must be executed to
solve the problem.”)

Gödelian Limits

But there are social science problems that are undecidable in principle,
now in the sense of Gödel or the Halting Problem. Rabin (1957) showed
that “there are actual win-lose games which are strictly determined for
which there is no effectively computable winning strategy.” He continues,
“Intuitively, our result means that there are games in which the player
who in theory can always win, cannot do so in practice because it
is impossible to supply him with effective instructions regarding how

23See, for example, Hirsch et al. 1989.
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he should play in order to win.” Another nice example, based on the
unsolvability of Hilbert’s Tenth Problem, is given by Prasad (1997):

For n-player games with polynomial utility functions and natural number
strategy sets the problem of finding an equilibrium is not computable. There
does not exist an algorithm which will decide, for any such game, whether
it has an equilibrium or not . . . When the class of games is specified by a
finite set of players, whose choice sets are natural numbers, and payoffs are
given by polynomial functions, the problem of devising a procedure which
computes Nash equilibria is unsolvable.

Other results of comparable strength have been obtained by Lewis (1985,
1992a, and 1992b).24

Implications for Rational Choice Theory

Here lies the deepest conceivable critique of rational choice theory. There
are strategic settings in which the individually optimizing behavior is
uncomputable in principle. A second powerful critique is that, while
possible in principle, optimization is computationally intractable. As
Duncan Foley summarizes, “The theory of computability and compu-
tational complexity suggest that there are two inherent limitations to
the rational choice paradigm. One limitation stems from the possibility
that the agent’s problem is in fact undecidable, so that no computational
procedure exists which for all inputs will give her the needed answer in
finite time. A second limitation is posed by computational complexity in
that even if her problem is decidable, the computational cost of solving
it may in many situations be so large as to overwhelm any possible
gains from the optimal choice of action” (see Albin 1998, 46). For a
fundamental statement, see Simon 1978.

These possibilities are disturbing to many economists. They implicitly
believe that if the individual is insufficiently rational it must follow
that decentralized behavior is doomed to produce suboptimality at the
aggregate level. The invisible hand requires rational fingers, if you will.
There are doubtless cases in which this holds. But it is not so in all cases.
As noted earlier, in the retirement model of Axtell and Epstein (1999), as
well as in much evolutionary modeling, an ensemble of locally interacting
agents—none of whom are canonically rational—can nonetheless attain
efficiency in the aggregate. Even here, of course, issues of exponential

24The important Arrow Impossibility Theorem (Arrow 1963) strikes me as different in
nature from these sorts of results. It does not turn—as these results do—on the existence of
sets that are recursively enumerable but not recursive.
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waiting time arise (as in the classes model above). But it is important to
sort the issues out.

The agent-based approach forces on us the interpretation of society
as a computational device, and this immediately raises foundational
specters of computational intractability and undecidability. Much of
the economic complexity literature concerns the uncomputability of
optimal strategies by individual rational agents, surely an important
issue. However, our central concern is with the effective computability
(attainment) of equilibria by societies of boundedly rational agents.
In that case, it is irrelevant that equilibrium can be computed by
an economist external to the system using the Scarf, or other such,
algorithm. The entire issue is whether it can be attained—generated—
through decentralized local interactions of heterogeneous boundedly
rational actors. And the agent-based computational model is a powerful
tool in exploring that central issue. In some settings, it may be the only
tool.

Equations versus Agent-Based Models

Three questions arise frequently and deserve treatment: Given an agent-
based model, are there equivalent equations? Can one “understand”
one’s computational model without such equations? If one has equations
for the macroscopic regularities, why does one need the “bottom-up”
agent model?

Regarding the first question—are there equivalent equations for every
computational model—the answer is immediate and unequivocal: absol-
utely. On the Church-Turing Thesis, every computation (and hence
every agent-based model) can be implemented by a Turing machine. For
every Turing machine there is a unique corresponding and equivalent
Partial Recursive Function (see Rogers 1967). Hence, in principle, for
any computation there exist equivalent equations (involving recursive
functions). Alternatively, any computer model uses some finite set of
memory locations, which are updated as the program executes. One
can think of each location as a variable in a discrete dynamical system.
In principle, there is some—perhaps very high dimensional—set of
equations describing those discrete dynamics. Now, could a human write
the equations out? Solve them or even find their equilibria (if such exist)?
The answer is not clear. If the equations are meant to represent large
populations of discrete heterogeneous agents coevolving on a separate
space, with which they interact, it is not obvious how to formulate the
equations, or how to solve them if formulated. And, for certain classes
of problems (e.g., the PSPACE Complete problems), it can be proved
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Figure 1.4. Oscillatory population time series. Black vertical spikes represent
births. (Source: Epstein and Axtell 1996, 161.)

rigorously that simulation is—in a definite sense—the best one can do in
principle (see Buss, Papadimitriou, and Tsitsiklis 1991). But that does not
mean—turning to the second question—we have no idea what’s going on
in the model.

To be sure, a theorem is better than no theorem. And many complex
social phenomena may ultimately yield to analytical methods of the
sort being pioneered by Young (1998), Durlauf (1997b), and others.
But an experimental attitude is also appropriate. Consider biology. No
one would fault a “theoremless” laboratory biologist for claiming to
understand population dynamics in beetles when he reports a regularity
observed over a large number of experiments. But when agent-based
modelers show such results—indeed, far more robust ones—there’s a
demand for equations and proofs. These would be valuable, and we
should endeavor to produce them. Meanwhile, one can do perfectly
legitimate “laboratory” science with computers, sweeping the parameter
space of one’s model, and conducting extensive sensitivity analysis, and
claiming substantial understanding of the relationships between model
inputs and model outputs, just as in any other empirical science for which
general laws are not yet in hand.25

The third question involves confusion between explanation and descr-
iption, and might best be addressed through an example. In Epstein and
Axtell 1996, spatially distributed local agent interactions generate the
oscillatory aggregate population time series shown in figure 1.4.

The question then arises: Could you not get that same curve from
some low-dimensional differential equation, and if so, why do you
need the agent model? Let us imagine that we can formulate and
analytically solve such an equation, and that the population trajectory
is exactly P(t) = A + B Sin(Ct) for constants A, B, and C. Now, what
is the explanatory significance of that descriptively accurate result?

25Here, we are discussing regularities in model output alone, not the relationship of
model output to some real-world data set, as in the Anasazi project.
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It depends on one’s criteria for explanation. If we are generativists,
the question is: How could the spatially decentralized interactions of
heterogeneous autonomous agents generate that macroscopic regularity?
If that is one’s question, then the mere formula P(t) = A + B Sin(Ct) is
devoid of explanatory power despite its descriptive accuracy. The choice
of agents versus equations always hinges on the objectives of the analysis.
Given some perfectly legitimate objectives, differential equations are
the tool of choice; given others, they’re not. If we are explicit as to
our objectives, or explanatory criteria, no confusion need arise. And it
may be that hybrid models of a second sort are obtainable in which
the macrodynamics are well described by an explicit low-dimensional
mathematical model, but are also generated from the bottom up in a
model population of heterogeneous autonomous agents. That would be
a powerful combination. In addition to important opportunities, the field
of agent-based modeling, like any young discipline, faces a number of
challenges.

Challenges

First, the field lacks standards for model comparison and replication of
results; see Axtell et al. 1996. Implicit in this is the need for standards
in reportage of assumptions and certain procedures. Subtle differences
can have momentous consequences. For example, how, exactly, are
agents being updated? The Huberman and Glance (1993) critique of
Nowak and May (1992) is striking proof that asynchronous updating of
agents produces radically different results from synchronous updating.
Huberman and Glance show that Nowak and May’s main result—the
persistence of cooperation in a spatial Prisoner’s Dilemma game—
depends crucially on synchronous updating. When, ceteris paribus,
Huberman and Glance introduce asynchronous updating into the
Nowak and May model, the result is convergence to pure defection.
(For a spatial Prisoner’s Dilemma model with asynchronous updating
in which cooperation can persist, see Epstein 1998.) The same sorts
of issues arise in randomizing the agent call order, where various
methods—with different effects on output—are possible.

It is also fair to say that solution concepts are weak. Certainly, hitting
the “Go” button and watching the screen does not qualify as solving
anything—any more than an evening at the casino solves the Gambler’s
Ruin Problem from Markov Theory. An individual model run offers
a sample path of a (typically) stochastic process, but that is not a
general solution—a specific element of some well defined function space
(e.g., a Hilbert or Sobolev space). As noted earlier, it is often possible
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to sweep the parameter space of one’s model quite systematically and
thereby obtain a statistical portrait of the relationship between inputs
and outputs, as in Axelrod 1997c or Epstein 1998. But it is fair to say
that this practice has not been institutionalized.

A deeper issue is that sweeping a model’s numerical parameter space
is easier than exploring the space of possible agent behavioral rules
(e.g., “If a neighboring agent is bigger than you, run away” or “Always
share food with kin agents”). For artificial societies of any complexity
(e.g., Sugarscape), we have no efficient method of searching the space
of possible individual rules for those that exhibit generative power.
One can imagine using evolutionary approaches to this. First, one
would define a metric such that, given a microspecification, the distance
from model outputs (generated macrostructures) to targets (observed
macrostructures) could be computed. The better the match (the smaller
this distance) the “fitter” is the microspecification. Second, one would
encode the space of candidate micro specifications and turn, say, a
Genetic Algorithm (GA) (see Holland 1992; Mitchell 1998) loose on
it. The GA might turn up counterintuitive boundedly rational rules that
are highly “fit” in this sense of generating macrostructures “close” to
the targets. (These then become hypotheses for behavioral research, as
discussed earlier.)

This strikes me as a far more useful application of GAs than the
usual one: finding hyper-rational individual strategies, which we now
have strong experimental evidence are not being employed by humans.
The problem is how to encode the vast space of possible individual
rules (not to mention the raw computational challenge of searching it
once encoded). In some restricted cases, this has been done successfully
(Axelrod 1987; Crutchfield and Mitchell 1995), but for high dimen-
sional agents engaged in myriad social interactions—economic, cultural,
demographic—it is far from clear how to proceed.

One of the central concepts in dynamics is sensitivity. Sensitivity
involves the effect on output (generated macrostructure) of small changes
in input (microspecification). To assess sensitivity in agent models, we
have to do more than encode the space of rules—we have to metrize it.
To clarify the issue, consider the following agent rules (methods of agent-
objects):

Rule a = Never attack neighbors.
Rule b = Attack a neighbor if he’s green.
Rule c = Attack a neighbor if he’s smaller than you.

Which rule—b or c—represents a “smaller departure from” Rule a?
Obviously, the question is ill-posed. And yet we speak of “small changes
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in the rules” of agent-based models. Some areas (e.g., Cellular Automata)
admit binary encodings of rule space for which certain metrics—taxicab
or Hamming distance—are natural. But for artificial societies generally,
no such simple avenues present themselves. What then constitutes a small
rule change? Without some metric, we really cannot develop the ana-
logue, for agent-based models, of structural stability—or equivalently, of
bifurcation theory—in dynamical systems.

Some challenges are sociological. Generating collective behavior that
to the naked eye “looks like flocking” can be extremely valuable, but it is
a radically different enterprise from generating, say, a specific distribution
of wealth with parameters close to those observed in society. Crude
qualitative caricature is a perfectly respectable goal. But if that is one’s
goal, the fact must be stated explicitly—perhaps using the terminology
proposed in Axtell and Epstein 1994. This will avert needless resistance
from other fields where “normal science” proceeds under established
empirical standards patently not met by cartoon “boid” flocks, however
stimulating and pedagogically valuable these may be. On the pedagogical
value of agent-based simulation generally, see Resnick 1994.

A number of other challenges include building community and sharing
results and are covered in Axelrod 1997a. In addition to foundational,
procedural, and other scientific challenges, the field of “complexity” and
agent-based modeling faces terminological ones. In particular, the term
“emergence” figures very prominently in this literature. It warrants an
audit.

“Emergence”

I have always been uncomfortable with the vagueness and occasional
mysticism surrounding this word and, accordingly, tried to define it
quite narrowly in Epstein and Axtell 1996. There, we defined “emergent
phenomena” to be simply “stable macroscopic patterns arising from local
interaction of agents.”26 Many researchers define the term in the same
straightforward way (e.g., Axelrod 1997a). Since our work’s publication,
I have researched this term more deeply and find myself questioning its
adoption altogether.

“Emergence” has a history, and it is an extremely spotty one, beginning
with classical British emergentism in the 1920s and the works of Samuel

26As we wrote there, “A particularly loose usage of ’emergent’ simply equates it with
‘surprising,’ or ‘unexpected,’ as when researchers are unprepared for the kind of systematic
behavior that emanates from their computers.” We continued, “This usage obviously begs
the question, ‘Surprising to whom?’” (Epstein and Axtell 1996, 35).
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Alexander (Space, Time, and Deity, 1920), C. D. Broad (The Mind
and Its Place in Nature, 1925), and C. Lloyd Morgan (Emergent
Evolution, 1923). The complexity community should be alerted to this
history. There is an unmistakably anti-scientific—even deistic—flavor to
this movement, which claimed absolute unexplainability for emergent
phenomena. In the view of these authors, emergent phenomena are un-
explainable in principle. “The existence of emergent qualities . . . admits
no explanation,” wrote Alexander (1920).27 As philosopher Terence
Horgan recounts, emergent phenomena were to be “accepted (in Samuel
Alexander’s striking phrase) ‘with natural piety.’”

Striking indeed, this sort of language, and classical emergentism’s
avowedly vitalist cast (see Morgan 1923) stimulated a vigorous—and to
my mind, annihilative—attack by philosophers of science. In particular,
Hempel and Oppenheim (1948) wrote, “This version of emergence . . . is
objectionable not only because it involves and perpetuates certain logical
confusions but also because not unlike the ideas of neovitalism, it encour-
ages an attitude of resignation which is stifling to scientific research. No
doubt it is this characteristic, together with its theoretical sterility, which
accounts for the rejection, by the majority of contemporary scientists, of
the classical absolutist doctrine of emergence.”

Classical absolute emergentism is encapsulated nicely in the following
formalization of Broad’s (1925, 61):

Put in abstract terms the emergent theory asserts that there are certain
wholes, composed (say) of constituents A, B, and C in a relation R to
each other . . . and that the characteristic properties of the whole R(A,B,C)
cannot, even in theory, be deduced from the most complete knowledge of
the properties of A, B, and C in isolation or in other wholes which are not
in the form R(A,B,C). (Emphasis in original)

Before explicating the logical confusion noted by Hempel and Oppen-
heim, we can fruitfully apply a bit of logic ourselves. Notice that we
have actually accumulated a number of first-order propositions. For
predicates, let C stand for classically emergent, D for deducible, E for
explained, and G for generated (in a computational model). Then, if x is

27Although many contemporary researchers do not use the term in this way, others
assume that this is the generally accepted meaning. For example, Jennings, Sycara, and
Woolridge (1998) write that “. . . the very term ‘emerges’ suggests that the relationship
between individual behaviors, environment, and overall behavior is not understandable,”
which is entirely consistent with the classical usage.
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a system property, we have:

(1) (∀x)(Cx ⊃ ¬Dx) Broad (emergent implies not deducible)28

(2) (∀x)(Cx ⊃ ¬Ex) Alexander (emergent implies not explainable)
(3) (∀x)(¬Gx ⊃ ¬Ex) Generativist Motto (not generated

implies not explained)
(4) (∀x)(Gx ⊃ Dx) Theorem (generated implies deduced)

Although a number of derivations are possible,29 the essential point
involves (1) and (4). By the earlier Theorem (4), if x is generable, then
it is deducible. But, by Broad (1), if x is emergent, it is not deducible.
But it then follows that if x is generable, then it cannot be emergent!30

In particular, if x is generated in an agent-based model, it cannot be
classically emergent. Agent-based modeling and classical emergentism are
incompatible. Further incompatibilities between agent-based modeling
and classical emergentism will be taken up below.

Logical Confusion

Now, the logical confusion noted earlier is set forth clearly in Hempel
and Oppenheim 1948, is discussed at length in Nagel 1961, and is
recounted more recently by Hendriks-Jansen 1996. To summarize, like
Broad, emergentists typically assert things like, “One cannot deduce
higher properties from lower ones; macro properties from micro ones;
the properties of the whole from the parts’ properties.” But, we do not
deduce properties. We deduce propositions in formal languages from
other propositions in those languages.31 This is not hair-splitting: If the
macro theory contains terms (predicates, variable names) that are not
terms of the micro theory, then of course it is impossible to deduce

28To highlight the chasm between this classical and certain modern usages, while Broad
defines emergence as undeducible, Axelrod (1997c, 194) writes that “there are some
models . . . in which emergent properties can be formally deduced.”

29For example, note that we can deduce Alexander’s Law (2) from the others. By Broad
(1), if x is classically emergent then it is not deducible; but then by (4) and modus tollens,
x is not generable; and then by the Motto (3), x is not explainable. So, by hypothetical
syllogism, we obtain Alexander (2). In a punctilious derivation, we would of course invoke
universal instantiation first; then rules of an explicit sentential calculus (e.g., Copi 1979),
and then use universal generalization.

30Filling in for any x, (4) is Gx ⊃ Dx; but Dx = ¬(¬Dx), from which ¬Cx follows from
(1) by modus tollens.

31Formal systems are closed under their rules of inference (e.g., modus ponens) in the
sense that propositions in a formal system can only be deduced from other propositions of
that system.
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macro claims involving those terms from propositions of the micro
theory. It is logically impossible. So the “higher emergent” property of
water, “translucence,” is trivially not deducible from the micro theory
of oxygen (O) and hydrogen (H) since “translucent” is not a term of
the micro theory. Many so called “emergent properties” of “wholes” are
not deducible from “parts” for this purely logical reason. So emergence,
as nondeducibility, is always relative to some theory (some set of well-
formed formulae and inference rules); it is not absolute as the classicals
would have it.

A relative version of emergence due to Hempel and Oppenheim (1948)
is formalized in Stephan 1992 as follows. Consider a system with
constituents C1, . . . ,Cn in relation O to one another (analogous to
Broad’s A, B, C, and R). “This combination is termed a microstructure
[C1, . . . Cn;O]. And let T be a theory. Then, a system property P is
emergent, relative to this microstructure and theory T, if:

(a). There is a law LP which holds: for all x, when x has microstructure
[C1. . . . Cn;O] then x has property P, and

(b). By means of theory T, LP cannot be deduced from laws governing the
Cl. . . . Cn in isolation or in other microstructures than the given.”

Stephan continues, “By this formulation the original absolute claim
has been changed into a merely relative one which just states that at
a certain time according to the available scientific theories we are not
able to deduce the so-called emergent laws” (1992, 39).32 But now,
as Hempel and Oppenheim write, “If the assertion that life and mind
have an emergent status is interpreted in this sense, then its import can
be summarized approximately by the statement that no explanation, in
terms of microstructure theories, is available at present for large classes of
phenomena studied in biology and psychology” (emphases added). This
quite unglamorous point, they continue, would “appear to represent the
rational core of the doctrine of emergence.” Not only does this relative
formulation strip the term of all higher Gestalt harmonics, but it suggests
that, for any given phenomenon, emergent status itself may be fleeting.

32Contemporary efforts (see Baas 1994) to define a kind of relative (or hierarchical)
emergence by way of Gödel’s First Theorem (see Smullyan 1992) seem problematic.
Relative to a given (consistent and finitely axiomatized) theory, T, Baas calls undecidable
sentences “observationally emergent.” However, we are presumably interested in generat-
ing “emergent phenomena” in computational models. And it is quite unclear from what
computational process Baas’s observationally emergent entities—undecidable sentences of
T—would actually emerge since, by Tarski’s Theorem, the set of true and undecidable
propositions is not recursively enumerable (Hodel 1995, 310, 354).
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Scientific Progress

As scientific theories progress, in other words, that which was unex-
plainable and “emergent” ceases to be. The chemical bond—a favorite of
the British emergentists—is an excellent example. Here, Terrence Horgan
(1993) is worth quoting at length:

When Broad wrote, “Nothing that we know about Oxygen by itself or in its
combination with anything but Hydrogen would give us the least reason to
suppose that it would combine with Hydrogen at all. Nothing that we know
about Hydrogen by itself or in its combinations with anything but Oxygen
would give us the least reason to expect that it would combine with Oxygen
at all” (1925, pp. 62–63), his claim was true. Classical physics could not
explain chemical bonding. But the claim didn’t stay true for long: by the
end of the decade quantum mechanics had come into being, and quantum-
mechanical explanations of chemical bonding were in sight.

The chemical bond no longer seemed mysterious and “emergent.”
Another example was biology, for the classical emergentists a rich source
of higher “emergent novelties,” putatively unexplainable in physical
terms. Horgan continues,

Within another two decades, James Watson and Francis Crick, drawing
upon the work of Linus Pauling and others on chemical bonding, explained
the information-coding and self-replicating properties of the DNA molecule,
thereby ushering in physical explanations of biological phenomena in
general.

As he writes, “These kinds of advances in science itself, rather than
any internal conceptual difficulties, were what led to the downfall of
British emergentism, as McLaughlin (1992) persuasively argues.” Or, as
Herbert Simon (1996) writes, “Applied to living systems the strong claim
[quoting the “holist” philosopher J. C. Smuts] that ‘the putting together
of their parts will not produce them or account for their characters
and behaviors’ implies a vitalism that is wholly antithetical to modern
molecular biology.”

In its strong classical usage, the term “emergent” simply “baptizes our
ignorance,” to use Nagel’s phrase (1961, 371). And, when de-mystified,
it can mean nothing more than “not presently explained.” But, this is
profoundly different from “not explainable in principle,” as Alexander
and his emergentist colleagues would have it, which is stifling, not to
mention baseless empirically. As Hempel and Oppenheim wrote,

Emergence is not an ontological trait inherent in some phenomena; rather
it is indicative of the scope of our knowledge at a given time; thus it has
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no absolute, but a relative character; and what is emergent with respect
to the theories available today may lose its emergent status tomorrow.
(1948, 263)

Good Questions

Now, all the questions posed by agent-based modelers and complexity
scientists in this connection are fine: How do individuals combine to form
firms, or cities, or institutions, or ant colonies, or computing devices?
These are all excellent questions. The point is that they are posable—
indeed most productively posed—without the imprecise and possibly self-
mystifying terminology of “emergence,” or “supervenience,” as Morgan
called it. Obviously, “wholes” may have attributes or capabilities that
their constituent parts cannot have (e.g., “whole” conscious people
can have happy memories of childhood while, presumably, individual
neurons cannot). Equally obvious, the parts have to be hooked up right—
or interact in specific, and perhaps complicated, ways—for the whole to
exhibit those attributes.33 We at present may be able to explain why
these specific relationships among parts eventuate in the stated attributes
of wholes, and we may not. But, unlike classical emergentists, we do not
preclude such explanation in principle.

Indeed, by attempting to generate these very phenomena on computers
or in mathematical models, we are denying that they are unexplainable
or undeducible in principle—we’re trying to explain them precisely by
figuring out microrules that will generate them. In short, we agent-
based modelers and complexity researchers actually part company with
those, like Alexander and company, whose terminology we have, perhaps
unwittingly, adopted. Lax definitions can compound the problem.

Operational Definitions

Typical of classical emergentism would be the claim: No description of
the individual bee can ever explain the emergent phenomenon of the
hive. How would one know that? Is this a falsifiable empirical claim,
or something that seems true because of a lax definition of terms?
Perhaps the latter. The mischievous piece of the formulation is the
phrase “description of the individual bee.” What is that? Does “the

33There is no reason to present these points as if they were notable, as in the
following representative example: “. . . put the parts of an aeroplane together in the correct
relationship and you get the emergent property of flying, even though none of the parts can
fly” Johnson (1995, 26).
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bee’s” description not include its rules for interacting with other bees?
Certainly, it makes little sense to speak of a Joshua Epstein devoid of
all relationships with family, friends, colleagues, and so forth. “Man
is a social animal,” quoth Aristotle. My “rules of social interaction”
are, in part, what make me me. And, likewise, the bee’s interaction
rules are what make it a bee—and not a lump. When (as a designer of
agent objects) you get these rules right—when you get “the individual
bee” right—you get the hive, too. Indeed, from an operationist (Hempel
1956) viewpoint, “the bee” might be defined as that x which, when put
together with other x’s, makes the hive (the “emergent entity”). Unless
the theoretical (model) bees generate the hive when you put a bunch
of them together, you haven’t described “the bee” adequately. Thus,
contrary to the opening emergentist claim, it is precisely the adequate
description of “the individual bee” that explains the hive. An admirable
modeling effort along precisely such lines is Theraulaz, Bonabeau, and
Deneubourg 1998.

Agent-Based Modeling Is Reductionist

Classical emergentism holds that the parts (the microspecification)
cannot explain the whole (the macrostructure), while to the agent-
based modeler, it is precisely the generative sufficiency of the parts
(the microspecification) that constitutes the whole’s explanation! In
this particular sense, agent-based modeling is reductionist.34 Classical
emergentism seeks to preserve a “mystery gap” between micro and
macro; agent-based modeling seeks to demystify this alleged gap by
identifying microspecifications that are sufficient to generate—robustly
and replicably—the macro (whole). Perhaps the following thoughts of
C. S. Peirce (1879) are apposite:

One singular deception . . . which often occurs, is to mistake the sensation
produced by our own unclearness of thought for a character of the object
we are thinking. Instead of perceiving that the obscurity is purely subjective,
we fancy that we contemplate a quality of the object which is essentially
mysterious; and if our conception be afterward presented to us in a clear
form we do not recognize it as the same, owing to the absence of the feeling
of unintelligibility.

34The term “reductionist” admits a number of definitions. We are not speaking here of
the reduction of theories, as in the reduction of thermodynamics to statistical mechanics.
See Nagel 1961, Garfinkel 1991, and Anderson 1972.
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Explanation and Prediction

A final point is that classical emergentism traffics on a crucial (and to this
day quite common) confusion: between explanation and prediction. It
may well be that certain phenomena are unpredictable in principle (e.g.,
stochastic). But that does not mean—as classical emergentists would
have it—that they are unexplainable in principle. Plate tectonics explains
earthquakes but does not predict their occurrence; electrostatics explains
lightning but does not predict where it will hit; evolutionary theory
explains species diversity but does not predict observed phenotypes. In
short, one may grant unpredictability without embracing “emergence,”
as absolute unexplainability, à la Alexander and colleagues.35 And, of
course, it may be that in some cases prediction is a perfectly reasonable
goal. (For further distinctions between prediction and explanation, see
Scheffler 1960; Suppes 1985; and Newton-Smith 1981.)

In its strong classical usages—connoting absolute nondeducibility
and absolute unexplainability—“emergentism” is logically confused and
antiscientific. In weak level-headed usages—like “arising from local agent
interactions”—a special term hardly seems necessary. For other attempts
to grapple with the term “emergent,” see Cariani 1992, Baas 1994,
Gilbert 1995, and Darley 1996. At the very least, practitioners—and
I include myself—should define this term carefully when they use it
and distinguish their, perhaps quite sensible, meaning from others with
which the term is strongly associated historically. To anyone literate
in the philosophy of science, “emergence” has a history, and it is one
with which many scientists may—indeed should—wish to part company.
Doubtless, my own usage has been far too lax, so this admonition is
directed as much at myself as at colleagues.

Recapitulation and Conclusion

I am not a soldier in an agent-based methodological crusade. For some
explanatory purposes, low dimensional differential equations are perfect.
For others, aggregate regression is appropriate. Game theory offers deep
insight in numerous contexts and so forth. But agent-based modeling is
clearly a powerful tool in the analysis of spatially distributed systems
of heterogeneous autonomous actors with bounded information and
computing capacity. It is the main scientific instrument in a generative
approach to social science, and a powerful tool in empirical research. It

35On fundamental sources of unpredictability, see Gell-Mann 1997.
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is well suited to the study of connectionist phenomena in social science.
It offers a natural environment for the study of certain interdisciplinary
questions. It allows us to test the sensitivity of theories, such as neo-
classical microeconomics, to relaxations in core assumptions (e.g., the
assumption of fixed preferences). It allows us to trace how individual
(micro) rules generate macroscopic regularities. In turn, we can employ
laboratory behavioral research to select among competing multiagent
models having equal generative power. The agent-based approach may
decouple individual rationality from macroscopic equilibrium and sep-
arate decision science from social science more generally. It invites a
synthesis of analytical and computational perspectives that is particularly
relevant to the study of non-equilibrium systems. Agent-based models
have significant pedagogical value. Finally, the computational interpre-
tation of social dynamics raises foundational issues in social science—
some related to intractability, and some to undecidability proper. Despite
a number of significant challenges, agent-based computational modeling
can make major contributions to the social sciences.
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Prelude to Chapter 2

CONFESSION OF A WANDERING BARK

My intellectual life began in music composition. I wrote three
chamber pieces for small ensemble. Then, at Amherst, I became absorbed
in mathematics and later, at MIT, in mathematical modeling. Now, I am
immersed in agent-based modeling. It would certainly appear that I have
wandered from music to mathematics to agent modeling, within which
(judging by the current volume) I have wandered from civil violence to
epidemiology to archaeology. But I do not feel that I have ever changed
fields. What, then, is my field? In the next chapter, I quote Bertrand
Russell on the topic of mathematical beauty. He writes that

In the most beautiful work, a chain of argument is presented in which every
link is important on its own account, in which there is an air of ease and
lucidity throughout, and the premises achieve more than would have been
thought possible, by means which appear natural and inevitable.

That is, and always has been, my “field.” I’m not sure what to call it, but
perhaps Generative Minimalism would be apt.

In the third movement of my Quartet for Violin, Oboe, Clarinet,
and Bassoon, the “premise,” the theme, is a single three-note motif: a
descending half-step, followed by a descending minor third. Essentially,
the entire movement is that motif—that simple rule—expanded, con-
tracted, inverted, reversed, and passed among the instruments. Hopefully,
the theme, the Russellian premise, achieves “more than would have been
thought possible, by means which appear natural and inevitable.”

In my book Nonlinear Dynamics, Mathematical Biology, and Social
Science,1 the analogous “premise” is the Lotka-Volterra ecosystem
model. The book then shows how this single elegant system of equations
can be “morphed” into—can generate—simple models of arms races,
wars, revolutions, and drug epidemics in humans. The mathematician
Edward Beltrami, in a very generous and graceful review, writes, “It is
amazing what a wealth of striking analogies this short book manages
to present . . . . It is like a repertory theater with just a few actors who

1Joshua M. Epstein, Nonlinear Dynamics, Mathematical Biology, and Social Science
(Reading, MA: Addision-Wesley, 1997).



July 6, 2006 Time: 02:37pm chapter2-prelude.tex

48 PRELUDE TO CHAPTER 2

reappear in different guises to play multiple and unexpected roles.”2 One
may disagree that I achieved that, but it was certainly my goal.

In Growing Artificial Societies, with Robert Axtell, the premises are
a few minimal individual agent rules, which are shown to generate a
wide variety of core phenomena, such as migrations, skewed wealth
distributions, and others. However, as stated there, “The surprise consists
precisely in the emergence of familiar macrostructures from the bottom
up—from simple local rules that outwardly appear quite remote from
the social, or collective, phenomena they generate.” The surprise is “the
generative sufficiency of the simple local rules.”3

And finally, in the present volume, I have the same invariant aesthetic
goal. The specific “target” varies from chapter to chapter: Here it is to
grow civil wars, there it is to grow adaptive organizations, or conformity
to norms, or epidemic dynamics. But in every case, the aim (successful or
not) is to generate the phenomenon—I will not shrink from saying it—
“beautifully” in Russell’s particular sense, from premises and by means
which appear “natural and inevitable.”

Auguste Renoir said, “I don’t care about the subject, so long as it
reflects light.” In this same special sense, I don’t care about any of the
subjects in this book. Of course, as a human being, I care deeply about
oppressive class structures, devastating epidemics, and genocidal civil
wars. And each phenomenon is certainly worthy of the most serious
scholarly study. But, as a theoretician or artist (same thing),4 the topics
are mere constraints against which to exercise this fixed impulse to a kind
of generative minimalism.

I have certainly wandered from one constraint to another: generate
an entire movement from a three-note theme; generate mathematical
models of revolutions, arms races, and the spread of drugs from a
simple ecosystem model; generate an artificial society from a small set of
simple agent rules. The constraints, the “instrumentation” (from oboes
and violins, to differential equations, to computer programs), and the
generative mechanisms (from musical transforms to mathematical ones)
may all have changed. But the fundamental impulse—the “light” in
Renoir’s sense, the “field,” if you prefer—has not.5 And I feel about it

2Edward Beltrami, Bulletin of Mathematical Biology 60 (1998): 411–16.
3Joshua M. Epstein and Robert Axtell, Growing Aritifical Societies: Social Science from

the Bottom Up (Cambridge, MA: MIT Press, 1996), pp. 51–52.
4G. H. Hardy, A Mathematician’s Apology (1940), Canto version (Cambridge:

Cambridge University Press, 1992), 151.
5There are, of course, no academic departments of this field—only departments of its

epiphenomena.
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rather as Shakespeare felt about love. “It is an ever fixed mark . . . the
star to every wandering bark.”6

The Next Chapter

While discussing further this question of beauty in agent models, the
next chapter is focused on a number of foundational and epistemological
questions. Some are covered briefly in chapter 1, and some recur in
chapter 3. Hence, there is some duplication, or inefficiency, in the first
three chapters of this book. But, in a volume as critical of economics as
this one is, an overweaning concern for efficiency would be downright
hypocritical.

6Sonnet CXVI.
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Chapter 2

REMARKS ON THE FOUNDATIONS OF

AGENT-BASED GENERATIVE SOCIAL SCIENCE

JOSHUA M. EPSTEIN*

Generative Explanation

The scientific enterprise is, first and foremost, explanatory. While
agent-based modeling can change the social sciences in a variety of ways,
in my view its central contribution is to facilitate generative explanation
(see Epstein 1999). To the generativist, explaining macroscopic social
regularities, such as norms, spatial patterns, contagion dynamics, or
institutions requires that one answer the following question:

How could the autonomous local interactions of heterogeneous boundedly
rational agents generate the given regularity?

Accordingly, to explain macroscopic social patterns, we generate—or
“grow”—them in agent models. This represents a departure from
prevailing practice. It is fair to say that, overwhelmingly, game theory,
mathematical economics, and rational choice political science are con-
cerned with equilibria. In these quarters, “explaining an observed social
pattern” is essentially understood to mean “demonstrating that it is the
Nash equilibrium (or a distinguished Nash equilibrium) of some game.”

By contrast, to the generativist, it does not suffice to demonstrate that,
if a society of rational (homo economicus) agents were placed in the
pattern, no individual would unilaterally depart—the Nash equilibrium
condition. Rather, to explain a pattern, one must show how a population

*Joshua M. Epstein is a Senior Fellow in Economic Studies at The Brookings Institution,
a member of The Brookings–Johns Hopkins Center on Social and Economic Dynamics, and
an External Faculty member of The Santa Fe Institute.

For thoughtful comments on this chapter, the author thanks Claudio Cioffi-Revilla,
Samuel David Epstein, Carol Graham, Ross Hammond, Kislaya Prasad, Brian Skyrms,
Leigh Tesfatsion, and Peyton Young. For assistance in preparing the manuscript for
publication, he thanks Danielle Feher.

This essay is published simultaneously in Handbook of Computational Economics,
Volume 2: Agent-Based Computational Economics, ed. L. Tesfatsion and K. Judd. 2006.
North-Holland.



July 6, 2006 Time: 02:02pm chapter2.tex

REMARKS ON FOUNDATIONS 51

of cognitively plausible agents, interacting under plausible rules, could
actually arrive at the pattern on time scales of interest. The motto, in
short, is (Epstein 1999): If you didn’t grow it, you didn’t explain it. Or,
in the notation of first-order logic:

∀x(¬Gx ⊃ ¬Ex) (1)

To explain a macroscopic regularity x is to furnish a suitable microspeci-
fication that suffices to generate it.1 The core request is hardly outlandish:
To explain a macro-x, please show how it could arise in a plausible
society. Demonstrate how a set of recognizable—heterogeneous, auto-
nomous, boundedly rational, locally interacting—agents could actually
get there in reasonable time. The agent-based computational model
is a new, and especially powerful, instrument for constructing such
demonstrations of generative sufficiency.

Features of Agent-Based Models

As reviewed in Epstein and Axtell 1996 and Epstein 1999, key features
of agent-based models typically include the following:2

heterogeneity

Representative agent methods—common in macroeconomics—are not
used in agent-based models. Nor are agents aggregated into a few
homogeneous pools. Rather, every individual is explicitly represented.
And these individuals may differ from one another in myriad ways: by
wealth, preferences, memories, decision rules, social network, locations,
genetics, culture, and so forth, some or all of which may adapt or change
endogenously over time.

autonomy

There is no central, or “top down,” control over individual behavior
in agent-based models. Of course, there will generally be feedback
between macrostructures and microstructures, as where newborn agents
are conditioned by social norms or institutions that have taken shape

1In slightly more detail, if we let M = {i : i is a microspecification} and let G(i, x) denote
the proposition that i generates x, then the proposition Gx can be expressed as ∃iG(i, x).
Then, longhand, the motto becomes: ∀x(¬∃iG(i, x) ⊃ ¬Ex).

2I do not claim that every agent-based model exhibits all these features. My point is
that the explanatory desiderata enumerated (heterogeneity, local interactions, bounded
rationality, etc.) are easily arranged in agent-based models.
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endogenously through earlier agent interactions. In this sense, micro and
macro will, in general, co-evolve. But as a matter of model specification,
no central controllers (e.g., Walrasian auctioneers) or higher authorities
are posited ab initio.

explicit space

Events typically transpire on an explicit space, which may be a landscape
of renewable resources, as in Epstein and Axtell 1996, an n-dimensional
lattice, a dynamic social network, or any number of other structures. The
main desideratum is that the notion of “local” be well-posed.

local interactions

Typically, agents interact with neighbors in this space (and perhaps
with sites in their vicinity). Uniform mixing (mass action kinetics) is
generically not the rule. Relatedly, many agent-based models, following
Herbert Simon, also assume:

bounded rationality

There are two components of this: bounded information and bounded
computing power. Agents have neither global information nor infinite
computational capacity. Although they are typically purposive, they are
not global optimizers; they use simple rules based on local information.

non-equilibrium dynamics

Non-equilibrium dynamics are of central concern to agent modelers,
as are large-scale transitions, “tipping phenomena,” and the emergence
of macroscopic regularity from decentralized local interaction. These
are sharply distinguished from equilibrium existence theorems and
comparative statics, as is discussed below.

Recent Expansion

The literature of agent-based models has grown to include a number
of good collections (e.g., The Sackler Colloquium, Proceedings of the
National Academy of Sciences, 2002), special issues of scholarly journals
(Computational Economics 2001, The Journal of Economic Dynamics
and Control, 2004), numerous individual articles in academic journals
(such as Computational and Mathematical Organization Theory), the
science journals (Nature, Science) and books (e.g., Epstein and Axtell
1996; Axelrod 1997; Cederman 1997). New journals (e.g., The Journal
of Artificial Societies and Social Simulation) are emerging, computa-
tional platforms are competing (e.g., Ascape, Repast, Swarm, Mason).
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International societies for agent-based modeling are being formed.
Courses on agent-based modeling are being offered at major universities.
Conferences in the U.S., Europe, and Asia are frequent, and agent-based
modeling is receiving considerable attention in the press. The landscape
is very different than it was a decade ago.

Epistemological Issues

Einstein wrote that, “Science without epistemology is—in so far as it
is thinkable at all—primitive and muddled” (Pais 1982). Given the rapid
expansion of agent-based modeling, it is an appropriate juncture at which
to sort out and address certain epistemological issues surrounding the
approach. In particular, and without claiming comprehensiveness, the
following issues strike me as fundamentally important, and in need of
clarification, both within the agent modeling community and among its
detractors.

1. Generative sufficiency vs. explanatory necessity
2. Generative agent-based models vs. explicit mathematical models
3. Generative explanation vs. deductive explanation
4. Generative explanation vs. inductive explanation
5. Generality of agent models

I will attempt to address these and a variety of related issues. At several
points, there will be a need to distinguish claims from their converses.
The first example of this follows.

Generative Sufficiency

The generativist motto (1) cited above was:

∀x(¬Gx ⊃ ¬Ex) (2)

If you didn’t grow it, you didn’t explain it. It is important to note that we
reject the converse claim. Merely to generate is not necessarily to explain
(at least not well). A microspecification might generate a macroscopic
regularity of interest in a patently absurd—and hence non-explanatory—
way. For instance, it might be that Artificial Anasazi (Axtell et al. 2002)
arrive in the observed (true Anasazi) settlement pattern stumbling around
backward and blindfolded. But one would not adopt that picture of
individual behavior as explanatory. In summary, generative sufficiency
is a necessary, but not sufficient condition for explanation.

Of course, in principle, there may be competing microspecifications
with equal generative sufficiency, none of which can be ruled out so easily.
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The mapping from the set of microspecifications to the macroscopic
explanandum might be many-to-one. In that case, further work is
required to adjudicate among the competitors.

For example, if the competing models differ in their rules of individual
behavior, appropriate laboratory psychology experiments may be in
order to determine the more plausible empirically. In my own experience,
given a macroscopic explanandum, it is challenging to devise any rules
that suffice to generate it. In principle, however, the search could be
mechanized. One would metrize the set of macroscopic patterns, so that
the distance from a generated pattern to the target pattern (the pattern to
be explained) could be computed. The “fitter” a microspecification, the
smaller the distance from its generated macrostructure to the empirical
target. Given this definition of fitness, one would then encode the space
of permissible micro-rules and search it mechanically—with a genetic
algorithm, for example (as in Crutchfield and Mitchell 1995).

In any event, the first point is that the motto (1) is a criterion for
explanatory candidacy. There may be multiple candidates and, as in any
other science, selection among them will involve further considerations.3

The Indictment: No Equations, Not Deductive, Not General

Plato observed that the doctors would make the best murderers.
Likewise, in their heart of hearts, leading practitioners of any approach
know themselves to be its most capable detractors. I think it is healthy
for experienced proponents of any approach to explicitly formulate its
most damaging critique and, if possible, address it. In that spirit, it seems
to me that among skeptics toward agent modeling, the central indictment
is tripartite: First, that in contrast to mathematical “hard” science, there
are no equations for agent-based models. Second, that agent models are
not deductive;4 and third, that they are ad hoc, not general. I will argue
that the first two claims are false and that, at this stage in the field’s
development, the third is unimportant.

Equations Exist

The oft-claimed distinction between computational agent models, and
equation-based models is illusory. Every agent model is, after all, a

3As noted, empirical plausibility is one such. Theoretical economy is another. In gene-
rative linguistics, for example, S. D. Epstein and N. Hornstein (1999, ix–xviii) convincingly
argue that minimalism should be central in selecting among competing theories.

4Not everyone who asserts that computational agent modeling is non-deductive
necessarily regards it as a defect. See, for example, Axelrod 1997.
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computer program (typically coded in a structured or object-oriented
programming language). As such, each is clearly Turing computable
(computable by a Turing machine). But, for every Turing machine, there
is a unique corresponding and equivalent partial recursive function (see
Hodel 1995).

This is precisely the function class constructible from the zero function,
the successor function, and the “pick out” or projection function
(the three so-called initial functions) by finite applications of compo-
sition (substitution), bounded minimization, and—the really distinctive
manipulation—primitive recursion. This, as the defining formula below
suggests, can be thought of as a kind of generalized induction.

h(�x, 0) = f (�x)

h(�x, n + 1) = g(�x, n, h(�x, n))

(See Hamilton 1988, Boolos and Jeffrey 1989, Epstein and Carnielli
1989, or Hodel 1995 for a technical definition of this class of functions.)
So, in principle, one could cast any agent-based computational model as
an explicit set of mathematical formulas (recursive functions). In practice,
these formulas might be extremely complex and difficult to interpret.
But, speaking technically, they surely exist. Indeed, one might have
called the approach “recursive social science,” “effectively computable
social science,” “constructive social science,” or any number of other
equivalent things. The use of “generative” was inspired by Chomsky’s
usage (Chomsky 1965). In any case, the issue is not whether equivalent
equations exist, but which representation (equations or programs) is
most illuminating.

To all but the most adept practitioners, the recursive function repre-
sentation would be quite unrecognizable as a model of social interaction,
while the equivalent agent model is immediately intelligible as such.
However, at the dawn of the calculus, the same would doubtless have
been true of differential equations. It is worth noting that recursive
function theory is still very young, having developed only in the 1930s.
And, it is virtually unknown in the social sciences. It is the mathematical
formalism directly isomorphic (see Jeffrey 1991) to computer programs,
and over time, we may come to feel as comfortable with it as we now
do with differential equations. Moreover, it is worth noting that various
agent-based models have, in fact, been revealingly mathematized using
other, more familiar, techniques. (See Dorofeenko and Shorish 2002;
Pollicott and Weiss 2001; Young 1998.)

In sum, the first element of the indictment, that agent models are “just
simulations” for which no equations exist, is simply false. Moreover, even
if equivalent equations are not in hand, computational agent models have
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the advantage that they can be run thousands of times to produce large
quantities of clean data. These can then be analyzed to produce a robust
statistical portrait of model performance over the parameter ranges (and
rule variations) of interest.

This critique, moreover, betrays a certain naiveté about contemporary
equation-based modeling in many areas of applied science, such as
climate modeling. The mathematical models of interest are huge systems
of nonlinear reaction diffusion equations. In practice, they are not solved
analytically, but are approximated computationally. So, the opposition
of analytically soluble mathematical models on the one hand, and
computational models on the other, while conceptually enticing, is quite
artificial in practice.

Agent Models Deduce

Another misconception is that the explicit equation-based approach is
deductive, whereas the agent-based computational approach is not. This,
too, is incorrect. Every realization of an agent model is a strict deduction.
There are a number of ways to establish this. Perhaps the most direct is
to note that it follows from the previous point.

Every program can be expressed in recursive functions. But recursive
functions are computed deterministically from initial values. They are
mechanically (effectively) computable—in principle by hand with pencil
and paper. Given the nth (including the initial) state of the system, the
(n + 1)st state is computable in a strictly mechanical and deterministic
way by recursion. Since this mechanical procedure is obviously deductive,
so is each realization of an agent model.

A more sweeping equivalence can be established, in fact. It can
be shown that Turing machines, recursive functions, and first-order
logic itself (the system of deduction par excellence) are all strictly
intertranslatable (see Hodel 1995). So, in a rigorous sense, every state
generated in an agent model is literally a theorem. Since, accepting our
motto, to explain is to generate (but not conversely), and to generate a
state is to deduce it as a theorem, we are led to assert that to explain
a pattern is to show it to be theorematic.

A third, slightly less rigorous way to think of it is this. Every agent
program begins in some configuration x—a set of initial (agent) states
analogous to axioms—and then repeatedly updates by rules of the form;
if x then y. But, {x, x ⊃ y} is just modus ponens, so the model as a whole
is ultimately one massive inference in a Hilbert-type deductive system. To
“grow” a pattern p (and to explain a pattern p) is thus to show that it is
one of these terminal y’s—in effect, that it is theorematic, very much as
in the classic hypothetico-deductive picture of scientific explanation.
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What about Randomness?

If every run is a strict deduction, what about stochasticity, a common
feature of many agent models? Stochastic realizations are also strict
deductions. In a computer, random numbers are in fact produced by
strictly deterministic pseudo-random number generators. For example,
the famous linear congruential method (Knuth 1998) to generate a series
of pseudo-random numbers is as follows:

Define: m, the modulus (m> 0); a, the multiplier (0 ≤ a ≤ m); c, the
increment (0 ≤ c ≤ m), and x(0), the seed, or staring value (0 ≤ x(0) ≤ m).
Then, the (recursion) scheme for generating the pseudo-random sequence
is, for n ≥ 0:

x(n + 1) = (ax(n) + c) mod m

This determinism is why, when we save the seed and re-run the program,
we get exactly the same run again.

What Types of Propositions are Deduced?

In principle, the only objects we ever technically deduce are propositions.
When we deduce the Fundamental Theorem of Calculus, we deduce the
proposition: “The definite integral of a continuous real-valued function
on an interval is equal to the difference of an anti-derivative’s values at
the interval’s endpoints.” The result is normally expressed in mathemat-
ical notation, but, in principle, it is a proposition statable in English.5

In turn, we explain an empirical regularity when that regularity is
rendered as a proposition and that proposition is deduced from premises
we accept. For example, we explain Galileo’s leaning Tower of Pisa

5In principle, it can be further broken down into statements about limits of sums, and so
forth. As a completely worked out simple example, consider the mathematical equation

lim
x→2

x2 = 4.

It asserts: “The limit of the square of x, as x approaches two, is four.” In further detail,
it is the following claim:

∀(ε > 0)∃(δ > 0)[0 < |x − 2| < δ ⇒
∣
∣
∣x2 − 4

∣
∣
∣ < ε].

In English, “For every number epsilon greater than zero, there exists a number delta
greater than zero such that if the absolute value of the difference between x and 2 is strictly
between zero and delta, then the absolute value of the difference between the square of
x and four is less than epsilon.” The fact that it is easier to manipulate and compute
with mathematical symbols than with words may say something interesting about human
psychology, but it does not demonstrate any limit on the precision or expressive power of
English.
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observation (i.e., that objects of unequal masses dropped from the same
height land simultaneously) by strictly deducing, from Newton’s Second
Law and the Law of Universal Gravitation, the following proposition:
“The acceleration of a freely falling body near the surface of the earth is
independent of its mass.”

Well, if agent models explain by generating, and thus deducing, and
if, as I have just argued, the only deducible objects are propositions,
the question arises: what sorts of propositions are deduced when agent
models explain? In many important cases, the answer is: a normal form.

Social Science as the Satisfaction of Normal Forms

We explain a pattern when the pattern is expressed as a proposition and
the proposition is deduced from premises we accept. Seen in this light,
many of the macroscopic patterns we, as social scientists, are trying
to explain are expressible as large disjunctive normal forms, DNFs. In
general a DNF, δ has the logical form

δ =
n∨

i=1

m∧

j=1

φi j

where φi j is a statement form (see Hamilton 1988). Clearly, this discus-
sion applies to arbitrarily large, but finite, populations.

example 1. distributions

Suppose, then, that we are trying to explain a skewed wealth distribution
observed in some finite population of agents. For simplicity’s sake,
imagine three agents: A, B, and C. And suppose we observe that 6
indivisible wealth units (the country’s GNP) are distributed as 3:2:1. That
is the empirical target; and our model will be deemed a success if it grows
that distribution, regardless of who has what. What that means is that
the successful model will generate any one of the six conjunctions in the
following DNF, shown in braces (where A3 means “Agent A has 3 units,”
and so forth):

(A1 ∧ B2 ∧ C3) ∨
(A1 ∧ B3 ∧ C2) ∨
(A2 ∧ B1 ∧ C3) ∨
(A2 ∧ B3 ∧ C1) ∨
(A3 ∧ B1 ∧ C2) ∨
(A3 ∧ B2 ∧ C1)
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The model succeeds if it grows any one of these conjuncts, that is, a
conjunction whose truth makes the DNF true.

example 2. spatial patterns

Likewise, suppose we are trying to model segregation in a population
composed of two white and two black agents (W1, W2, B1, B2) arranged
on a line with four positions: 1, 2, 3, 4. The model works if it generates
two contiguous agents of the same color, followed by two contiguous
agents of the other color. As above, we don’t care who is where so
long as we get segregation on the line. The truth of any of the eight
conjunctions of the following DNF will therefore suffice (here W12
denotes the proposition: “white agent 1 occupies position 2”):

(W11 ∧ W22 ∧ B13 ∧ B24) ∨
(W11 ∧ W22 ∧ B23 ∧ B14) ∨
(W21 ∧ W12 ∧ B13 ∧ B24) ∨
(W21 ∧ W12 ∧ B23 ∧ B14) ∨
(B11 ∧ B22 ∧ W13 ∧ W24) ∨
(B11 ∧ B22 ∧ W23 ∧ W14) ∨
(B21 ∧ B12 ∧ W13 ∧ W24) ∨
(B21 ∧ B12 ∧ W23 ∧ W14).

Again, success in generating “segregation” consists in generating any
one of these conjunctions. That suffices to make the DNF true. While
this exposition has been couched in terms of wealth distributions and
distributions of spatial position, it obviously generalizes to distributions
of myriad sorts (e.g., size and power), and with straightforward modifica-
tion, to sequences of patterns over time. A dynamic sequence of patterns
would, in fact, be a Conjunctive Normal Form (CNF), each term of which
is a DNF of the sort just discussed.6

Generative Implies Deductive, but Not Conversely:
Nonconstructive Existence

A generative explanation is a deductive one. Generative implies deduc-
tive. The converse, however, does not apply. It is possible to deduce

6The general problem of satisfying an n-term CNF is NP-Complete (Garey and Johnson
1979). Based on this observation, it is tempting to conjecture that nonequilibrium social
science—suitably cast as CNF satisfaction—is computationally hard in a rigorous sense.
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without generating. Not all deductive argument has the constructive
character of agent-based modeling. Nonconstructive existence proofs are
clear examples. Often, these take the form of reductio ad absurdum7

arguments, which work as follows.
Suppose we wish to prove the existence of an x with some property

(e.g., that it is an equilibrium). We take as an axiom the so-called Law of
the Excluded Middle (LEM), implying that either x exists or x does not
exist. Symbolically:

∃x ∨ ¬∃x

One of those must be true. Next, we assume that x does not exist and
derive a contradiction. That is, we show that

¬∃x ⊃ [p ∧ ¬p]

Since contradictions are always False, this has the form:

¬∃x ⊃ F

But this implication can be True only if the antecedent, ¬∃x, is False.
From this it follows from the LEM that ∃x is True and voila: the x in
question must exist!

But we have failed to exhibit x, or specify any algorithm that would
generate it, patently violating our generative motto (1). We have failed
to show that x is generable at all, much less that it is generable on time
scales of interest. But, the existence argument is nonetheless deductive.

Now, there are deductive and nonconstructive existence proofs that do
not use reductio ad absurdum. One of my favorites is the beautiful and
startling index theoretic proof that, in regular economies, the number of
equilibria must be an odd integer (see Mas-Colell et al. 1995; Epstein
1997). This proof gives no clue how to compute the equilibria. Like
reductio, it fails to show the equilibria to be generable at all, much
less on time scales of interest. But, the existence argument is nonetheless
deductive.

Hence, if we insist that explanation requires generability, we are
led to the position that deductive arguments can be non-explanatory.
Generative explanation is deductive, but deduction is not necessarily
explanatory.

We have addressed the first two points of the indictment: that there are
no equations, and that agent modeling is not deductive. The third issue

7Reduction to an absurdity.
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was the generality of agent models. I would like to approach this topic by
a seemingly circuitous route, extending the preceding points on existence
and generability into the areas of incompleteness and computational
complexity.

incompleteness (attainability at all) and complexity
(attainability on time scales of interest) in social science

As background, in mathematical logic, there is a fundamental distinction
between a statement’s being true and its being provable. I believe
that in mathematical social science there is an analogous and equally
fundamental distinction between a state of the system (e.g., a strategy
distribution) being an equilibrium and its being attainable (generable).
I would like to discuss, therefore, the parallel between the following
two questions: (1) Is every true statement provable? and (2) Is every
equilibrium state attainable?

In general, we are interested in the distinction between satisfaction of
some criterion (like being true, or being an equilibrium) and generability
(like being provable through repeated application of inference rules, or
being attainable through repeated application of agent behavioral rules).

Now, mathematico-logical systems in which every truth is provable
are called complete.8 The great mathematician David Hilbert, and most
mathematicians at the turn of the Twentieth Century, had assumed
that all mathematical systems of interest were complete, that all truths
statable in those systems were also provable in them (i.e., were deducible
from the system’s axioms via the system’s inference rules). A major
objective of the so-called Hilbert Programme for mathematics was to
prove precisely this. It came as a tremendous shock when, in 1931, Kurt
Gödel proved precisely the opposite: all sufficiently rich9 mathematical
systems are incomplete. In all such systems, there are true statements that
are unprovable! Indeed, he showed that there were true statements that
were neither provable nor refutable in the relevant systems—they were
undecidable.10 (See Gödel 1931; Smullyan 1992; Hamilton 1988.)

Now, truth is a special criterion that a logical formula may satisfy. For
example, given an arbitrary formula of the sentential calculus, its truth
(i.e., its tautologicity) can be evaluated mechanically, using truth tables.
Provability, by contrast, is a special type of generability. A formula is
provable if, beginning with a distinguished set of “starting statements”

8Sometimes the terms adequate or analytical are used.
9For a punctilious characterization of precisely those formal systems to which the

theorem applies, see Smullyan 1992.
10Importantly, he did so constructively, displaying a (self-referential) true statement that

is undecidable; that is, neither it nor its negation are theorems of the relevant system.
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called axioms, it can be ground out—attained, if you will—by repeated
application of the system’s rule(s) of inference.

Equilibrium (Nash equilibrium, for example) is strictly analogous to
truth: it too is a criterion that a state (a strategy distribution) may satisfy.
And the Nash “equilibriumness” of a strategy configuration (just like the
truth of a sentential calculus formula) can be checked mechanically.

I venture to say that most contemporary social scientists—analogous
to the Hilbertians of the 1920s—assume that if a social configuration
is a Nash equilibrium, then it must also be attainable. In short, the
implicit assumption in contemporary social science is that these systems
are complete.

However, we are finding that this is not the case. Epstein and
Hammond (2002) offer a simple agent-based game almost all of whose
equilibria are unattainable outright. This model is presented in the next
chapter. More mathematically sophisticated examples of incompleteness
include Prasad’s result, based on the unsolvability of Hilbert’s 10th
Problem:

For n-player games with polynomial utility functions and natural number
strategy sets the problem of finding an equilibrium is not computable. There
does not exist an algorithm which will decide, for any such game, whether
it has an equilibrium or not . . . . When the class of games is specified by a
finite set of players, whose choice sets are natural numbers, and payoffs are
given by polynomial functions, the problem of devising a procedure which
computes Nash equilibria is unsolvable. (Prasad 1997)

Other examples of uncomputable (existent) equilibria include Foster and
Young 2001; Lewis 1985, 1992a, 1992b; and Nachbar 1997. Some
equilibria are unattainable outright.

A separate issue in principle, but one of great practical significance, is
whether attainable equilibria can be attained on time scales of interest to
humans. Here, too, we are finding models in which the waiting time to
(attainable) equilibria scales exponentially in some core variable. In the
agent-based model of economic classes of Axtell, Epstein, and Young
(2001),11 we find that the waiting time to equilibrium is exponential
in both the number of agents and the memory length per agent, and is
astronomical when the first exceeds 100 and the latter 10. Likewise, the
number of time steps (rounds of play) required to reach the attainable
equilibria of the Epstein and Hammond (2002) model was shown to
grow exponentially in the number of agents.

11Chapter 8 of this book.
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One wonders how the core concerns and history of economics would
have developed if, instead of being inspired by continuum physics and
the work of Lagrange and Hamilton (see Mirowski 1989)—blissfully
unconcerned as it is with effective computability—it had been founded
on Turing. Finitistic issues of computability, learnability, attainment
of equilibrium (rather than mere existence), problem complexity, and
undecidability, would then have been central from the start. Their
foundational importance is only now being recognized. As Duncan Foley
summarizes,

The theory of computability and computational complexity suggests that
there are two inherent limitations to the rational choice paradigm. One
limitation stems from the possibility that the agent’s problem is in fact
undecidable, so that no computational procedure exists which for all inputs
will give her the needed answer in finite time. A second limitation is posed
by computational complexity in that even if her problem is decidable, the
computational cost of solving it may in many situations be so large as to
overwhelm any possible gains from the optimal choice of action. (See Albin
1998, 46)

For fundamental statements, see Simon 1982, 1987; Hahn 1991; and
Arrow 1987. Of course, beyond these formal limits on canonical ratio-
nality, there is the body of evidence from psychology and laboratory
behavioral economics that homo sapiens just doesn’t behave (in his
decision-making) like homo economicus.

Now, the mere fact that an idealization (e.g., homo economicus) is
not accurate in detail is not grounds for its dismissal. To say that a
theory should be dismissed because it is “wrong” is vulgar. Theories
are idealizations. There are no frictionless planes, ideal gases, or point
masses. But these are useful idealizations in physics. However, in social
science, it is appropriate to ask whether the idealization of individual
rationality in fact illuminates more than it obscures. By empirical lights,
that is quite clearly in doubt.

This brings us to the issue of generality. The entire rational choice
project, if you will, is challenged by (1) incompleteness and outright
uncomputability, by (2) computational complexity (even of computable
equilibria), and by (3) powerful psychological evidence of framing
effects and myriad other systematic human departures from canonical
rationality. Yet, the social science theory that enjoys the greatest formal
generality12 (and mathematical elegance) is precisely the rational choice
theory.

12Here, I mean generality in the theory’s formal statement, not in its range of successful
empirical application.
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Generality Is Quantification over Sets

Now, generality has to do with quantification. Universal gravitation
says that for any two masses whatsoever, the attractive gravitational
force is inversely proportional to the square of the separation distance.
Mechanics quantifies over the set of all masses. Axiomatic general
equilibrium theory quantifies over the set of all consumers in the
economy, positing constrained utility maximization for every agent
in the system. Rational choice theory likewise posits expected utility
maximization for all actors.

Clearly, agent modelers do not quantify over sets this big. There is a
great deal of experimentation with tags, imitation, evolution, learning,
bounded rationality, and zero-intelligence traders, for example. In many
cases, however, the experiment is motivated by responsiveness to data.
Empirically successful (generatively sufficient) behavioral rules for the
Artificial Anasazi of 900 A.D.13 probably should not look much like
the agent rules in the Axtell-Epstein (1999) model of U.S retirement
norms,14 which in turn may have little relation to the rules governing
agents in Axtell’s (1999) model of firms, or the Epstein et al. (2004)
model of smallpox response,15 or the zero-intelligence traders of Farmer
et al. (1993). Yet, despite their diversity, these models are impressive
empirically. If reasonable fidelity to data requires us to be ad hoc (i.e.,
to quantify over smaller sets), with different rules for different settings,
then that is the price of empirical progress.

Truth and Beauty

All of this said, the real reason some mathematical social scientists don’t
like computational agent-based modeling is not that the approach is
empirically weak (in notable areas, it’s empirically stronger than the
neoclassical approach). It’s that it isn’t beautiful. When theorists, such
as Frank Hahn, lament the demise of “pure theory” in favor of computer
simulation (Hahn 1991), they are grieving the loss of mathematical
beauty. I would argue that reports of its death are premature. Let us
face this aesthetic issue squarely.

On the topic of mathematical beauty, none have written more
eloquently than Bertrand Russell (1957):

Mathematics, rightly viewed, possesses not only truth, but supreme
beauty—a beauty cold and austere, like that of sculpture, without appeal to

13Chapters 4–6 of this book.
14Chapter 7 of this book.
15Chapter 12 of this book.
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any part of our weaker nature, without the gorgeous trappings of painting
or music, yet sublimely pure, and capable of a stern perfection such as only
the greatest art can show.

Later, in the same essay, Russell writes:

In the most beautiful work, a chain of argument is presented in which every
link is important on its own account, in which there is an air of ease and
lucidity throughout, and the premises achieve more than would have been
thought possible, by means which appear natural and inevitable. (Emphasis
added)

Hahn (1991) defines “pure theory” as “the activity of deducing implica-
tions from a small number of fundamental axioms.” And when he writes
that “with surprising frequency this leads to beauty (Arrow’s Theorem,
The Core, etc),” it is clear that it is Russell’s beauty he has in mind.

Generality (mathematical unification) for its own sake satisfies this fine
impulse to beauty and has proven to be highly productive scientifically.
Physics is highly general, and so is mathematical equilibrium theory. And,
as Mirowski (1989) has documented, “physics envy” was quite explicitly
central to its development. This is entirely understandable. Any scientist
who doesn’t have physics envy is an idiot. I am not advocating that
we abandon the quest for elegant generality in favor of a case by case
narrative (i.e., purely historical) approach. By comparison to a beautiful
(Newton-like) generalization, actual history is just this particular apple
bobbling down this particular hill. To me, the mathematical theory of
evolution is more beautiful than any particular tiger. One of the most
miraculous results of our own evolution is that our search for beauty can
lead to truth. But there are different kinds of beauty. An analogy to music
history may be apposite.

Just as the German classical composers had the dominant 7th and
circle of fifths as harmonic propulsion, so the neoclassical economists
have utility maximization to propel their analyses. And it is a style of
“composition” subscribed to by an entire school of academic thought.
We agent modelers are not of this school. We don’t have the Germanic
dominant 7th of utility maximization to propel every analysis forward—
more like the French impressionists, we must in each case be inventive to
solve the problem of social motion, devising unique agent rules model by
model. If that makes us ad hoc, then so was Debussy, and we are in good
artistic company.

Schelling’s (1971) segregation model is important not because it’s
right in all details (which it doesn’t purport to be), and it’s beauti-
ful not because it’s visually appealing (which it happens to be). It’s
important because—even though highly idealized—it offers a powerful
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and counter-intuitive insight. And it’s beautiful because it does so with
startling Russellian parsimony. The mathematics of chaos is beautiful not
because of all the pretty fractal pictures it generates, useful as these are
in stimulating popular interest. What’s beautiful in Russell’s sense is the
startlingly compact yet sweepingly general Li-Yorke (1975) theorem that
“period three implies chaos.” And when an agent-based model is beauti-
ful in this deep sense, it has nothing to do with the phantasmagorical “eye
candy”—Russell’s gorgeous trappings—of animated dot worlds. Rather,
its beauty resides in the far-reaching generative power of its simple micro-
rules, seemingly remote from the elaborate macro patterns they produce.
Precisely as Russell would have it: “the premises achieve more than
would have been thought possible, by means which appear natural and
inevitable.”

The musical parallels are again irresistible. To be sure, Bach’s final
work, The Art of the Fugue, is gorgeous music, but to Bach, the game
was to explore the generative power of a single fugue theme. Bach
wrote nineteen stunningly diverse fugues based on this single theme, this
“premise,” if you will.16 In Bach’s hands, it certainly “achieves more than
would have been thought possible.” While its musical beauty is clear, the
intellectual beauty lies not in the sound, but in its silent unified structure.
Perhaps the best agent models unfold as “social fugues” in which the
apparent complexity is in fact generated by a few simple individual rules.

In any case, and whatever one’s aesthetic leanings, agent modelers are
in good scientific company trading away a certain degree of generality
for fidelity to data. The issue of induction arises in this connection.

Induction over Theorem Distributions

As noted earlier, one powerful mode of agent-based modeling is to run
large numbers of stochastic realizations (each with its own random seed),
collect clean data, and build up a robust statistical portrait of model
output. One goal of such exercises is to understand one’s model when
closed form analytical expressions are not in hand (though these exist
in principle, as discussed). A second aim of such exercises is to explain
observed statistical regularities, such as the distribution of firm sizes in
the U.S. economy (Axtell 1999, 2001). In either case, one builds up
a large sample of model realizations. But, as emphasized earlier, each
realization is a strict deduction. So, while I have no objection to calling
such activity inductive, it is induction over a sample distribution of
theorems, in fact. And it has quite a different flavor from “inductive”

16Bach died before completing this work, and doubtless could have composed countless
further fugues.
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survey research, where one collects real-world data and estimates it by
techniques of aggregate regression.

Summary

A number of uses of agent-based models have not been touched on
here. These include purely exploratory applications and those related
to mechanism design, among others (see Epstein 1999). My focus has
been on computational agent models as instruments in the generative
explanation of macroscopic social structures. In that connection, the
main epistemological points treated are as follows:

1. We distinguish the generative motto from its converse. The position is:

∀x(¬Gx ⊃ ¬Ex)

If you didn’t grow it, you didn’t explain it. But not conversely.
A microspecification that generates the explanandum is a candidate
explanation. Generative sufficiency is explanatorily necessary, but not
explanatorily sufficient. There may be more than one explanatory
candidate, as in any science where theories compete.

2. For every agent model, there exist unique equivalent equations. One can
express any Turing machine (and hence any agent model) in partial recur-
sive functions. Many agent models have been revealingly mathematized
in other ways, as stochastic dynamical systems, for example.

3. Every realization of an agent model is a strict deduction. So, (Gx⊃ Dx),
but not conversely, as in non-constructive (reductio ad absurdum) exis-
tence proofs. One can have (Dx∧¬Gx) and hence, by (1), (Dx∧ ¬Ex).
Not all deduction is explanatory.

4. We often generate, and hence deduce, conjuncts satisfying Disjunctive
Normal Forms, as when we grow distributions or spatial settlement
patterns in finite agent populations.

5. We carefully distinguish between existence and attainability in principle.
And we furthermore carefully distinguish between asymptotic attainabil-
ity and attainability on time scales of interest. In short, we are attentive
to questions of incompleteness (à la Gödel) and of computational
complexity (as in problems whose time complexity is exponential in key
variables). These considerations, when combined with powerful psycho-
logical evidence, cast severe doubt on the rational choice picture as the
most productive idealization of human decision-making, and serve only
to enforce the bounded rationality picture insisted on by Simon (1982).

6. Generality, while a commendable impulse, is not of paramount concern
to agent-based modelers at this point. Responsiveness to data often
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requires that we quantify over smaller sets than physics or neoclassical
economics. If that is ad hocism, I readily choose it over what Simon
(1987) rightly indicts as an empirically oblivious a priorism in economics.

7. Empirical agent-based modeling can be seen as induction over a sample
of realizations, each one of which is a strict deduction, or theorem, and
comparison of the generated distribution to statistical data. This differs
from inductive survey research where we assemble data and fit it by
aggregate regression, for example.

Conclusion

As to the core indictment that agent models are non-mathematical,
non-deductive, and ad hoc, the first two are false, and the third, I argue,
is unimportant. Generative explanation is mathematical in principle;
recursive functions could be provided. Ipso facto, generative explanation
is deductive. Granted, agent models typically quantify over smaller sets
than rational choice models and, as such, are less general. But, in many
cases, they are more responsive to data, and in years to come, may
achieve greater generality and unification. After all, a fully unified field
theory has eluded even that most enviable of fields, physics.
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Prelude to Chapter 3

EQUILIBRIUM, EXPLANATION,

AND GAUSS’S TOMBSTONE

Countless articles purport to explain social phenomena by furnishing
a Game in which the phenomenon is proved to be an equilibrium,
typically a Nash equilibrium or some refinement thereof. To be sure, there
are many cases in which the attempt to demonstrate that an important
social regularity is Nash is deeply revealing. But there are at least three
cases1 where it won’t be:

Case 1. The phenomenon of interest is a nonequilibrium dynamic.
Case 2. Equilibrium is attainable in principle, but not on acceptable

time scales.
Case 3. Equilibrium exists but is unattainable outright.

Every model in this volume falls into one of those three categories. I
hope the book demonstrates that, nevertheless, agent-based modeling
can be explanatory where “the equilibrium approach,” if you will, is
either infeasible (Case 1) or lacking in explanatory significance (Cases 2
and 3).2

Case 1

The Anasazi and Smallpox models are designed and empirically cali-
brated to reproduce observed spatiotemporal dynamics, not to arrive at
an equilibrium. I see them as examples of empirical nonequilibrium social
science. The Retirement model, too, is concerned with explaining the
dynamics of a shock-induced long-term transition from one distribution
of retirement ages to another. The Norms and Civil Violence models both
exhibit classic features of complex systems:3 local conformity, global

1The possibility of multiple equilibria raises further issues.
2Here, I agree entirely with Brian Skyrms: “The explanatory significance of equilibrium

depends on the underlying dynamics.” Brian Skyrms, “Stability and Explanatory Signifi-
cance of Some Simple Evolutionary Models,” Philosophy of Science 67 (March 2000): 94.

3H. Peyton Young, Individual Strategy and Social Structure: An Evolutionary Theory of
Institutions (Princeton: Princeton University Press, 1998).
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diversity, and punctuated (not stable) equilibrium. Similarly, the Demo-
graphic Prisoner’s Dilemma model exhibits persistent nonequilibrium
cycling. The Organization model, while more exploratory than explana-
tory, is concerned with structural adaptation in dynamic environments,
and finds that, in the main case discussed, optimal adaptation involves a
time-varying, rather than an equilibrium, structure.

Case 2

The Classes model is of the second type. There is indeed an asymptotic
equilibrium—a kind of fairness norm. But it is subject to astronomical
waiting times; these are shown to scale exponentially in a number of core
variables (including the number of agents). The equilibrium—the equity
norm—is not attainable on practical time scales, and the system spends
most of its time far from the equitable equilibrium.

Case 3

As discussed in the preceding two chapters, there are a number of deep
papers demonstrating that equilibria can be uncomputable in a strict
mathematical sense. However, this literature, while extremely important,
is also quite sophisticated technically. The next chapter, entitled, “Non-
Explanatory Equilibria,” offers an extremely simple game most of whose
equilibria are unattainable in principle (Case 3) and in which the time
to attain those equilibria that are attainable grows exponentially in the
number of players (Case 2). It demonstrates the essential distinction
between existence and attainability (both in principle and in practice)
in a very accessible way. And in so doing, I hope it provokes further and
deeper thought regarding the explanatory significance of equilibrium.

Incompleteness

Also as noted in the preceding chapter, the model can be seen as an
example of incompleteness in mathematical social science. If “being
true” is taken as the analog of “being an equilibrium” and “being
provable” is the analogue of “being attainable,” then the mapping is
clear: Propositions that are true but unprovable from the axioms (à la
Gödel) correspond to model states that are equilibria but are unattainable
from any permissible initial conditions.

Now, even incompleteness is a special case of the general distinc-
tion between satisfaction of some mechanically checkable condition
(like being a tautology or being a Nash equilibrium) and generability (like
being deducible from axioms under rules of inference or being attainable
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from initial conditions under rules of agent interaction). And this brings
us to Gauss’s tombstone.

Gauss’s Tombstone

Why is the tombstone of Carl Friedrich Gauss (1777–1855) engraved
with a regular 17-gon? Because he was worried about the very same
distinction. But, the story actually begins in Greece in roughly 500 BC.
The Greeks knew perfectly well what it would mean for a geometrical
shape to satisfy the following criterion: to be a regular n-gon, a polygon
with n sides of equal length. And they also knew what it would mean to
be constructible—that is, generable—by a sequence of specific operations
with only a straightedge ruler and a compass. In essence, the Greeks
asked: For what values of n is the regular n-gon constructible? Good
question!

It took roughly twenty-two centuries to arrive at the answer. A
complete (and very beautiful) theory of constructibility was finally
achieved by Evariste Galois (1811–32). En route, Gauss proved that
the regular 17-gon is, in fact, constructible. This singular achievement
had a profound effect on the young Gauss, convincing him to pursue
mathematics over philology. And, indeed, it accounts for his unusual
tombstone. Now, Gauss actually went a good deal farther, correctly
stating that The regular n-gon is constructible if and only if n equals
some nonnegative power of 2, multiplied by a product of distinct Fermat
primes;4 these are prime numbers of the form 22k + 1. Notice that
20(222 + 1) = 17.

Now, one might presume that there is no upper limit on the number
of regular n-gons that can be constructed. From Gauss’s result, it is clear
that this set will indeed be infinite if the set of distinct Fermat primes
is itself infinite. So, is it? That, too, is a good question. To this day, the
answer is not known!

What is known is that, for roughly 2,500 years, worrying about
the distinction between satisfaction and generability has been extremely
fruitful in logic and mathematics, stimulating profound researches of
Gödel, Gauss, Galois, and many others. I think it will be fruitful in the
social sciences as well.

4Gauss proved sufficiency and asserted that he had a proof of necessity. On the history
and mathematics of Galois Theory, see Charles R. Hadlock, Field Theory and Its Classical
Problems (Washington, DC: Mathematical Association of America, 1978); and I. Stewart,
Galois Theory (London: Chapman and Hall, 1973).
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NON-EXPLANATORY EQUILIBRIA: AN EXTREMELY

SIMPLE GAME WITH (MOSTLY) UNATTAINABLE

FIXED POINTS

JOSHUA M. EPSTEIN AND ROSS A. HAMMOND*

Equilibrium analysis pervades mathematical social science. This paper calls

into question the explanatory significance of equilibrium by offering an extremely

simple game, most of whose equilibria are unattainable in principle from any of its

initial conditions. Moreover, the number of computation steps required to reach

those (few) equilibria that are attainable is shown to grow exponentially with the

number of players—making long-run equilibrium a poor predictor of the game’s

observed state. The paper also poses a number of combinatorially challenging

problems raised by the game.

Much of game theory and mathematical economics is concerned with
equilibria (see Kreps 1990, 405). Nash equilibrium is an important
example. Indeed, in many quarters, “explaining an observed social
pattern” is understood to mean “demonstrating that it is the Nash
equilibrium of some game.” But, there is no explanatory significance to
an equilibrium that is unattainable in principle. And there is debatable
significance to equilibria that are attainable only on astronomical time
scales. Yet, in a great many instances, the social pattern to be explained
is simply shown to be an equilibrium. The questions, “Is the equilibrium
attainable?” and “On what time scale is it attainable?” are not raised.

There is a literature on unattainability—or uncomputability—of
equilibria, undecidability in games, and related topics. But it is quite

*Joshua M. Epstein: Economic Studies Program, The Brookings Institution, Washington,
DC and External Faculty, Santa Fe Institute, Santa Fe, New Mexico; Ross A. Hammond:
Department of Political Science, University of Michigan, Ann Arbor, Michigan.

For insightful comments, the authors thank Robert Axelrod, Robert Axtell, Jim Crutch-
field, William Dickens, Samuel David Epstein, John Miller, Scott Page, Duncan Watts, and
Peyton Young. This research was conducted at the Brookings Institution—Johns Hopkins
University Center on Social and Economic Dynamics.

This essay was previously published in Complexity 7(4): 18–22.
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technical.1 This article contributes an extremely simple game—easily
played by school children—that drives home the core distinction between
attainable and unattainable equilibria. Indeed, the overwhelming pre-
ponderance of this game’s equilibria are unattainable from any initial
configuration of the game.

We hope this arresting example stimulates skepticism about the
explanatory significance of equilibrium.2 As we will show, the game—
despite its surface simplicity—also raises a number of combinatorially
very challenging questions.

Description of the Game

The game’s ingredients are few and simple:

1. Events transpire on a linear array of sites, extending from an origin (the
leftmost site) to the right.

2. Agents are numbered consecutively from 1 to n. These numbers do not
change in the course of the game.

3. Initially, we require that agents be arrayed in a contiguous row, beginning
at the origin, in some arbitrary order. Figure 3.1 gives one such admissible
initial configuration for three agents. Each agent is represented as a
number, and each empty site is represented as an asterisk.

An Initial 3-Agent Configuration
3 2 1 * * *

Figure 3.1. An initial three-agent configuration.

4. The agents’ only rule of behavior is as follows:

AGENT RULE: If there is a lower-numbered agent anywhere
to your right, go to the head of the line (the site immediately to
the right of the rightmost agent). Otherwise, remain in place.

The rule is reminiscent of the Schelling segregation model (1971, 1978)
and the variant of Young (1998).3 In each case, agents have some

1See, for example, Foster and Young 2001; Saari and Simon 1978; Prasad 1997; Jordan
1993; and Nachbar 1997.

2For an insightful discussion of this issue in the context of chaos and evolutionary games,
see Skyrms 1997.

3Note, however, that the model is not a cellular automaton, because it involves a nonlocal
operation (agents go to the head of the line and are queried in sequence order). We thank
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preference for immediate neighbors. In our case, agents hate living
anywhere with a lower numbered agent to their right. And (with bounded
rationality) they move to the one site that is certain to remove the
problem, at least in the immediate term—the front site.

5. In any given round, agents are queried in descending order from the
highest number.4 As we shall see below, not all agents may wish to
move. The first agent who does wish to move does so, resulting in a new
configuration. That ends the round. Play continues until equilibrium is
reached, where:

6. An equilibrium is a configuration from which no agent would move
further under the rule. It is a fixed point. An equilibrium is termed
attainable if there is some initial configuration (see under item 3) from
which it can be attained. An unattainable equilibrium is an equilibrium
for which no such initial configuration exists.

That is the complete model specification.

Child’s Play

One can imagine the model as a children’s game, played on a linear
sequence of hopscotch squares. Assume the kids differ by height. They
form a line extending out from the school wall into the playground, one
in front of the next, in some random order by height. Then they move, as
specified under item 5 above, each according to the simple rule: If there’s
a shorter kid anywhere in front of you, jump to the very head of the line
(the square immediately in front of the front kid). Otherwise, remain in
place.

The game ends when equilibrium is attained—when no kid would
move further under the rule.5 (This equilibrium notion is Nash-like: no
agent has any incentive to unilaterally depart under the rule.)

A Numerical Example

As a simple illustration of how the configurations progress, let us walk
the game forward from the figure 3.1 configuration (see table 3.1).

Jim Crutchfield for this observation. On cellular automata, see Wolfram 1986; and Toffoli
and Margolus 1987.

4This sentence is revised from the original 2002 version, which may have suggested,
wrongly, that all agents are queried in each round. See also the appendix to this chapter.

5In effect, the kids have invented a type of decentralized (albeit highly inefficient) sorting
algorithm.
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Table 3.1
A Complete Game

Configuration Configuration
Number

1 3 2 1 * * *
2 * 2 1 3 * *
3 * * 1 3 2 *
4 * * 1 * 2 3

Starting in Configuration 1, agent “3” (the highest numbered) is
queried first. Since there is a lower numbered agent to her right, she
jumps to the head of the line, leaving a space in her former position—
yielding Configuration 2.That ends the round. So, we begin a new round.
As before, we query agent “3” (the highest numbered) first. This time,
she declines to change position. So, we query the next highest numbered
agent: “2”. Since there is a lower numbered agent to her right, she now
jumps to the head of the line, leaving a space in her former spot—yielding
Configuration 3. This, of course, “upsets” agent 3, who moves when
queried at the beginning of the next round, generating Configuration 4.
In Configuration 4, agent 3 does not wish to move, so agent 2 is queried.
She declines, so agent 1 is (at last) queried, but declines as well (as the
lowest numbered agent always does). Configuration 4 is therefore an
equilibrium. It is obviously attainable. Notice that it requires 6 spaces
in total.

Space and Time Requirements for Attainable Equilibria

For n agents, how many spaces are required to ensure enough space for
all attainable equilibria? Perhaps surprisingly, the answer is

smax(n) = n +
n−2∑

i=0

2i = (n − 1) + 2(n−1) (1)

This space requirement grows exponentially in n.Values of smax(n), for
various n values are given in table 3.2.

Regarding time (i.e., number of computation steps), the equilibrium of
table 3.1 required 3 rounds to compute, from the initial configuration
321***. In general, equilibria occupying smax (n) (as in Equation 1)
spaces will be obtainable in smax(n) − n rounds, which, quite notably, is
also exponential in n. Daunting numerical examples are left to the reader.
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Table 3.2
Maximum Space Requirements for All Attainable Equilibria, Various n

n Sites

3 6
4 11
5 20

20 524,307
25 16,777,240
30 5.37 × 108

50 5.63 × 1014

100 6.34 × 1029

As prosaic examples with kids, assume each hopscotch square is
2 feet deep and that the games begin on a playground in Cambridge,
Massachusetts. Then, for 20 kids (an average kindergarten class), there
are initial line-ups such that, when (after 524,287 moves) equilibrium
is attained, the tallest kid is standing in Central Park. For 25 kids,
there are initial line-ups such that, when (after about 17 million moves)
equilibrium is attained the tallest kid is standing in Tokyo. For 30 kids,
there are initial line-ups such that, when (after more than 500 million
moves) equilibrium is attained, the tallest kid has circumnavigated the
earth 10 times. For 50 players, there are attainable equilibria extending
over roughly 563 trillion sites. And for games involving 100 agents—a
standard population size in the literature of n-person games and agent-
based models—even the set of attainable equilibria is uncomputable on
all practical time scales. And, in fact, most equilibria are unattainable in
principle.

Attainable Equilibria

A full treatment of the n = 3 case will be instructive. There are 3!
acceptable initial configurations, and 5 distinct attainable equilibria, as
shown in table 3.3. Notice that the equilibrium **1*23 is attainable
from the initial configurations: 231*** and 321***. In general, a
given attainable equilibrium may be attainable from multiple initial
configurations.6

6In this connection, the reader might find it interesting to consider the following general
problem: Give a formula, f (n), for the number of distinct equilibria attainable from the n!
distinct initial configurations of the n-agent game.
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Table 3.3
The 5 Attainable Equilibria for n = 3

Initial Configuration Resulting Equilibrium

1 2 3 * * * 1 2 3 * * *
1 3 2 * * * 1 * 2 3 * *
2 3 1 * * * * * 1 * 2 3
2 1 3 * * * * 1 * 2 3 *
3 1 2 * * * * 1 2 3 * *
3 2 1 * * * * * 1 * 2 3

Unattainable Equilibria

While (as shown in table 3.3) there are 5 distinct attainable equilibria for
the n = 3 case, there are 20 equilibria in total (see eq. 2). Ipso facto,
there are 15 unattainable equilibria! They are listed in table 3.4. In
each of these configurations, every agent is happy with her immediate
neighborhood, but none of these configurations are attainable from any
initial configuration.

For n = 3, then, unattainability is the norm among equilibria. This
pattern only gets more dramatic as n increases. Indeed, the ratio of
attainable to unattainable equilibria approaches zero very quickly. For
n = 4, there are 330 equilibria, of which 12 are attainable, a mere 4%.

Table 3.4
The 15 Unattainable Equilibria for n = 3

1. 1 * 2 * * 3
2. * 1 2 * * 3
3. 1 * * 2 * 3
4. * 1 * 2 * 3
5. * * 1 2 * 3
6. 1 * * * 2 3
7. * 1 * * 2 3
8. * * * 1 2 3
9. 1 2 * 3 * *

10. 1 2 * * 3 *
11. 1 * 2 * 3 *
12. * 1 2 * 3 *
13. 1 * * 2 3 *
14. 1 2 * * * 3
15. * * 1 2 3 *
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For n = 5, there are 15,504 equilibria, of which 41 are attainable, or
0.2%. For n > 5, the attainable percentage is effectively zero.

The formula for the total number of equilibria, T(n), even for the n = 4
case, turns out to be quite complex:

T(4) = (β4 + 1) +
β4∑

i=1

i+
β4∑

i=1
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j +
β4∑
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where β4 = smax(4) − 4 = ∑2
i=0 2i = 7.7 For n agents, the appropriate

generalization is as follows. First, the index variables will run from v1 to
vn−1. Then,

T(n) = (βn + 1) +
βn∑

v1=1

v1 +
βn∑

v1=1

v1∑

v2=1

v2 + · · · +
βn∑
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· · ·
vn−2∑
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vn−1, (2)

where βn = smax(n) − n =∑n−2
i=0 2i , as before.

Now, for n agents, the number of distinct initial configurations is n!,
but the number of attainable equilibria is less than n! (as illustrated in
table 3.4). Hence, the fraction of attainable to total is bounded above
by n!/[T(n)]. Since n!/[T(n)] → 0 extremely fast, so does the fraction of
attainables. Hence the generic equilibrium is, in fact, unattainable from
any initial conditions.8

Clearly, restricting the space of permissible initial configurations is
important to this result. While at first glance, such restrictions may
seem artificial, they are the norm in games and contests generally. Chess,
checkers, and many other board games possess required initial set-ups.

7A closed form representation of the result would obscure the iterative nature of the
solution. Hence, the iterated summations shown.

8Whether or not an equilibrium can be easily diagnosed as unattainable is beside the
point we are making here. But, to discuss this briefly, some cases are clear on inspection.
For example, the equilibrium ***123 is unattainable, because the digit “1” never moves
(as noted earlier) and appears too far to the right to be permissible initially. Similarly,
the equilibrium *1*2*3 can be easily identified as a Garden of Eden configuration (see
below) and is therefore not attainable. However, some cases are not so obvious: **123* is
unattainable. Now, in principle, one can classify equilibria as unattainable by brute force.
For each of the n! initial conditions, one simply grinds out the attainable equilibria. Then,
for any candidate equilibrium, one “simply” checks—by bitwise comparison—whether it
is in the list of attainables or not. However, the number of required comparisons grows
exponentially in n. Mechanical “space counting” tests for unattainability, although more
direct, nonetheless require inspection of βn sites, and will be computationally prohibitive in
practice for agent populations of any significance.
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Straight pool, 9-Ball, and 8-Ball (stripes and solids) each begin with the
billiard balls “racked” in a specified way. In racquet sports, such as
tennis, squash, and ping-pong, players are not permitted to serve (i.e.,
begin a point) from “just anywhere.” Football prohibits certain line-
ups and allows others. Jousts and pistol duels had highly stylized initial
positions, as do fencing matches. Further examples will come readily to
mind. Indeed, on reflection, some restriction on initial configurations
would seem to be the rule across formalized contests, rather than the
exception. In this light, our restriction seems natural enough.

Equilibrium and Explanation

Here, then, is an extremely simple playground game that admits a huge
number of equilibria, virtually all of which are not attainable from any
initial configuration, once there are 5 or more players. So, returning to
the central issue of explanatory significance, imagine being a theoretical
playgroundologist. Your colleagues, the empirical playgroundologists,
have documented a powerful regularity: They observe kids all over the
world lined up from shortest to tallest on playgrounds; they are spaced in
all sorts of bizarre ways, but they’re lined up in order by height. What is
the explanation? This is the central empirical puzzle of playgroundology.

Now, given an analogous empirical regularity, the standard and
ostensibly explanatory practice in the formal social sciences is as follows:
Provide a game for which the observed regularity is an equilibrium.

But, this is easily done for playgroundology—the game we’ve just been
exploring fits the bill. Any line-up from shortest to tallest observed by our
empiricists in the field will, indeed, be an equilibrium of this game. As
we have shown, however, it will almost certainly not be attainable: kids
could not have arrived there from any initial line-up. Clearly, then, the
rules of this particular game are supremely unlikely to be those followed
on real playgrounds.

Nonetheless, under the standard practice above, these rules would be
regarded as explanatory! This seems unsatisfactory for playgroundology
because the generic equilibrium of the game is not attainable even in
principle, much less on time scales of any plausibility. So why, absent
demonstrations of attainability, should the same practice be accepted as
explanatory in social science? We believe it should not be.

An acceptable notion of “explanation” should include attainability. A
candidate is the generative notion advanced in Epstein 1999, in which a
set of individual rules, a microspecification, is regarded as explanatory
only if it suffices to generate the observed regularity—incorporating the
requirement of attainability.
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Beyond its explanatory shortcomings, equilibrium may be a bad
predictor of observed configurations.9 Obviously, unattainable equilibria
(because they will never be observed) are not predictive of the game’s
state on any time scale. However, even attainable equilibria (given the
exponential time complexity of the process) are, in almost all cases, poor
predictors on time scales of any interest to humans.

Conclusion

For the social sciences more broadly, there would appear to be two
lessons of this simple exercise. First, implicit claims that equilibrium
analysis is explanatory or predictive should be challenged and require
the most careful defense. Second, a successful defense of any such claims
must include a demonstration of attainability, on time scales of interest,
by agents employing plausible rules.10

Appendix: Further Combinatorial Questions

Although the playground game was contrived as a stark illustration of
these points, it happens to raise a number of interesting combinatorial
questions.

Garden of Eden Configurations

First, by way of definition, if there exists no previous configuration from
which a given configuration can be attained, then the latter is termed
a Garden of Eden (GE) configuration.11 For example, the following
configuration is GE:

*1*2*3

If 3 had been located anywhere to the left of 2 (or 1), it would have
jumped to the site immediately to 2’s right, not to the position shown.
This is both an equilibrium and a GE state.

We know that there are unattainable equilibria (i.e., unattainable
from any admissible initial configurations). Now, for many of these,

9Explanation and prediction are different matters: plate tectonics explains earthquakes
but does not predict when they will occur. Similarly, electrostatics explains lightning, but
does not predict where it will strike.

10By plausible rules, we have in mind those involving bounded information and bounded
individual computing capacity. See Simon 1982.

11According to E. F. Moore (1962), this term was first suggested by John Tukey.
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there are prior configurations. So, beginning with such an unattainable
equilibrium, if we back calculate, we must stop short of the origin
(i.e., the set of permissible initial configurations) since otherwise the
equilibrium would have been attainable. Where we stop must therefore
be a Garden of Eden configuration! Hence, we have the following
proposition:

Proposition: For every non-GE unattainable equilibrium, there exists
(at least one) GE non-equilibrium preceding configuration.

For example, consider the string: 1**23*. It is an equilibrium, but it is
not attainable from any permitted initial condition. The non-equilibrium
configurations from which it is derivable, however, are the following:
1*32** and 13*2**, both of which are GE, since neither one has a
predecessor that could occur initially.

The set of GE configurations from which a given configuration is
attainable shall be referred to as its basin of attraction. Naturally, this
suggests the following (evidently hard) question: For any equilibrium
configuration not attainable from an initial configuration, determine its
basin of attraction, or since all initial conditions are themselves GE, the
general problem is simply:

Problem 1. For any equilibrium (attainable or not), determine its basin
of attraction.

In pondering the computational complexity of this general problem,
bear in mind that even for n = 50 players there are many unattainable
equilibria consuming 563 trillion sites—in general, smax(n) sites.

For the sake of completeness, it would be of further interest to solve
the following:

Problem 2. From each “point” of a given equilibrium’s basin, how many
computation steps are required to attain the equilibrium?
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Appendix to Chapter 3

LARGE EFFECT OF A SUBTLE RULE CHANGE

One issue raised by the model is unattainability proper, which (as noted
in the prelude) is analogous to unprovability. A second issue is the time
complexity of attainable equilibria, which is analogous to the length of
proofs (or, equivalently, to Turing machine halting times). In the opening
Generative chapter, I discussed the issue of structural stability in agent
models, and in particular, the difficulty of metrizing the space of local
rules, the aim being to make concrete the notion of a “small change” in
rules. The present model furnishes a nice example of how a rather subtle
rule change produces notably different dynamics.

Recall the rule used in the chapter: Each round, agents are queried,
beginning with the highest. The minute any agent moves, the round
ends. Then, in the next round, agents are again queried, starting with
the highest numbered. Here’s how it unfolds for the n = 5 case. Notice
that it takes 8 rounds before “2” is even queried, by which point “5” has
already moved 4 times. In total, the “5” agent moves 8 times.

54321 [Initial Configuration]

*43215

**32154

**321*45

***21*453

***21*4*35

***21***354

***21***3*45

****1***3*452

****1***3*4*25

****1***3***254

****1***3***2*45

****1*******2*453

****1*******2*4*35

****1*******2***354

****1*******2***3*45
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If, by contrast, each agent is queried once per cycle, in descending order,
equilibrium is attained far more quickly, as shown below. Here, the “5”
agent moves but 4 times.

54321

*43215

**32154

***21543

****15432

****1*4325

****1**3254

****1***2543

****1***2*435

****1***2**354

****1***2**3*45

This variant, in which each agent is queried in each round, produces
very different dynamics. In fact, for the attainable equilibria, this process
has polynomial (worst-case) complexity, where the published process—
in which not all agents are queried each round—has complexity O(2n).
So this somewhat subtle rule change is the difference between a process
convergent in polynomial time and one that is exponential. In agent
models, details of the call order—subtle changes in rules—can be crucial.
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Prelude to Chapters 4–6

GENERATING CIVILIZATIONS: THE 1050 PROJECT

AND THE ARTIFICIAL ANASAZI MODEL

The Artificial Anasazi model grew out of the 2050 Project. This
was a multiyear collaboration of the Brookings Institution, the Santa Fe
Institute, and the World Resources Institute, funded by the MacArthur
Foundation. Although the project’s overall aim was to identify the
conditions for sustainable development on a global scale to the year
2050, there were many Working Groups. Murray Gell-Mann asked if
I would direct the Theoretical one. Having secured from Murray a
guarantee that it would not involve any administration (“ordering tuna
sandwiches for everybody”), I agreed, but in truth, the responsibilities of
my directorship quickly reduced to working on the Sugarscape Model
with Rob Axtell, and attending CLAW meetings. Since Murray kept
admonishing the project to take “a Crude Look At the Whole,” we
established a CLAW Group, with Murray—whom some of us dubbed
“Dr. CLAW”—as head.

At one of these CLAW meetings at SFI, I showed a Sugarscape run
that Rob and I had named the Proto-History. It was a highly idealized,
or “toy,” history of civilization (and is presented in Growing Artificial
Societies). Then I asked the audience—a typically unlikely SFI gathering
of physicists, archaeologists, biologists, neuroscientists, and refugees
from the various social sciences—“does this remind anyone of anything
real?” A hand shot up and a voice rang out, “It reminds me of the
Anasazi.” That was my introduction to George Gumerman and to the
Anasazi.

I’m sure I said something like, “The Ana-what?” The Anasazi, George
explained, were a vibrant civilization that flourished in what is now the
southwestern United States, from around AD 800 to AD 1350, at which
point they enigmatically vanished. Why? That struck me as a fascinating
question. The issue was whether it could be studied computationally.
Thinking the answer had to be no, I asked—at that point almost
rhetorically—“Is there any data?” To my (continuing) amazement, the
answer was yes. Enter dendrochronologist Jeff Dean, of the Tree Ring
Laboratory at Arizona.

Well, I returned to Brookings and excitedly told my colleagues Rob
and our then assistant Steve McCarroll. The immediate issue was what
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form the data was in. It was then in a variety of files accumulated over a
period of decades by the SARG (Southwestern Anthropological Research
Group), detailing the environmental and demographic history of the
Longhouse Valley Anasazi for over a millennium. Our first step was to
digitize this history. That then became the “target”—the explanandum—
of the Artificial Anasazi Project. Could we “grow”—generate—that true
history in an agent-based model? We were off and running.

There was a delicious irony in the thought that the 2050 Project would
end up pioneering the field of agent-based computational archaeology.
And as a play on its futuristic origins, we called the effort “The 1050
Project.”

I present three papers on the Anasazi. The first was published in the
Oxford volume Dynamics in Human and Primate Societies and assumes
no heterogeneity in fertility ages specifically. The second, published in
the Proceedings of the National Academy of Sciences, does assume
heterogeneity, and the result is a vastly better fit to the data.

Generative Explanation

A core point of the opening Generative chapter is that one can do
legitimate, rigorous empirical research with agent-based computational
models. Chapters 4–6 demonstrate that point. Indeed, Jared Diamond,
writing in Nature,1 said of this work that it “sets a new standard in
archaeological research.” I probably don’t know enough archaeology
to competently evaluate that claim, but find it extremely gratifying
nonetheless.

This Anasazi work explicitly seeks to satisfy the generative explanatory
standard set forth in the Generative chapter. Indeed, the Proceedings
paper ends with precisely this point: “To explain an observed spatio-
temporal history is to specify agents that generate—or grow—this
history. By this criterion, our . . . account of the evolution of this society
goes a long way toward explaining this history.”

A third Anasazi article, published in Artificial Life, is focused on spatial
settlement clustering and also broaches the question of social hierarchy,
itself a focus of chapter 13 on adaptive organizations.

1Jared M. Diamond, “Life with the Artificial Anasazi,” Nature 419:567–69.
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Chapter 4

UNDERSTANDING ANASAZI CULTURE CHANGE

THROUGH AGENT-BASED MODELING

JEFFREY S. DEAN, GEORGE J. GUMERMAN,
JOSHUA M. EPSTEIN, ROBERT L. AXTELL,
ALAN C. SWEDLUND, MILES T. PARKER,

AND STEPHEN MCCARROLL*

Introduction

Traditional narrative explanations of prehistory have become increas-
ingly difficult to operationalize as models and to test against archaeolog-
ical data. As such models become more sophisticated and complex, they
also become less amenable to objective evaluation with anthropological
data. Nor is it possible to experiment with living or prehistoric human
beings or societies. Agent-based modeling offers intriguing possibilities
for overcoming the experimental limitations of archaeology by represent-
ing the behavior of culturally relevant agents on landscapes. Manipulat-
ing the behavior of artificial agents on such landscapes allows us to, as
it were, “rewind the tape” of sociocultural history and to experimentally
examine the relative contributions of internal and external factors to
sociocultural evolution (Gumerman and Kohler in press).

Agent-based modeling allows the creation of variable resource (or
other) landscapes that can be wholly imaginary or that can capture
important aspects of real-world situations. These landscapes are popu-
lated with heterogeneous agents. Each agent is endowed with various

*We thank David Z. C. Hines of the Brookings Institution and Carrie Dean of the
Laboratory of Tree-Ring Research for valuable assistance. The following organizations pro-
vided funding and institutional assistance: The Brookings Institution, The National Science
Foundation, The John D. and Catherine T. MacArthur Foundation, The Alex C. Walker
Educational and Charitable Foundation, the Santa Fe Institute, the Arizona State Museum,
and the Laboratory of Tree-Ring Research.

This essay was previously published in Dynamics in Human and Primate Societies:
Agent-Based Modeling of Social and Spatial Processes, edited by Timothy A. Kohler and
George G. Gumerman. 2000. New York: Oxford University Press. Used by permission of
Oxford University Press, Inc.
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attributes (e.g., life span, vision, movement capabilities, nutritional
requirements, consumption and storage capacities) in order to replicate
important features of individuals or relevant social units such as house-
holds, lineages, clans, and villages. A set of anthropologically plausible
rules defines the ways in which agents interact with the environment
and with one another. Altering the agents’ attributes, their interaction
rules, and features of the landscape allows experimental examination
of behavioral responses to different initial conditions, relationships, and
spatial and temporal parameters. The agents’ repeated interactions with
their social and physical landscapes reveal ways in which they respond
to changing environmental and social conditions. As we will see, even
relatively simple models may illuminate complex sociocultural realities.

While potentially powerful, agent-based models in archaeology remain
unverified until they are evaluated against actual cases. The degree of fit
between a model and real-world situations allows the model’s validity
to be assessed. A close fit between all or part of a model and the test
data indicates that the model, albeit highly simplified, has explanatory
power. Lack of fit implies that the model is in some way inadequate.
Such “failures” are likely to be as informative as successes because they
illuminate deficiencies of explanation and indicate potentially fruitful
new research approaches. Departures of real human behavior from the
expectations of a model identify potential causal variables not included
in the model or specify new evidence to be sought in the archaeological
record of human activities.

The Artificial Anasazi Project

The Artificial Anasazi Project is an agent-based modeling study based on
the Sugarscape model created by Joshua M. Epstein and Robert Axtell
(1996), both of The Brookings Institution and the Santa Fe Institute.
The project was created to provide an empirical, “real-world” evaluation
of the principles and procedures embodied in the Sugarscape model
and to explore the ways in which bottom-up, agent-based computer
simulations can illuminate human behavior in a real-world setting. In
this case, the actual “test bed” is prehistoric Long House Valley in
northeastern Arizona, which, between roughly 1800 B.C. and A.D. 1300,
was occupied by the Kayenta Anasazi, a regionally distinct prehistoric
precursor of the modern Pueblo cultures of the Colorado Plateau
(figure 4.1). Archaeological information on the Kayenta Anasazi provides
an empirical data set against which simulations of human behavior
in Long House Valley can be evaluated. The actual spatiotemporal
history is the “target” we attempt to recreate and, hence, explain with
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Long House Valley
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Figure 4.1. Long House Valley, northeastern Arizona, showing the seven poten-
tial production zones.

an agent-based model. Ultimately, this target is constructed from the
research of the Long House Valley Project, a multiyear research effort
of the Museum of Northern Arizona and the Laboratory of Tree-Ring
Research at The University of Arizona, which primarily involved a
100-percent survey of the valley (Dean et al. 1978). Directly, however,
the data were extracted from the Long House Valley database in the
computer files of the Southwestern Anthropological Research Group
(SARG), an effort at large-scale data accumulation and management and
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cooperative research (Gumerman 1971; Euler and Gumerman 1978).
These data were downloaded from the SARG master file, modified
through the elimination of many categories of data deemed extraneous
for our purposes, and then imported into the Artificial Anasazi software.
These locational and site data serve as the referents against which the
simulations are evaluated.

The simulations take place on a landscape (analogous to Epstein and
Axtell’s Sugarscape) of annual variations in potential maize production
values based on empirical reconstructions of low- and high-frequency
paleoenvironmental variability in the area. The production values rep-
resent as closely as possible the actual production potential of various
segments of the Long House Valley environment over the last 1,600
years. On this empirical landscape, the agents of the Artificial Anasazi
model play out their lives, adapting to changes in their physical and social
environments.

Characteristics of the Study Area

Long House Valley (figure 4.1), a topographically discrete, 96 km2 land
form on the Navajo Indian Reservation in northeastern Arizona, provides
an intensively surveyed archaeological case study for the agent-based
modeling of settlement and economic behavior among subsistence-level
agricultural societies in marginal habitats. This area is well suited for
such a test for four reasons. First, it is a topographically bounded,
self-contained landscape that can be conveniently reproduced in a
computer. Second, a rich paleoenvironmental record, based on alluvial
geomorphology, palynology, and dendroclimatology (Gumerman 1988),
permits the accurate quantitative reconstruction of annual fluctuations
in potential agricultural production (in kilograms of maize per hectare).
Combined, these factors permit the creation in the computer of a
dynamic resource landscape that replicates conditions in the valley. On
this landscape, our artificial agents move about, bring new sites under
cultivation, form new households, and so on. Third, detailed regional
ethnographies provide an empirical basis for generating plausible behav-
ioral rules for the agents. Fourth, intensive archaeological research,
involving a 100-percent survey of the area supplemented by limited
excavations, creates a database on human behavior during the last 2,000
years that constitutes the real-world target for the modeling outcomes
(Dean et al. 1978; Gumerman and Dean 1989). Between roughly 7000
and 1800 B.C., the valley was sparsely occupied by, first, Paleoindian
big game hunters and, second, Archaic hunters and gatherers. The
introduction of maize around 1800 B.C. initiated a long transition to a
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food-producing economy and the beginning of the Anasazi cultural tradi-
tion, which persisted until the abandonment of the area about A.D. 1300.
Long House Valley provides archaeological data on economic, settle-
ment, social, and religious conditions among a localized western Anasazi
population. The archaeological record of Anasazi farming groups from
A.D. 200–1300 provides information on a millennium of sociocultural
stasis, variability, change, and adaptation to which the model can be com-
pared. The valley’s geologic history has produced seven different envi-
ronmental zones (figure 4.1) with vastly different productive potentials
for domesticated crops and various degrees of suitability for residential
occupation. One of these habitats, the Uplands Nonarable zone, consists
of exposed bedrock and steep, forested colluvial slopes with no farming
potential. Different soil and water characteristics impart different agricul-
tural potentials to the remaining habitats, in order of increasing potential
productivity the Uplands Arable, General Valley Floor, Midvalley Floor,
North Valley Floor and Canyon, and Sand Dunes zones.

Because the local environment is not temporally stable, modern condi-
tions, which include three soil types, heterogeneous bedrock and surficial
geology, sand dunes, arroyos, seeps, springs, and varied topography,
are only imperfect indicators of the past environmental circumstances
that influenced how and where the Anasazi lived and farmed. Accurate
representations of these circumstances, however, can be achieved through
paleoenvironmental reconstruction. Low- and high-frequency variations
in alluvial hydrologic and depositional conditions, effective moisture, and
climate have been reconstructed in unprecedented detail using surficial
geomorphology, palynology, dendroclimatology, and archaeology. High-
frequency climatic variability is represented by annual Palmer Drought
Severity Indices (PDSI), which reflect the effects of meteorological
drought (moisture and temperature) on crop production (Palmer 1965).
Low-frequency environmental variability is characterized primarily by
the rise and fall of alluvial groundwater and the deposition and erosion of
floodplain sediments. Based on relationships among these variables pro-
vided by Van West (1994), these measures of environmental variability
are used to create a dynamic landscape of annual potential maize
production, in kilograms, for each hectare in the study area for the period
A.D. 382 to 1400.

Constructing the Production Landscape

Because there are no crop yield data for any nearby or comparable areas,
maize production in Long House Valley (LHV) cannot be reconstructed
directly from tree growth or from dendroclimatically reconstructed PDSI
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values, as was done by Burns (1983) and Van West (1994) for southwest-
ern Colorado, which possesses the only reliable dry-farming crop yield
data in the entire Southwest. Rather, the integration of information from
several different sources was necessary to extrapolate the likely produc-
tion record. The sources utilized include Burns’ (1983) and Van West’s
(1994) dendroclimatic research and the Dolores Archaeological Project’s
soils work (Becker and Petersen 1987; Leonhardy and Clay 1985) in
southwestern Colorado, E. and T. Karlstrom’s (Karlstrom 1983, 1985;
Karlstrom and Karlstrom 1986; Karlstrom 1988) soil and geomorpho-
logical studies and Lebo’s (1991) dendroagricultural research on nearby
Black Mesa, Bradfield’s (1969, 1971) Hopi farming studies, and Soil
Conservation Service (SCS) soils surveys in Apache (Miller and Larsen
1975) and Coconino (Taylor 1983) counties in Arizona. LHV crop yields
were estimated by using relationships between PDSI values and maize
production worked out for southwestern Colorado by Van West. In
order to employ these relationships, the existing PDSI reconstruction for
the LHV area (the Tsegi Canyon reconstruction produced by the Tree-
Ring Laboratory’s Southwest Paleoclimate Project) had to be related to
one (or more) of Van West’s 113 PDSI reconstructions. Because PDSI is
calculated using specific water-holding attributes of the soils involved,
LHV soils had to be matched as closely as possible to one (or more)
possible southwestern Colorado equivalents.

The first step in matching LHV and Colorado soils involved charac-
terizing the former so that attributes comparable to the latter might be
identified. Because there are no soils data from LHV, one or more LHV
soils had to be classified in order to acquire the necessary attributes. Soils
research by the Black Mesa Archaeological Project identified possible
analogs to one LHV soil, that of the area defined as the General Valley
Floor environmental zone, hereafter referred to as LHV gensoil. This soil
and several Black Mesa soils are clayey units derived principally from
the Mancos shale. Furthermore, the Black Mesa soils were equated with
T. Karlstrom’s x and y chronostratigraphic units, which are coeval with
the prehistoric LHV soils of interest here. Using these criteria, it was
possible to identify six of E. Karlstrom’s profiles that contained units
potentially equivalent to LHV gensoil: Profiles 3, 4, and 9 (Karlstrom
1983), and 3, 4, and 5 (Karlstrom 1985) in Moenkopi Wash and Reed
Valley, respectively.

Although E. Karlstrom provides considerable information on his soil
units, he does not include the critical water-holding data necessary to
derive PDSIs. Therefore, we had to identify analogs to his soils that
had the requisite water capacity data. This was done by using SCS
surveys of Apache and Coconino counties to find shale-derived soils
that fell into the same typological classes as the Black Mesa soils: soil



July 14, 2006 Time: 12:12pm chapter4.tex

96 CHAPTER 4

families fine, loamy, mixed mesic Typic Camborthids, Typic Haplargids,
and Ustollic Haplargids. Potential analogs with adequate water capacity
data included the Clovis Soil (Ustollic Haplargid) from Apache County
and the Epikom Soil (Lithic Camborthid) from Coconino County. These
preliminary identifications were checked against Bradfield’s data for
soils along Oraibi Wash that should share most characteristics with
Black Mesa soils farther up the drainage. These procedures led to the
recognition of E. Karlstrom’s Ustollic Haplargid x/y alluvial soils from
Profiles 3 and 4 (Karlstrom 1983) and 4 and 5 (Karlstrom 1985) as
satisfactory analogs for LHV gensoil.

At this point, we intended to use the typological and water capacity
characteristics inferred for LHVgensoil to identify one or more analogs
among the 113 soils Van West used for PDSI calculations. Two problems
arose in this regard. First, the Tsegi PDSI values had been calculated using
NOAA’s (the National Oceanic and Atmospheric Administration) generic
soil moisture values of 1" in the first six inches of soil and 5" in the rest
of the column (the 1"/5" standard). These values clearly did not mimic
the 1"/10+" attributes inferred for LHVgensoil. Two options were open:
(1) recalculate PDSI using more realistic water capacity values or (2) find
a Colorado analog for the 1"/5" default PDSIs. Lacking resources to do
the former, we opted for the latter.

Finding a Colorado analog for the default PDSIs involved identifying a
soil (or soils) with attributes that mimicked those of the postulated LHV
gensoil. Potential analogs had to have the following characteristics: (1)
they had to duplicate the LHV soil families, (2) they had to represent the
same elevational range as the floor of LHV, roughly 6,000 to 7,000 feet,
(3) they had to have a comparable silt-loam-sand composition and
shale derivation, and (4) they had to exhibit the default 1"/5" water
capacity used in calculating the Tsegi PDSIs. The first criterion was
rejected because, although Van West gives the series names for the 113
soils she used, she does not give their family assignments. Luckily, the
Dolores Archaeological Project provided both series and family names
and allowed us to assign family designations to Van West’s series names.
With this information, it was a simple matter to identify soils that
exhibited the four characteristics listed above. Two soils came closest
to meeting the criteria: Sharps-Pulpit Loam (R7C) and Pulpit Loam
(ROHC), both fine, loamy, mixed mesic Ustollic Haplargids that occur
between 6,000 and 7,000 feet in elevation. Fortunately, Van West had
chosen each of these soils to represent one of eleven soil moisture classes.
The ROHC class came closest to LHV gensoil and was chosen as the
Colorado analog for that taxon.

The selection of ROHC as the working analog for LHV gensoil
permitted the use of PDSI to estimate annual maize crop yields in LHV.
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Through a series of statistical operations, Van West calculated the
yield of maize in pounds per acre or kilograms per hectare for each
representative soil type, including ROHC, under five different growing
season conditions: Favorable, Favorable-to-Normal, Normal, Normal-
to-Unfavorable, and Unfavorable. She also assigned each yield category
a range of PDSI values: Favorable (PDSI ≥ 3.000), Favorable-to-Normal
(1.000 to 2.999), Normal (−0.999 to 0.999), Normal-to-Unfavorable
(−2.999 to −1.000), and Unfavorable (≤−3.000). These concordances
allow crop yields to be estimated for each PDSI category. It then becomes
a relatively “simple” matter to convert the Tsegi PDSI values to LHV
maize crop yields.

Before conversion could begin, some way of integrating the LHV PDSI,
Hydrologic Curve (HC), and Aggradation Curve (AC) representations of
past environmental variability into a single measure useful for estimating
crop yield had to be devised. This was necessary because, during periods
of rising and stable high water tables, groundwater basically supports
crop production and overrides climatic fluctuations. Therefore, there are
long periods when PDSI does not adequately represent environmental
potential for farming. We handled this issue by generating Adjusted PDSI
values that incorporate HC and AC effects on crop production. This was
done by assigning arbitrary PDSI values corresponding to Favorable or
Favorable-to-Normal conditions during periods of deposition and rising
or stable high water tables. At other times, climate is the primary control
on crop yield, and straight PDSI values express environmental input.
The new series of Adjusted PDSI values reflects this operation. But, this
procedure applies only to the General Valley Floor zone of LHV and
not to the five other farmable environments in the valley, the North
Valley Floor, Midvalley Floor, Canyon, Uplands Arable, and Sand Dunes
zones (figure 4.1). Because the HC and AC are different for each of
the environmental zones, a set of Adjusted PDSI values was created for
each of five groups of zones: (1) General Valley Floor, (2) North Valley
Floor East and West and Canyons, (3) Midvalley Floor East and West,
(4) Shonto Plateau–Black Mesa Uplands Arable, and (5) the Sand Dunes
along the northeastern margins of the valley. Each set of Adjusted PDSI
values is used for its corresponding environmental zone. The four series
of Adjusted PDSI values are then converted to maize crop yields for each
hectare in each zone.

The conversion takes place by equating specific crop yields in kg/ha
with specific PDSI ranges as indicated in table 4.1. Thus, for example, on
the General Valley Floor and Midvalley Floor East, a PDSI between 1.000
and 2.999 equals a yield of 824 kg/ha of shelled corn, a PDSI greater
than or equal to 3.000 equals a yield of 961 kg/ha, and so forth. This
transformation applies only to General Valley Floor and Midvalley Floor
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Table 4.1
Factors for Converting Long House Valley Adjusted PDSI Values to Maize Crop

Yields in Kilograms/Hectare

Maize Yield (kilograms/hectare)

General Valley North Valley Upland Sand Dune
Adjusted PDSI Floora Floor/Canb Areasc Areasd

3.00 to ∞ 961 1,153 769 1,201
1.00 to 2.99 824 988 659 1,030
−0.99 to 0.99 684 821 547 855
−2.99 to −1.00 599 719 479 749
−∞ to −3.00 514 617 411 642

aUsed with General Valley Floor Adjusted PDSIs to estimate crop yields for the General
Valley Floor and Midvalley Floor East environmental zones.
bUsed with North Valley Floor and Canyons Adjusted PDSIs to estimate crop yields for
the North Valley Floor East and West, Canyon, and Midvalley Floor West environmental
zones.
cUsed with Upland Adjusted PDSIs to estimate crop yields for the Shonto Plateau–Black
Mesa Uplands Arable environmental zones.
dUsed with North Valley Floor East and West and Canyons Adjusted PDSIs to estimate crop
yields for the dune areas in the North Valley Floor and Midvalley Floor West environmental
zones.

East, however, because the other environmental zones have different
productivities. For example, the North Valley Floor, Midvalley Floor
West, and Canyon zones produce higher yields under identical climatic,
hydrologic, and aggradational conditions, while the Arable Uplands
produce less. These differences are expressed by increasing the yield
for the North Valley Floor–Midvalley Floor West–Canyons zones by 20
percent and decreasing the yield of the Uplands zones by 20 percent
relative to the General Valley Floor yield as shown in table 4.1. Thus,
a PDSI between 1.000 and 2.999 equals crop yields of 988 (North Valley
Floor) and 659 (Uplands) kg/ha, and a PDSI ≥ 3.000 produces yields of
1153 and 769 kg/ha, respectively. Yields for the particularly favorable
dune areas in the North Valley and Midvalley Floor West zones are
calculated by increasing the General Valley Floor yields by 25 percent as
shown in table 4.1. Here, a PDSI between 1.000 and 2.999 equals a crop
yield of 1030 kg/ha, and a PDSI ≥ 3.000 equals a yield of 1201 kg/ha.
Carrying these conversions of Adjusted PDSI values through for each
of the environmental zones produces four series of annual crop yield
estimates in kg/ha. Multiplying these by the hectarage of each zone
produces estimates of total potential crop yield if every bit of land is
farmed.
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Agent (Household) Attributes

The constructed physical and resource landscape of Long House Valley
is the changing environment on which the agents described here act.
Artificial agents representing individual households, the smallest social
unit consistently definable in the archaeological record, populate the
landscape. These household agents have independent characteristics such
as age, location, and grain stocks, and shared characteristics such as
death age and nutritional need.

Distinctions between independent and shared characteristics are not
always certain. For example, in the current model, nutritional need is the
same for all agents but, in other models, nutritional need might be varied
stochastically across agents. Agent demographics, nutritional require-
ments, and marriage characteristics were derived from ethnographic and
biological anthropological studies of historic Pueblo groups and other
subsistence agriculturalists throughout the world (Hassan 1981; Nelson
et al. 1994; Swedlund 1994; Weiss 1973; Wood 1994).

In the archaeological view of Long House Valley, five surface rooms or
one pithouse is considered to represent a single household, which, based
on numerous archaeological and ethnographic analyses, is assumed to
comprise five individuals. In our Artificial Anasazi model, household size
is fixed at this number for all households at all times. Each simulated
household is conceived to be both matrilineal and matrilocal, and so
assumptions governing household formation and movement center on
females. Males are included in maize consumption calculations.

Every year, household agents harvest the grain that is available at
the location they have chosen to farm, as determined by environmental
data and modified by stochastic factors. These factors are intended to
grossly approximate location-to-location soil quality variation, as well
as year-to-year fluctuations caused by weather, blight, and other factors
not available in the data.

The agents then consume their nutritional requirements, 800 kg of
maize per year, based on an approximation of individual consumption
of 160 kg (560 kcal) per year. Households can store any remaining
grain for later consumption, but grain that is not consumed within two
years of harvest is lost. At this point households may cease to exist,
either because they do not have enough grain to satisfy their nutritional
needs or because they have aged beyond a certain maximum, 30 years
in the current model. Note that a household “death” is not imagined to
represent the literal death of all household members. Instead, it represents
that a given household no longer exists as a single unit in the valley.
Members might die, but they also might be absorbed by other households
or simply migrate out of the valley altogether.
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Next, household agents estimate the amount of grain that will be
available the following year, based on current year harvest and grain
stores. If this amount will not satisfy minimum requirements for a given
household, the household moves. Determining how, and thus where,
a household moves is a critical factor in designing a model that has a
meaningful relationship to the historical record. First, the agent finds a
new location to farm. In the current model, agents simply search for the
most productive land that is available and within 1,600 m of a water
source. Household farmlands each occupy one cell in the model, with
each cell comprising one hectare. Household residential locations, or
settlements, also occupy one cell. To be considered available, land must
be unfarmed and unsettled.

Second, the agent looks for a settlement location. The agent finds and
settles on the location nearest the farmland that contains a water source.
In the current model, if the closest water source is located in a flood plain,
the agent instead occupies the closest location to the water source that is
on the border of or outside of the floodplain area.

Note that the requirement that a farmland site be within 1,600 m of
a water source is not dictated by an overriding need to farm near a
water source; water sources in the context of the model provide potable
water suitable for household consumption, and they are not important to
agriculture. Rather, the farmland must be near water because proximity
to water sources is a critical factor in choosing residence locations
and because farmplots must be located within reasonable distances
of residences. In fact, farm and residence siting searches are really
inseparable parts of single decisions on residence and farm locations. This
is one reason households are not initially assigned historical settlement
locations. As historical farmland locations are not known, they cannot
be supplied as initial conditions for running the model and have to be
selected by the agents according to the rules of the model. To attempt to
constrain farming location choice by using contextually meaningless and
predetermined residence locations would be arbitrary and inconsistent.

Finally, household agents may fission. If a household is older than a
specified fission age (16 years), it has a defined probability (0.125) of
triggering the formation of a new household through the “marriage”
of a female child. This summary value is derived from the combined
demographic inputs. The use of a minimum fission age combined
with fission probability is designed to approximate the probability a
household would have daughters, the time it would take such daughters
to reach maturity, and the chances of their finding a mate, conceiving
a child, and forming a new household. As discussed for household
deaths above, the fission process is not meant to be a strict measure
of new births within a household. For instance, fission might partially
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represent immigration, as new arrivals to the valley combine with
existing households.

The above completes the specification of agent attributes. Artificial
Anasazi household agents are endowed with behavioral rules governing
consumption, reproduction (“fissioning”), movement, the selection of
farm and residential sites, and ultimately decisions to abandon LHV,
which the actual Anasazi did around 1300. Can we explain all or
part of local Anasazi history—including the departure—with agents
that recognize no social institutions or property rights (rules of land
inheritance), or must such factors be built into the model? At present,
our agents do not invoke such considerations; they respond purely to
environmental stimuli. These are the simplest plausible rules that we
could devise. Both the strengths and weaknesses of these rules will prove
revealing.

Running the Model

Although the LHV production landscape has been reconstructed for the
period A.D. 382 to 1450, our study period runs from A.D. 800 to
1350. The initial agent configuration for each run uses the historically
known number of agents but, to be consistent with the agent design,
does not use historical settlement locations. Each household executes its
full behavioral repertoire (e.g., moving, consuming, reproducing, storing
food, and, if need be, leaving) each year. The program tracks household
fissions, deaths, grain stocks, and internal demographics. If felicitous
decisions are made, the household produces enough food to get through
another year; if not, the household runs out of food and is removed from
the simulation as a case of either death or emigration.

While a single simulation run may produce plausible and interesting
outcomes, many iterations involving altered initial conditions, parame-
ters, and random number generators must be performed in order to assess
the model’s robustness. Some model outputs (e.g., total population) can
be characterized statistically across runs and can be compared to LHV
data. Other outputs (e.g., spatial distributions of agents) are not easily
characterized statistically, but can be visually compared to real-world
patterns.

Comparing the Simulation with the Archaeological Data

Graphical output of the model includes a map for each year of simulated
household residence and field locations, which runs simultaneously with
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a map of the corresponding archaeological and environmental data.
These paired maps facilitate comparison of historical and simulated
population dynamics and residence locations. Simultaneously, “real
time” histograms and time series plots illustrate annual simulated and
historical population numbers, zonal aggregation of population, location
and size of residences by environmental zone, the simulated amounts
of maize stored and harvested, the zonal distribution of simulated field
locations, and the number of simulated households that fission, die out,
or leave the valley. Figures 4.2 through 4.5 illustrate representative results
for many simulations, all using the parameter values listed in table 4.2.
Unless otherwise indicated, the graphs represent mean values for 35
runs, a procedure that characterizes general trends across a number of
iterations rather than the idiosyncrasies of individual runs.

Population size curves representing iterations of the model and archae-
ological estimates are shown in figure 4.2(a) and 4.2(b), respectively,
at different scales to facilitate comparison. The stepped appearance of
the archaeological population graph is an artifact of the estimation
procedure in which ceramic dates for sites begin and end on full, half,
or quarter centuries (e.g., 1000, 1150, or 1275). Simulated population
typically tracks the archaeological population trajectory; that is, both
exhibit similar relative variation. If it were smoothed, the archaeological
curve would even more closely resemble the simulated graph. Each shows
an increase up to about 900, a leveling off in the tenth century, a major
growth surge between 1000 and 1050, another leveling from 1050 to
1150, a drop in the middle 1100s, resurgence in the late 1100s to a
peak in the thirteenth century, and a major crash in the late 1200s.
The simulated and archaeological curves also exhibit important qual-
itative differences including a greater and more prolonged simulated
population decline in the twelfth century, a more immediate, more
gradual, and relatively higher post-1150 recovery in the archaeological
population, a slightly earlier thirteenth century decline in the simulated
curve, and the failure of the simulated curve to drop to zero at 1300.
While there is general qualitative agreement between these two curves,
there are significant quantitative disparities in the household numbers
and settlement sizes. Both total population (figure 4.2) and individual
settlement sizes (figure 4.3) are much larger in the typical simulation than
what we infer to have been the actual case. Population aggregation occurs
earlier and with greater frequency in the typical simulation than in the
historical record (figure 4.3).

Although simulated Long House Valley population aggregation
(figure 4.3) departs quantitatively from the archaeological situation, it is
nonetheless quite revealing about settlement dynamics. The simulation’s
tendency to generate aggregation of greater magnitude than that of the
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Figure 4.2. Simulated population (a) compared to archaeologically estimated
population (b) in numbers of households through time, A.D. 800 to 1360.
Numbers of households are graphed at different scales to allow easier comparison
of the time series.

study area is evident in the large number of households distributed across
settlements larger than 40 households beginning in the early 1100s. This
pattern varies considerably from the real situation in which a few large
sites appeared only after 1200. The peak at 1180 means that nearly
800 simulated households were living in fewer than 20 sites of 40 or
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Table 4.2
Long House Valley Model Parameter Summary

Parameter Value

Random seed Varies
Simulation begin year A.D. 800
Simulation termination year A.D. 1350
Minimum nutritional need 800 kg
Maximum nutritional need 800 kg
Maximum length of grain storage 2 yr
Harvest adjustment 1.00
Harvest variance, year-to-year 0.10
Harvest variance, location-to-location 0.10
Minimum household fission age 16 yr
Maximum household age (death age) 30 yr
Fertility (chance of fission) 0.125
Grain store given to child household 0.33
Maximum farm-to-residence distance 1,600 m
Minimum initial corn stocks 2,000 kg
Maximum initial corn stocks 2,400 kg
Minimum initial agent age 0 yr
Maximum initial agent age 29 yr
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Figure 4.3. Simulated household aggregation represented by the number of
households grouped into settlements of 1 to 9 rooms, 10 to 39 rooms, and 40 or
more rooms.
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more households, when during that period in the real valley there were
no sites of the requisite size (200 rooms). The peak around 1260, with
600 households in fewer than 15 sites of more than 40 households,
conforms more closely to archaeological reality. Although only one or
two individual sites had as many as 200 rooms during the 1250–1300
period (Long House had more than 300), there were at least four clusters
of sites each of whose total room count equaled or exceeded that number.
Clearly, the simulation packs more households into single residential
loci than did the real Anasazi who tended to distribute members of
a residential unit across a number of discrete but spatially clustered
habitation sites (Dean et al. 1978).

On a larger scale, the qualitative aspects of the aggregation graphs
(figure 4.3) replicate important aspects of the settlement history of
Long House Valley and the surrounding region with uncanny accuracy.
Fluctuations in the numbers of simulated households in the two smaller
site categories (1 to 9 and 10 to 39 households) parallel one another and,
together, exhibit a strong reciprocal relationship with the largest sites (40
and more households). When the simulated population is concentrated
in large aggregated sites, there are few small-to-medium-sized sites and,
when most of the population is distributed among small-to-medium sites,
there are few large sites. Thus, from 900 to 1000, the population was
concentrated in large and medium sites and from 1150 to 1200 and
1260 to 1300 it was concentrated in large sites. Conversely, from 1000
to 1150 and 1200 to 1260 it was distributed among small and medium
sites.

These patterns of aggregation and dispersal virtually duplicate the set-
tlement history of the eastern Kayenta Anasazi area, which includes Long
House Valley (Dean 1996). During Pueblo I times (850–1000), the real
population was aggregated into medium-to-large pithouse villages. Large
villages disappeared abruptly after 1000, and, in the Pueblo II period
(1000–1150), the population dispersed widely across the landscape,
living in small-to-medium-sized unit pueblos that rarely comprised more
than 30 rooms. During the Transition period (1150–1250), settlements
once again exhibited a tendency toward aggregation, although not nearly
as strong as that produced by the simulation between 1150 and 1200.
After 1150, people began moving out of upland and outlying areas and
concentrating in lowland localities like Long House Valley. Although
they did not yet aggregate into extremely large sites or unified clusters
of sites, site size tended to be larger than that of the Pueblo II period.
The magnitude of the simulated return to a dispersed small-to-medium
site distribution from 1200 to 1260 also far exceeds the archaeological
situation during the second half of the Transition period in which there
were minor settlement adjustments toward a more dispersed pattern in
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the valley (Effland 1979). The simulated shift to residence in large sites
between 1260 and 1300 duplicates the Tsegi phase (1250–1300) pattern
of aggregation into fewer but larger sites and into organized site clusters
throughout Kayenta Anasazi territory.

Eastern Kayenta Anasazi settlement shifts between 800 and 1300 are
related to low- and high-frequency environmental fluctuations (Dean
et al. 1985, figure 1). During periods of depressed alluvial water tables
and channel incision (750–925, 1130–1180, 1250–1450) populations
tended to aggregate in the few localities where intensive flood plain agri-
culture was possible under these conditions, a process of compaction that
produced large sites or site clusters. During intervals of high groundwater
levels and flood plain deposition (925–1130, 1180–1250), farming was
possible nearly everywhere, and people were not constrained to live in a
few favored localities. In the 1000–1130 period, a combination of salu-
brious flood plain circumstances and unusually favorable high-frequency
climatic conditions allowed the population to disperse widely across the
landscape. Given the simulation outcomes illustrated in figure 4.3, it
seems clear that the Artificial Anasazi Project has successfully captured
the dynamic relationship between settlement aggregation-dispersal and
low- and high-frequency environmental variability in the study area.

After 1250, the area was afflicted with simultaneous low and high
frequency environmental degradations. Falling alluvial water tables,
rapid arroyo cutting, the Great Drought of 1276–1299, and a breakdown
in the spatial coherence of seasonal precipitation (Dean and Funkhouser
1995) combined to create the most severe subsistence crisis of the
nearly 2000 years of paleoenvironmental record, an event that was
accompanied by the abandonment of the entire Kayenta region. As was
the case with population, simulated aggregation does not duplicate
the Anasazi abandonment of the valley after 1300. Nonetheless, the
behavior of artificial aggregation after 1250 is extremely instructive
about the possibilities of human occupancy of the area during intervals of
environmental deterioration and high population densities. The number
of large settlements (more than 40 households) drops precipitously, but
they do not disappear entirely. Conversely, the numbers of small and
medium settlements continue unchanged through the period of greatest
stress and increase noticeably after 1300. These results, coupled with
paleoenvironmental evidence that the valley environment could have
supported a reduced population, clearly indicate that many Anasazi
could have remained in the area had they disaggregated into smaller com-
munities dispersed into favorable habitats, especially the North Valley
Floor. Thus, the model supports extant ideas that environmental factors
account for only part of the exodus from the study area and that the
total abandonment must be attributed to a combination of environmental
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and nonenvironmental causes (Dean 1966, 1969). The delicate balance
between environmental “push” factors and nonenvironmental (cultural)
“pull” factors suggested by the artificial Long House Valley results
is compatible with long-standing, archaeologically untestable hypotheses
(Dean 1966; Lipe 1995) about the real Anasazi world. The failure of
this aspect of the simulation to quantitatively replicate the case study
results provides valuable insights into what humans might have done in
the real Long House Valley but did not.

The similarities between the simulated and real Long House Valley set-
tlement patterns far outweigh the differences. Figure 4.4(a)–(c) gives side-
by-side comparisons of simulated and archaeological site distributions
for three years (1000, 1144, and 1261) selected to illustrate relationships
between the simulated and known distributions of sites against the
backdrop of increasing hydrologic potential represented by progressively
darker shades of gray. Figure 4.4(a) shows the paired situations at 1000
when there was considerable hydrologic variability coupled with high
corn production potential across the landscape. While the number of
simulated sites far exceeds the actual numbers, the simulation accurately
reflects the distribution of real sites along the periphery of the flood plain
throughout the entire valley. Although crowded, the simulated distribu-
tion is what would be expected given the relatively uniform productive
potentials across all farmable zones. The large simulated sites along the
northeastern margin of the valley represent population aggregates held
over from the Pueblo I interval (850–1000) of low alluvial water tables
and flood plain erosion. Apart from these similarities, however, the model
performs only moderately well for this period.

Figure 4.4(b) represents a year (1144) in which both hydrologic con-
ditions and potential crop production varied across the landscape. The
simulation mimics the spread of sites throughout the valley, particularly
along the margins of the flood plain, and captures the initial shift in
settlement density toward the north end of the valley that occurred
during the environmental degradation of the middle twelfth century. The
simulation replicates the twelfth century clustering of settlements into
five groups, one at the southwestern extremity of the valley, one in each
of the Midvalley Floor localities, one at the mouth of Kin Biko on the
northwestern margin of the valley floor, and one at the northeastern
corner of the valley. In the northeastern corner of the valley, a real
group of eight sites is matched in the simulation by two aggregated
sites. In addition, the simulation reproduces the scatter of sites in the
nonagricultural uplands on the western and northern sides of the valley.
In the northeastern corner of the valley, a real group of eight sites is
matched in the simulation by two aggregated sites. In addition, the
simulation reproduces the scatter of sites in the nonagricultural uplands
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Figure 4.4. Long House Valley showing simulated site size and spatial distribu-
tions at three selected years: (a) top, A.D. 1000, (b) bottom, A.D. 1144, (c) next
page, A.D. 1261. Sites are represented by circles; the darker the circle, the greater
the number of households in the settlement.
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Figure 4.4. (Continued.) Long House Valley showing simulated site size and
spatial distributions at three selected years: (c) above, A.D. 1261. Sites are
represented by circles; the darker the circle, the greater the number of households
in the settlement.

on the western and northern sides of the valley. Finally, the simulation
accurately locates settlements in the appropriate environmental zones,
with the heaviest concentrations in the Midvalley Floor and the North
Valley Floor. Major differences between the simulated and real situations
are the greater size and number of simulated settlements in the north-
central uplands and upper Kin Biko.

Figure 4.4(c) depicts a year (1261) near the beginning of the period
of severe environmental stress that began about 1250. This year was
characterized by extremely high spatial differentials in hydrologic condi-
tions and crop production potential. The model spectacularly duplicates
the abandonment of the southern half of the valley as a place of residence
and the concentration of the population along the northwestern edge
of the flood plain near the remaining patches of productive farmland.
The simulation also reproduces four of the five settlement clusters that
characterized Tsegi phase settlement. An upland cluster of four sites at
the northeastern end of the valley is represented in the simulation by
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Figure 4.5. Distribution of simulated Artificial Anasazi farms among five arable
environmental zones expressed as the number of hectares under cultivation in
each zone from A.D. 800 to 1360.

two aggregated sites. A larger cluster of large and small sites along the
northern margin of the flood plain is matched by a single, very large site
and a row of small to large sites. The Long House cluster at the mouth
of Kin Biko is represented in the simulation by a couple of large sites.
The simulated Midvalley Floor West settlement group, consisting of two
aggregated and two small sites, is displaced into the uplands compared to
the actual cluster of nine sites, which adjoins the farmland. In three of the
clusters, the simulation reproduces the site size distribution of the actual
situation in which the cluster comprises one or two large pueblos and a
few smaller sites. In addition, the model located a large site in exactly the
same positions as the Anasazi situated Long House in the cluster at the
mouth of Kin Biko and Tower House in the cluster along the northern
margin of the valley. Significant discrepancies between the artificial and
real site distributions are the absence of a Midvalley Floor East group
from the simulation and the model’s placement of too many settlements
in Kin Biko.

Another aspect of the simulation reveals much about general patterns
of subsistence farming in the valley, even though real-world information
on the utilization of farmland for detailed testing of the simulation
is unattainable. The order in which different environmental zones are
exploited by the Artificial Anasazi (figure 4.5) is in exact accordance with
expectations of the real world (Dean et al. 1978). The simulation begins
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during a period of low-frequency environmental stress, and most fields
are located in the zones that are productive during episodes of depressed
alluvial water tables and arroyo cutting: the North Valley Floor, Kin Biko,
and, to a lesser degree, the Midvalley Floor. Fields saturate the North
Valley Floor and Kin Biko by 1000, and farming of these areas fluctuates
only slightly thereafter. The Midvalley Floor reaches capacity by 1030.
During the 800–1000 period, use of the Uplands Arable and General
Valley Floor zones remains low because neither area has groundwater
available to support crop production, which would have depended solely
on the unreliable and generally deficient rainfall. This dependency is
indicated by the high variability in farmland use on the General Valley
Floor before 1000. By 1000, changes in flood plain processes that begin
early in the tenth century enhance productivity in the General Valley
Floor and impact the agricultural decisions made by the agents. Rising
alluvial water tables and flood plain deposition provide a stable water
supply for crops in the General Valley Floor and replace precipitation as
the primary control on production. The result is a major “land rush” to
establish fields in the newly productive General Valley Floor that begins
around 980 and approaches the zone’s carrying capacity within 50 years.
Again as would be expected, large-scale use of the Upland Arable Zone,
where production is controlled primarily by rainfall, does not begin until
after 1020 when all the other zones have achieved virtual saturation. The
salubrious agricultural conditions that began around 1000 supported the
huge population growth and settlement expansions of the 1000–1120
period in both the artificial and the real Long House Valleys.

After about 1030, figure 4.5 reflects varying use of different farming
environments by a population of agents that approaches the carrying
capacity of the simulated area. The North Valley Floor, General Valley
Floor, Midvalley Floor, and Kin Biko were fully occupied by fields,
and because crop production was controlled by stable flood plain
conditions, use of these areas exhibits minimal variability. In contrast,
field use in the Upland zone varies considerably because production there
depends on precipitation rather than hydrologic conditions. Fields in
both the General Valley Floor and Upland zones are severely reduced
by the secondary fluvial degradation and drought of the middle twelfth
century. The greater sensitivity of the Upland farms to environmental
perturbations is indicated by the facts that farming in these areas begins
to decline before that on the General Valley Floor and that Upland
farmland is abandoned during the depth of the crisis. Upward blips
in Midvalley Floor and North Valley Floor field numbers reflect the
establishment of fields in these more productive areas by a small number
of agents forced out of the General Valley Floor and Uplands. Displaced
agents that cannot be accommodated in the favorable areas are removed
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from the simulation (through death or emigration), which accounts for
the decline in simulated population during this interval (figure 4.2(a)).
When favorable groundwater conditions return, more fields are once
again established in the General Valley Floor and Uplands. Once again,
the inferior quality of Upland farmland is indicated by the fact that it
was not reoccupied until all other zones had been filled to capacity. The
Uplands’ continued sensitivity to environmental variation is shown by
the fluctuations in use between 1190 and 1230 and its abandonment
before the primary effects of the next environmental degradation are felt
in the other zones. The major low- and high-frequency environmental
crises of the last half of the thirteenth century have major repercussions
for Artificial Anasazi field selection. Groundwater depletion and arroyo
cutting virtually destroy the farming potential of the General Valley Floor
and make production there totally dependent on precipitation, which
itself is depressed by the Great Drought of 1279–1299. Upland fields
are abandoned by 1240, the number of fields on the Midvalley Floor
decreases after 1270, and the General Valley Floor is virtually abandoned
as a farming area by 1280. Only the North Valley Floor and Kin Biko,
where local topographic and depositional factors mitigate the effects of
fluvial degradation, retain their farming potential. These areas, already
completely filled, remain fully utilized but lack the capacity to absorb
agents displaced from the General Valley Floor, Midvalley Floor, and
Uplands zones. The disappearance of these agents from the simulation
accounts for the major population decline of this period (figure 4.2(a)).
Unlike the real Anasazi, simulated agents continue to locate fields in
Long House Valley after 1300 but under vastly altered environmental
conditions. Far fewer fields are located on the General Valley Floor
and, as shown by the rapid fluctuations after 1280, this area is far
less productive and far more vulnerable to high-frequency productivity
fluctuations caused by the greater control exercised by precipitation. The
North Valley Floor continues to be highly productive but even there,
after about 1280, high-frequency climatic variability becomes a more
important factor in productivity. The decline in field locations on the
North Valley Floor after 1320 is due to the depopulation of the virtual
valley; for the first time in about 200 years, the population of agents falls
below what can be supported on the landscape.

As was the case with simulated population (figure 4.2(a)) and aggre-
gation (figure 4.3), the simulated distribution of farmland clearly shows
that the Anasazi need not have totally abandoned Long House Valley as a
result of environmental deterioration comparable to that presently built
into the model. Instead, a substantial fraction of the population could
have stayed behind in small settlements dispersed across suitable farming
habitats located in areas (primarily in the North Valley Floor zone) still
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suitable for agriculture given the detrimental environmental conditions
of the post-1250 period. The fact that in the real Long House Valley, that
fraction of the population chose not to stay behind but to participate in
the exodus from the area, supports the assertion that sociocultural “pull”
factors were drawing them away from their homeland.

All runs described above use the parameter estimates of table 4.2.
These were deemed the most plausible values. But they are not the
only possibilities. In research to be presented elsewhere, these values
are systematically varied over a range in which the table 4.2 values
are intermediate. It is striking that over that entire range of plausible
environments—including some severely degraded ones—we have not
observed the complete abandonment of the real Long House Valley that
occurred after A.D. 1300. This outcome strongly reinforces the idea that
the valley could have supported a reduced, but still viable, population.
Thus, the comparison of the results of the simulation with the real world
helps differentiate external (environmental) from internal (cultural) cau-
sation in cultural variation and change and even provides a clue, in the
form of the proportion of the population that could have stayed but
elected to go, as to the relative magnitude of these factors. This finding
highlights the utility of agent-based modeling in archaeology by demon-
strating a predicted response (Dean 1966) that never could be tested with
archaeological data. Because the purely environmental rules explored
thus far do not fully account for the Anasazi’s disappearance from LHV,
it could be argued that predominantly nonenvironmental sociological
and ideological factors were responsible for the complete abandonment
of an area still capable of supporting a substantial population.

Conclusions

How has agent-based modeling improved understanding of culture
change in Anasazi country? First, it allows us to test hypotheses about
the past for which we have only indirect evidence. For example, the
simulations support predictions about the use of different kinds of
farmland under different low- and high-frequency environmental con-
ditions. Second, it illuminates the relative importance of and interactions
among various demographic and environmental factors in the processes
of sociocultural stability, variation, and change. Third, the generation of
similar macroscale results from different microscale specifications eluci-
dates the role of equifinality in sociocultural processes and archaeological
analysis. Fourth, progressively augmenting agent specifications allows
the experimental manipulation of behavioral modes and assessment of
their incremental effects on agent responses to environmental variability.
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Finally, agent-based modeling encourages the consideration of pre-
viously unspecified, ignored, or discounted factors as consequential
mechanisms of cultural adaptation and change. In this regard, Stephen
Jay Gould (1989) among others has emphasized that a problem
with historical sciences—such as astronomy, geology, paleontology, and
archaeology—is that we cannot rewind and rerun the tape of history.
While this may be literally true, with agent-based modeling we can
execute numerous simulations to investigate alternative outcomes of
sociocultural processes under different initial conditions and operational
procedures. We can systematically alter the quantitative parameters of a
model or make qualitative changes that introduce completely new, and
even unlikely, elements into the artificial world of the simulation. Thus, in
terms of the Artificial Anasazi model, we could change agent attributes,
such as fecundity or food consumption, or introduce new elements, such
as mobile raiders, environmental catastrophes, or epidemics.

Ultimately, “to explain” the settlement and farming dynamics of
Anasazi society in Long House Valley is to identify rules of agent
behavior that account for those dynamics; that is, generate the target
spatiotemporal history. Agent-based models are laboratories where com-
peting explanations—hypotheses about Anasazi behavior—can be tested
and judged in a disciplined empirical way. The simple agents posited
here explain important aspects of Anasazi history while leaving other
important aspects unaccounted for. Our future research will attempt
to extend and improve the modeling, and we invite colleagues to posit
alternative rules, suggest different system parameters, or recommend
operational improvements. Agent-based models may never fully explain
the real history—these, after all, are simple instruments—but they enable
us to make scientific progress in a replicable, cumulative way that does
not seem possible with other modeling techniques or through narra-
tive methods alone, crucial as these are in formulating the principles,
hypotheses, and experiments that can carry us forward.
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POPULATION GROWTH AND COLLAPSE IN A

MULTIAGENT MODEL OF THE KAYENTA ANASAZI

IN LONG HOUSE VALLEY
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SHUBHA CHAKRAVARTY, ROSS HAMMOND,

JON PARKER, AND MILES PARKER*

Long House Valley in the Black Mesa area of northeastern Arizona (U.S.)

was inhabited by the Kayenta Anasazi from about 1800 before Christ to about

anno Domini 1300. These people were prehistoric ancestors of the modern

Pueblo cultures of the Colorado Plateau. Paleoenvironmental research based

on alluvial geomorphology, palynology, and dendroclimatology permits accurate

quantitative reconstruction of annual fluctuations in potential agricultural pro-

duction (kg of maize per hectare). The archaeological record of Anasazi farming

groups from anno Domini 200–1300 provides information on a millennium

of sociocultural stasis, variability, change, and adaptation. We report on a

multiagent computational model of this society that closely reproduces the main

features of its actual history, including population ebb and flow, changing spatial

settlement patterns, and eventual rapid decline. The agents in the model are

monoagriculturalists, who decide both where to situate their fields as well as

the location of their settlements. Nutritional needs constrain fertility. Agent

heterogeneity, difficult to model mathematically, is demonstrated to be crucial to

the high fidelity of the model.

*The authors’ affiliations are as follows: Robert L. Axtell: Center on Social and
Economic Dynamics, The Brookings Institution, to whom reprint requests should be
addressed, e-mail: raxtell@brookings.edu; Joshua M. Epstein: Center on Social and
Economic Dynamics, The Brookings Institution, and External Faculty Member, Santa Fe
Institute; Jeffrey S. Dean: Laboratory of Tree-Ring Research and Department of Anthropol-
ogy, University of Arizona, and Arizona State Museum; George J. Gumerman: Department
of Anthropology, University of Arizona, and Arizona State Museum; Alan C. Swedlund:
Department of Anthropology, University of Massachusetts; Jason Harburger: Center on
Social and Economic Dynamics, The Brookings Institution; present address, Departments of
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As the only social science that has access to data of sufficient duration
to reveal long-term changes in patterned human behavior, archaeology
traditionally has been concerned with describing and explaining how
societies adapt and evolve in response to changing conditions. A major
impediment to rigorous investigation in archaeology—the inability to
conduct reproducible experiments—is one shared with certain other sci-
ences, such as astronomy, geophysics, and paleontology. Computational
modeling is providing a way around these difficulties.1

Within anthropology and archaeology there has been a rapidly grow-
ing interest in so-called agent-based computational models (Gilbert and
Doran 1994; Gilbert and Conte 1995; Kohler and Gumerman 2000).
Such models consist of populations of artificial, autonomous “agents”
who live on spatial landscapes (Dean, Lindsay, and Robinson 1978).
Each agent is an indivisible social unit—an individual, a household,
a clan—endowed with specific attributes (e.g., life span, nutritional
requirements, movement capabilities, family ties). A set of anthropo-
logically plausible rules of behavior defines the ways in which agents
interact with their physical environment and with one another. Social
histories unfold in such models by “turning on” each agent periodically

Computer Science, Economics, and Mathematical Sciences, The Johns Hopkins University;
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tution; Ross Hammond: Center on Social and Economic Dynamics, The Brookings
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address, Departments of Computer Science, Economics, and Mathematical Sciences, The
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1For example, because large-scale experiments on the Earth’s tectonic structure (e.g.,
mantle and core) are impossible, numerical models play a crucial role in geophysics
(Glatzmaier et al. 1999). An essentially identical situation exists in planetology, where
progress on the origin of the moon, for instance, is achieved numerically (Canup and
Asphaug 2001). Computational models are increasingly common in paleontology (Bak and
Sneppen 1993).
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Figure 5.1. Long House Valley, looking to the south.

and permitting it to interact. Agent models offer intriguing possibilities
for overcoming the experimental limitations of archaeology through sys-
tematic analyses of alternative histories. Changing the agents’ attributes,
their rules, and features of the landscape yields alternative behavioral
responses to initial conditions, social relationships, and environmental
forcing.

Long House Valley, a topographically discrete, 96-km2 land form
(fig. 5.1) on the Navajo Indian Reservation in northeastern Arizona
(Dean, Lindsay, and Robinson 1978), provides a realistic archaeological
test of the ability of agent-based computational models to explain
settlement patterns and demographic behavior among subsistence-level
agricultural societies in marginal habitats. Between roughly 7000 and
1000 years before Christ (B.C.), the valley was sparsely occupied, first
by Paleo-Indian big game hunters and second by Archaic hunters and
gatherers. The introduction of maize around 1800 B.C. initiated a long
transition to a food producing economy and began the Anasazi cultural
tradition (Epstein and Axtell 1996), which persisted until the aban-
donment of the region around anno Domini (A.D.) 1300 (Gumerman
1984). Anasazi is the term applied to a distinctive archaeological pattern
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and sequence that is confined to the southern Colorado Plateau and
that has given rise to the cultural configurations that characterize the
modern Pueblo people of the Southwest. The Anasazi pattern is defined
by an emphasis on black-on-white painted ceramics, plain and textured
gray cooking pottery, the development from pithouses to stone masonry
and adobe pueblos, and the kiva as the principal ceremonial structure.
Considerable spatial variability within the general pattern has led to the
recognition of several geographic variants of Anasazi. Long House Valley
falls within one of the western Anasazi configurations.

Long House Valley is well suited for application of multiagent
modeling for a variety of reasons (Dean et al. 2000). Its bounded
topography combined with the rich paleoenvironmental record permits
the creation in the computer of a dynamic resource landscape that
accurately replicates actual conditions in the valley from A.D. 200 to
1500. Low- and high-frequency variations in alluvial hydrologic and
depositional conditions, effective moisture, and climate have been recon-
structed in unprecedented detail with dendroclimatology, surficial geo-
morphology, palynology, and archaeology (Dean et al. 1985; Gumerman
1988). High-frequency climatic variability is represented by annual June
Palmer Drought Severity Indices (PDSI), which reflect the effects of
meteorological drought (moisture and temperature) on crop production
(Palmer 1965). Low-frequency environmental variability is characterized
primarily by the rise and fall of alluvial groundwater and the deposition
and erosion of flood plain sediments. Based on statistical relationships
between PDSI and annual crop yields in southwestern Colorado provided
by Van West (1994), these measures of environmental variability are used
to create a dynamic landscape of annual potential maize production, in
kilograms, for each hectare in the study area for the period A.D. 400–
1400. Intensive archaeological research provides a database on human
settlement in the valley (Dean, Lindsay, and Robinson 1978; Gumerman
and Dean 1989).2 Finally, detailed regional ethnographies provide an
empirical basis for generating plausible behavioral rules for the agents
(Forde 1931; Hack 1942; Levy 1992).

The multiagent model is created by instantiating the landscape, recon-
structed from paleoenvironmental variables, and then populating it with
artificial agents that represent individual families, or households, the
smallest social unit consistently definable in the archaeological record

2The archaeological survey data were generated by the Long House Valley Project, a joint
venture of the Museum of Northern Arizona and the Laboratory of Tree-Ring Research at
the University of Arizona (Dean, Lindsay, and Robinson 1978). The availability of the
Long House Valley data in the Southwestern Anthropological Research Group (Euler and
Gumerman 1978) automated database greatly facilitated the development of the model.
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Table 5.1
Household (agent) Attributes

1. Five surface rooms or one pithouse is considered to represent a single
household.

2. Each household that is both matrilineal and matrilocal consists of
5 individuals. Only female marriage and residence location are tracked,
although males are included in maize-consumption calculations.

3. Each household consumes 160 kg of maize per year per individual.
4. Each household can store a maximum of 2 years’ total corn consumption

(1,600 kg), i.e., if at harvest 800 kg of corn remains in storage an
additional 800 kg can be added to that from the current crop.

5. Households use only 64% of the total potential maize yield. (The
unutilized production is attributed to fallow, loss to rodents, insects, and
mildew, and seed for the next planting.)

(Dean 1969; Rohn 1965).3 Each household agent is initialized based on
demographic characteristics and nutritional requirements derived from
ethnographic studies of historic Pueblo groups and from other subsis-
tence agriculturists.4 Each family agent is defined by certain attributes
(table 5.1), including its age, size, composition, and amount of maize
storage. Similarly, each agent has specific rules of behavior (table 5.2).
These rules determine how the households select their planting and
dwelling locations.

Once all agents are initialized, the model proceeds according to
internal clocks (table 5.3). Essentially, all agents engage in agricultural
activity during each period (1 calendar year) and move their plots
or dwellings or both based on their success in meeting nutritional
needs. Simulated household and field locations, as well as the size of
each community (the number of households at each site), are updated
annually. A map of annual simulated field locations and household
residence locations and sizes runs simultaneously with a map of the

3The model is written in JAVA and utilizes the ASCAPE framework (see Inchiosa and
Parker 2002).

4Although our agents’ nutritional requirements are denominated in terms of corn
production and set to reflect the average human requirements for calories (Allen 1994),
we do not infer that the Anasazi met all their caloric requirements with corn. We know
that they had a diverse diet, including cultivated corn, squash, and beans, and a host of
wild plants and animals, and that an exclusive corn diet could lead to several nutritional
problems. For modeling purposes, however, we can subsume these resources and their
distribution under a simplified resource space and single proxy (corn) for the agents’
nutritional requirements.
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Table 5.2
Household (agent) Rules

1. A household fissions when a daughter reaches the age of 16.
2. A household moves when the amount of grain in storage in April plus

the current year’s expected yield (based on last year’s harvest total)
falls below the amount necessary to sustain the household through the
coming year.

A. Identification of agricultural location:

The location must be currently unfarmed and uninhabited.
The location must have potential maize production sufficient for

a minimum harvest of 160 kg per person per year.a Future
maize production is estimated from that of neighboring sites.
If multiple sites satisfy these criteria the location closest to the
current residence is selected. If no site meets the criteria the
household leaves the valley.

B. Identification of a residential location:

i. The residence must be within 1 km of the agricultural plot.
ii. The residential location must be unfarmed (although it may be

inhabited, i.e., multihousehold sites permitted).
iii. The residence must be in a less productive zone than the agricul-

tural land identified in A.

If multiple sites satisfy the above criteria the location closest to the
water resources is selected. If no site meets these criteria they are
relaxed in order of iii then i.

aAllen 1994.

Table 5.3
Model Timing—Household “Clocks”

Each household has two internal clocks.
1. One clock tracks the number of years a household is in existence

and determines when it fissions and dies. A household fissions when
a daughter marries at age 16 to form a new household. Birth spacing
is at least 2 years. A household dies once it reaches its death age, a
parameter drawn randomly from a uniform distribution according to
model parameters.

2. A second clock runs from April to April and reduces the amount of
maize in storage by 13.33 kg of maize per month per individual in the
household.
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Table 5.4
Base Case Parameterization of the Model

Parameter Value

Random seed Varies
Year at model start A.D. 800
Year at model termination A.D. 1350
Nutritional need per individual 800 kg
Maximum length of grain storage 2 years
Harvest adjustment 1.00
Annual variance in harvest 0.10
Spatial variance in harvest 0.10
Household fission age 16 years
Household death age 30 years
Fertility (annual probability of fission) 0.125
Grain store given to new household 0.33
Maximum farm to residence distance 1,600 m
Initial corn stocks, minimum 2,000 kg
Initial corn stocks, maximum 2,400 kg
Initial household age, minimum 0 years
Initial household age, maximum 29 years

actual archaeological and environmental data so that the real and
simulated population dynamics and residence locations can be visually
compared. Time series plots and histograms illustrate annual simulated
and actual population numbers, aggregation of population, location and
size of residences by environmental zone, the simulated amounts of maize
stored and harvested, and the number of households that fission, die out,
or leave the valley.

In previous work (Dean et al. 2000) we characterized the performance
of this model with respect to a “base case” parameterization (table 5.4).
Although closely reproducing the qualitative features of the history of
demographic changes and settlement patterns in Long House Valley, that
model yielded populations that were substantially too large. All attempts
to reduce the population in that model by changing agent parameters
resulted in premature population collapse.

We modified this earlier model (Dean et al. 2000) to incorporate
greater levels of both agent and landscape heterogeneity. In the previous
model all agents had the same ages for the onset of fertility and
death. Here, each agent gets a specific value for these ages when it
is born, based on sampling from a uniform distribution. A similar
procedure was applied to the household fission rate. These changes
introduce six adjustable parameters, namely the endpoints of these
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Table 5.5
Optimized Parameter Settings Based on Single “Runs” of the Model

Parameter/Norm L1 L2 L∞

Minimum death age 26 30 25
Maximum death age 32 39 34
Minimum age, end of fertility 30 28 30
Maximum age, end of fertility 32 30 30
Minimum fission probability 0.125 0.120 0.125
Maximum fission probability 0.129 0.125 0.125
Average harvest 0.60 0.62 0.60
Harvest variance 0.41 0.40 0.40

uniform distributions. For the production landscape, we treated two
parameters as variable, the average harvest per hectare and the variance
in this harvest.5

A systematic search of this eight-dimensional space of parameters
yields values that generate model realizations having total populations
closest to the historical data, according to several criteria. At each
period of the model we compare the number of simulated households
at time t, Xs

t , to the historical record, Xh
t . The differences between these

two values are cumulated according to an Lp norm, with p∈ {1, 2,∞}
(Kolmogorov and Fomin 1977). Optimizing the model with respect to the
eight adjustable parameters yields distinct “best” configurations, based
on which norm was used in the simulation. The search was conducted
for the best realizations as well as the best average set of runs.6 The
optimal parameter settings are summarized in tables 5.5 and 5.6 with
typical output shown in figs. 5.2 and 5.3.

Simulated population levels closely follow the historical trajectory
(fig. 5.2). In the first 200 years the model understates the historical popu-
lation, whereas the peak population just after A.D. 1100 is somewhat too
high in the model. The historical clustering of settlements along the valley
zonal boundaries is nicely reproduced in the model (fig. 5.3). Although

5In the earlier version of the model, all agent heterogeneity was a consequence of local
environmental variations.

6The model incorporates significant stochasticity, as is typical of agent models generally.
Both agent initialization and aspects of agent behavior have stochastic components;
therefore distinct runs of the model with different seeds to the random number generator
yield distinct histories. For multiple runs of a fixed model, varying only the seeds, a
“typical” run is constructed by averaging the realized populations in each period. The
resulting typical run is likely never to be encountered in practice, and in some circumstances
may not even be feasible, but is useful nonetheless as an idealization.
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Table 5.6
Optimized Parameter Settings Based on the Average over 15 Runs of the Model

Parameter/Norm L1, L∞ L2

Minimum death age 30 25
Maximum death age 36 38
Minimum age, end of fertility 30 30
Maximum age, end of fertility 32 38
Minimum fission probability 0.125 0.125
Maximum fission probability 0.125 0.125
Average harvest 0.6 0.6
Harvest variance 0.4 0.4

Figure 5.2. Best single run of the model according to the L1 norm. Other best
runs based on other norms yield very similar results. The average run, produced
by averaging over 15 distinct runs, looks quite similar to this one as well.

the ability of the model to predict the actual location of settlements varies
from year to year, with fig. 5.3 being typical, the progressive movement
of the population northward over time, clear in the historical data, is also
reproduced in the model.

Long House Valley was abandoned after A.D. 1300, as shown in
fig. 5.2. The agent model suggests that even the degraded environment
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Figure 5.3. Simulated and historical settlement patterns, in red, for Long House
Valley in A.D. 1125. North is to the top of the page.

of the 1270–1450 period could have supported a reduced but substantial
population in small settlements dispersed across suitable farming habitats
located primarily in areas of high potential crop production in the
northern part of the valley. The fact that in the real world of Long
House Valley, the supportable population chose not to stay behind but
to participate in the exodus from the valley indicates the magnitude of
sociocultural “push” or “pull” factors that induced them to move (Dean
1969). Thus, comparing the model results with the actual history helps
differentiate external (environmental) from internal (social) determinants
of cultural dynamics. It also provides a clue—in the form of the
population that could have stayed but elected to go—to the relative
magnitude of those determinants.

Discussion

As noted, in these initial inquiries our models include only the most basic
environmental and demographic specification, permitting calibration
with a minimum number of parameters. Introducing more agent and
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physical heterogeneity, quite accurate results have been obtained. Richer
treatments of household characteristics are possible. For example, in
calculating mean household values for size, fissioning, and “death,” we
have envisioned disaggregating the households into individuals of varying
ages in the life course.7 Similarly, the average caloric values used can
be adjusted for age of individuals within the household. Nonuniform
distributions can be explored. It is, however, interesting that even without
implementing these refinements, the output from the current model
closely reproduces the record of the archaeological survey.

Issues remain regarding the interpretation of our findings that some
inhabitants of Long House Valley could have remained after the archae-
ologically determined date of abandonment. The fact that environmental
conditions may not have been sufficient to drive out the entire population
suggests that additional push or pull factors impelled the complete
abandonment of the valley after 1300. Another possibility that can be
modeled in future simulations might be a combination of environmental,
demographic, and epidemiological factors. That is, synergistic interac-
tions between nutritional stress and precolonial epidemic disease might
have decimated the population beyond what our model indicates. In
addition, the depressed population may simply have been insufficient to
maintain cultural institutions, precipitating a collective decision to leave
the valley (Woods 1994). These are ripe topics for future research.

Conclusions

Our model closely reproduces important spatial and demographic fea-
tures of the Anasazi in Long House Valley from about A.D. 800 to
1300. To “explain” an observed spatiotemporal history is to specify
agents that generate—or grow—this history. By this criterion, our strictly
environmental account of the evolution of this society during this period
goes a long way toward explaining this history.

References

Allen, Lindsay H. 1994. Nutritional Influences on Linear Growth: A General
Review. European Journal of Clinical Nutrition 48, suppl. 1: S75–S89.

Bak, Per, and Kim Sneppen. 1993. Punctuation Equilibrium and Criticality in a
Simple Model of Evolution. Physical Review Letters 24:4083–86.

7Using reasonable estimations based on model life tables (Swedlund 1994) and fertility
schedules (Weiss 1973) for horticultural subsistence populations would create a reasonable
set of propensities, or probabilities, that can be used in future simulations.



July 19, 2006 Time: 11:59am chapter5.tex

128 CHAPTER 5

Canup, Robin M., and Erik Asphaug. 2001. Origin of the Moon in a Giant
Impact Near the End of the Earth’s Formation. Nature (London) 412:
708–12.

Dean, Jeffrey S. 1969. Chronological Analysis of Tsegi Phase Sites in North-
eastern Arizona. Tucson: University of Arizona Press.

Dean, Jeffrey S., Robert C. Euler, George J. Gumerman, Fred Plog, Richard H.
Hevly, and Thor N. V. Karlstrom. 1985. Human Behavior, Demography,
and Paleoenvironment on the Colorado Plateaus. American Antiquity 50:
537–54.

Dean, Jeffrey S., George J. Gumerman, Joshua M. Epstein, Robert L. Axtell, Alan
C. Swedlund, Miles T. Parker, and Stephen McCarroll. 2000. Understanding
Anasazi Culture Change through Agent-Based Modeling. In Dynamics in
Human and Primate Societies: Agent-Based Modeling of Social and Spatial
Processes, ed. Timothy A. Kohler and George J. Gumerman. New York:
Oxford University Press.

Dean, Jeffrey S., Alexander J. Lindsay, Jr., and William J. Robinson. 1978.
Prehistoric Settlement in Long House Valley, Northeastern Arizona. In Investi-
gations of the Southwestern Anthropological Research Group: An Experiment
in Archaeological Cooperation, ed. Robert C. Euler and George J. Gumerman.
Flagstaff: Museum of Northern Arizona.

Epstein, Joshua M., and Robert L. Axtell. 1996. Growing Artificial Societies:
Social Science from the Bottom Up. Washington, DC: Brookings Institution
Press; Cambridge: MIT Press.

Euler, Robert C., and George J. Gumerman, eds. 1978. Investigations of the
Southwestern Anthropological Research Group: An Experiment in Archae-
ological Cooperation. Flagstaff: Museum of Northern Arizona.

Forde, C. D. 1931. Hopi Agriculture and Land Ownership. Journal of the Royal
Anthropological Institute of Great Britain and Ireland 61:357–407.

Gilbert, Nigel, and Rosaria Conte, eds. 1995. Artificial Societies: The Computer
Simulation of Social Life. London: UCL Press.

Gilbert, Nigel, and Jim Doran, eds. 1994. Simulating Societies: The Computer
Simulation of Social Phenomena. London: UCL Press.

Glatzmaier, Gary A., Robert S. Coe, Lionel Hongre, and Paul H. Roberts. 1999.
The Role of the Earth’s Mantle in Controlling the Frequency of Geomagnetic
Reversals. Nature (London) 401:885–90.

Gumerman, George J. 1984. A View from Black Mesa: The Changing Face of
Archaeology. Tucson: University of Arizona Press.

———, ed. 1988. The Anasazi in a Changing Environment. Cambridge:
Cambridge University Press.

Gumerman, George J., and Jeffrey S. Dean. 1989. In Dynamics of Southwest
Prehistory, ed. Linda S. Cordell and George J. Gumerman. Washington, DC:
Smithsonian Institution Press.

Hack, John T. 1942. Prehistoric Coal Mining in the Jeddito Valley, Arizona.
Cambridge, MA: Peabody Museum.

Inchiosa, Mario E., and Miles T. Parker. 2002. Overcoming Design and
Development Challenges in Agent-Based Modeling Using ASCAPE. PNAS
99:7304–8.



July 19, 2006 Time: 11:59am chapter5.tex

MODELING ANASAZI POPULATION CHANGE 129

Kohler, Timothy A., and George J. Gumerman, eds. 2000. Dynamics in Human
and Primate Societies: Agent-Based Modeling of Social and Spatial Processes.
New York: Oxford University Press.

Kolmogorov, A. N., and S. V. Fomin. 1977. Introductory Real Analysis. Ed. and
trans. Richard A. Silverman. New York: Dover.

Levy, Jerrold E. 1992. Orayvi Revisited: Social Stratification in an Egalitarian
Society. Santa Fe, NM: School of America Research Press.

Palmer, W. C. 1965. Meteorological Drought. United States Weather Bureau
Research Paper 25, U.S. Department of Commerce.

Rohn, Arthur H. 1965. In Contributions of the Wetherill Mesa Archeolo-
gical Project, ed. Douglas Osborne. Salt Lake City: Society for American
Archaeology.

Swedlund, Alan C. 1994. Issues in Demography and Health. In Understanding
Complexity in the Prehistoric Southwest, ed. George J. Gumerman and
Murray Gell-Mann. Reading, MA: Addison-Wesley.

Van West, Carla R. 1994. Modeling Prehistoric Agricultural Productivity in
Southwestern Colorado: A GIS Approach. Pullman: Washington State Uni-
versity, Department of Anthropology.

Weiss, Kenneth M. 1973. Demographic Models for Anthropology. Washington,
DC: Society for American Archaeology.

Woods, James W. 1994. Dynamics of Human Reproduction: Biometry, Biology,
Demography. New York: Hawthorne.



July 19, 2006 Time: 03:53pm chapter6.tex

Chapter 6

THE EVOLUTION OF SOCIAL BEHAVIOR IN THE

PREHISTORIC AMERICAN SOUTHWEST

GEORGE J. GUMERMAN, ALAN C. SWEDLUND,
JEFFREY S. DEAN, AND JOSHUA M. EPSTEIN*

Long House Valley, located in the Black Mesa area of northeastern Arizona

(USA), was inhabited by the Kayenta Anasazi from circa 1800 B.C. to circa

A.D. 1300. These people were prehistoric precursors of the modern Pueblo cul-

tures of the Colorado Plateau. A rich paleoenvironmental record, based on alluvial

geomorphology, palynology, and dendroclimatology, permits the accurate quan-

titative reconstruction of annual fluctuations in potential agricultural production

(kg maize/hectare). The archaeological record of Anasazi farming groups from

A.D. 200 to 1300 provides information on a millennium of sociocultural stasis,

variability, change, and adaptation. We report on a multi-agent computational

model of this society that closely reproduces the main features of its actual history,

including population ebb and flow, changing spatial settlement patterns, and

eventual rapid decline. The agents in the model are monoagriculturalists, who

decide both where to situate their fields and where to locate their settlements.

Introduction

A central question that anthropologists have asked for generations
concerns how cultures evolve or transform themselves from simple to
more complex forms. Traditional study of human social change and
cultural evolution has resulted in many useful generalizations concerning
the trajectory of change through prehistory and classifications of types
of organization. It is increasingly clear, however, that four fundamental

*The authors’ affiliations are as follows: George J. Gumerman: Santa Fe Institute; Alan
C. Swedlund: Department of Anthropology, University of Massachusetts; Jeffrey S. Dean:
Laboratory of Tree-Ring Research, University of Arizona; and Joshua M. Epstein: Center
on Social and Economic Dynamics, The Brookings Institution, and Santa Fe Institute.

This essay was previously published in Artificial Life 9(4): 435–444.
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problems have hindered the development of a powerful, unified theory
for understanding change in human social norms and behaviors over long
periods of time.

The first of these problems is the use of whole societies as the unit
of analysis. Group level effects, however, must themselves be explained.
Sustained cooperative behavior with people beyond close kin is achieved
in most human societies, and increasingly hierarchical political structures
do emerge through time in many cases. Successful explanation and the
possibility of developing fundamental theory for understanding these
processes depend on understanding behavior at the level of the individual
or the family (DeVore 1988). Among the advantages of such base-level
approaches is that they allow specific modeling of peoples’ behavioral
ranges and norms and their adaptive strategies as community size and
structure change.

Second, in addition to subsuming the behavior of individuals within
that of larger social units, traditional analyses integrate environmental
variability over space. Current research indicates that stable strategies
for interpersonal interactions in a heterogeneous, spatially extended pop-
ulation may be very different from those in a homogeneous population
in which space is ignored (Lindgren and Nordahl 1994). Most social
interactions and relationships in human societies before the recent advent
of rapid transportation and communication were local in nature.

Third, cultures have been considered to be homogeneous, tending
toward maximization of fitness for their members. Little consideration
was given to historical processes in shaping evolutionary trajectories or
to nonadaptive aspects of cultural practice.

Finally, most discussions of cultural evolution have failed to take
into account the mechanisms of cultural inheritance and the effects of
changes in modes of transmission through time (Boyd and Richerson
1985; Cavalli-Sforza and Feldman 1981). Understanding culture as
an inheritance system is fundamental to understanding culture change
through time.

The Artificial Anasazi project is at the juncture of theory building and
experimentation. We use agent-based modeling to test the fit between
actual archaeological and environmental data collected over many years
and simulations using various rules about how households interact
with one another and with their natural environment. By systematically
altering demographic, social, and environmental conditions, as well as
the rules of interaction, we expect that a clearer picture will emerge as
to why the Anasazi followed the evolutionary trajectory we recognize
from archaeological investigation. Our long range goal is to develop
agent-based simulations to understand the interaction of environment
and human behavior and their role in the evolution of culture.
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The Study Area

The test area for exploring the use of agent-based modeling for under-
standing social evolution is the prehistoric American Southwest from
about A.D. 200 to 1450 using a culture archaeologists refer to as the
Anasazi and a locality called Long House Valley. The Anasazi are the
ancestors of the present day Pueblo peoples, such as the Hopi, the Zuni,
the Acoma, and the groups along the Rio Grande in New Mexico.
A commonly held view is that technological and social complexity
coevolve. Anasazi cultural development underscores the interdependence
of these aspects of culture. The Anasazi were a technologically simple
agricultural society whose major food source was maize supplemented
by beans, squash, wild plants, and game. In the A.D. 200 to 1450 period
the only major technological changes that are archaeologically verifiable
are agricultural intensification (terracing and ditch irrigation) and the
introduction of a more efficient system for grinding maize. During this
time, however, there is evidence of greatly increased social complexity.
Contemporary Pueblo people have complicated social systems made
up of sodalities (distinct social associations) including clans, moieties
(division of the village into two units), feast groups, religious societies
and cults (68 different ceremonial groups have been recorded), war
societies, healing groups, winter and summer governments, and village
governments. Details of the groups come from historical documents and
contemporary ethnographies. The economic, religious, and social realms
of Pueblo society are so tightly integrated it is difficult to understand
them as separate elements of the society.

Long House Valley, a 180 km2 landform in northeastern Arizona,
provides a realistic archaeological test of the agent-based modeling of
settlement and economic behavior among subsistence-level agricultural
societies in marginal habitats. This area is well suited for such a test for a
number of reasons. First, it is a topographically bounded, self-contained
landscape that can be realistically reproduced on a computer. Second,
a rich paleoenvironmental record, based on alluvial geomorphology,
palynology, and dendroclimatology, permits the accurate quantitative
reconstruction of annual fluctuations in potential agricultural production
in kilograms of maize per hectare (Dean et al. 2000). Combined, these
factors permit the computerized creation of a dynamic resource land-
scape that accurately replicates actual conditions in the valley from
A.D. 200 to the present. The agents of the simulation interact with one
another and with their environment on this landscape. Third, tree-ring
chronology provides annual calendric dating. Fourth, intensive archaeo-
logical research, involving a 100% survey of the area supplemented by
limited excavations, creates a database on human behavior during the
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last 2,000 years that constitutes the real-world target for the modeling
(Dean, Lindsay, and Robinson 1978). Finally, historical and ethnographic
reports of contemporary Pueblo groups provide anthropological analogs
for prehistoric human behavior.

Between roughly 7000 and 1800 B.C., the valley was sparsely occupied
by people who depended on hunting and gathering. The introduction
of maize around 1800 B.C. began the transition to a food-producing
economy and the beginning of the Anasazi cultural tradition, which
persisted until the abandonment of the region around A.D. 1300. Long
House Valley provides archaeological data on economic, settlement,
social, and religious conditions among a localized Anasazi population.
These archaeological data provide evidence of stasis, variability, and
change against which the agent-based simulation of human behavior on
the dynamic, artificial Long House Valley landscape can be judged.

We have tested a large number of hypotheses about the Long House
Valley Anasazi (Dean et al. 2000; Axtell et al. 2000), but we focus on
only two issues here: (1) the role of environment in explaining the popu-
lation dynamics of settlement placement, the large population increase
after A.D. 1000, and the complete abandonment of the region around
A.D. 1300; and (2) the size of simulated and actual settlements that were
selected and abandoned under various environmental, demographic,
and social conditions in different years.

Methods

The Artificial Anasazi Project is an agent-based modeling study based
on the Sugarscape model created by Joshua M. Epstein and Robert
Axtell (1996). The project was created to provide an empirical, real-
world evaluation of the principles and procedures embodied in the
Sugarscape model and to explore the ways in which bottom-up, agent-
based computer simulations can illuminate human behavior in a real
world setting. The landscape (analogous to Sugarscape) is created from
reconstructed environmental variables and is populated by artificial
agents—in this case households, the basic social unit of local Anasazi
society. Agent demographic and marriage characteristics and nutritional
requirements are derived from ethnographic studies of historical Pueblo
groups and other subsistence agriculturists.

The simulations take place on this landscape of annual variations in
potential maize production values based on empirical reconstructions
of low- and high-frequency paleoenvironmental variability in the study
area. The production values represent as closely as possible the actual
production potential of various segments of the Long House Valley
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environment over the period of study. In general, the reconstructed
environment for maize agriculture can be characterized as dramatically
improving about A.D. 1000, suffering a deterioration in the mid 1100s,
and improving until the late 1200s, when there is a major environmental
disruption involving the Great Drought (1276–1299), falling alluvial
water table levels, severe floodplain erosion, and changes in the sea-
sonal patterning of precipitation (Dean 1996). On this landscape, the
agents of the Artificial Anasazi model play out their lives, adapting to
changes in their physical and social environments.

The first step was to enter relevant environmental data, and data on
real site location and size. Simulations using these landscapes vary in
a number of ways. The initial population of agents (households) can
be scattered randomly or placed where they actually existed at some
initial year. The simulations reported here were begun with the number of
agents (households) actually present in the valley during the initial year
with the households distributed randomly across the artificial landscape.
The environmental parameters may be left as they were originally recon-
structed or adjusted to enhance or reduce maize production. Finally, and
most importantly, the rules by which the agents operate may be changed.
The simulation has 22 user-controlled variables that govern both agent
interactions and interaction with the annually changing environment.

Agent (household) behavior on the production landscape is governed
by agent attributes and a set of simple rules entrained sequentially.
Standard demographic tables for subsistence agriculturalists are used
to determine nutritional requirements, marriage ages and reproduction
rates, and household fissioning and longevity. A household (agent)
consists of five individuals, two parents and three children, each with
nutritional requirements that are represented in the model by 160 kg of
maize per person per year for a total requirement of 800 kg of maize
per household per year. Because ethnographic data indicate that modern
Puebloans try to keep at least two years’ worth of corn on hand, our
agents attempt to have at least two years’ supply (1600 kg) in storage
after the harvest in September. An internal clock tracks the amount of
maize each household has in storage. This quantity is diminished each
month by the amount consumed by the household and is replenished
once a year by the amount harvested at the end of the growing season.
The amount harvested equals the reconstructed potential production
of the household’s farmland minus a variable percentage that reflects
fallowing, insect damage, and reservation of seed corn. Every April, each
household assesses the status of its food supply, adding what it expects
to have in storage by harvest time to the predicted yield of its farmplot
for the coming growing season based on the previous year’s production.
If the expected stored amount plus the predicted yield exceeds 1600 kg,
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the household decides to maintain its current fields and stay where it is.
If the sum is less than 1600 kg, the household decides to move to a more
productive location where sufficient yield can be expected.

Movement rules for agents are triggered when a new household is
created by the marriage of a resident female or when a household
determines in April that the amount of stored maize plus the predicted
maize production of its current farmplot cannot sustain it for the
coming year. Once a household decides to move to a more productive
location, it employs three sufficiency criteria for selecting new farmland:
(1) the plot must be currently unfarmed; (2) the plot must be currently
uninhabited; and (3) the plot must have a minimum estimated potential
maize production of 160 kg of maize per household member. There are
also three sufficiency criteria for selecting residential sites: (1) the site
must be within 2 km of the farmplot; (2) the site must be unfarmed;
and (3) the site must be less productive than the selected farmplot. If
more than one site meets the sufficiency criteria, the site selected is
the one with closest access to domestic water. The fact that potential
residential locations need not be unoccupied allows the development of
multihousehold settlements.

How closely the simulations mimic the historical data provides the
most obvious test of model adequacy, or “generative sufficiency” in
the terminology of Epstein (1999). We must ask: Do these exceedingly
simple rules for household behavior, when subjected to the parallel
computation of other agents and reacting to a dynamic environment,
produce the complex behavior that actually did evolve, or are more
complex rules necessary? When it is free to vary, does the population
trajectory follow the reconstructed curve, and does the population
aggregate into villages when we know the population actually did? Does
the simulated population crash at A.D. 1300, as we know it did? Do
the simulated settlement sizes and population densities closely associated
with hierarchy known for the area emerge through time?

Results and Discussion

While potentially enormously informative, agent-based simulations
remain theoretical constructs unless their outcomes are independently
evaluated against actual cases that involve similar entities, landscapes,
and behavior. The degree of fit between the results of a simulation
and comparable real-world situations allows the explanatory power
of the sociocultural model encoded in the simulation’s structure to
be objectively assessed. Lack of fit implies that the model is in some
way inadequate. Such “failures” are likely to be as informative as
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successes, because they illuminate deficiencies of explanation and indicate
potentially fruitful new research approaches. Departures of real human
behavior from the expectations of a model identify potential causal
variables not included in the model or specify new evidence to be sought
in the archaeological record of human activities.

The most appropriate comparisons between the model and the real
world begin at A.D. 400 with the same number of randomly located
simulated households as in that year’s actual historical situation, as
well as the environmental situation as it has been reconstructed for
each year. The simulation of household and field locations, as well as
the size of each community (the number of households at each site),
runs on an annual basis, operating under the movement rules on the
changing resource landscape. A map of annual simulated field locations
and household residence locations and sizes runs simultaneously with
a map of the actual archaeological and environmental data so that the
real and simulated population dynamics and residence locations can
be compared (figures 6.1, 6.2, 6.3). In addition, time series plots and
histograms illustrate annual variation in simulated and actual population
numbers, aggregation of population, location and size of residences by
environmental zone, simulated amounts of maize stored and harvested,
and the number of households that fission, die out, or leave the valley.

Real Long House Valley. Around 1150, largely in response to changes
in productive potential, the inhabitants began to aggregate in localities
particularly suitable for farming under the changing hydrologic and
climatic conditions. This change in population distribution initiated a
trend toward increasing sociocultural complexity, a development driven
by problems resulting from increasing settlement size and population
density. Among these problems are coordinating the activities of larger
groups of people, task allocation, conflict resolution, and the accumu-
lation, storage, control, and redistribution of critical resources such as
food and domestic water. An important outcome of this trend was the
development of a settlement hierarchy that, by A.D. 1250, involved
four levels of organization: the individual habitation site, the central
pueblo, the site cluster of 5 to 20 habitation sites focused on a central
pueblo, and the valley as a whole. This settlement system is evident
in the concentration of sites in favorable localities with empty areas in
between, the structured spatial and configurational relationships among
sites within clusters, and line-of-sight relationships between the clusters’
central pueblos.

Artificial Long House Valley. The simulation exhibits the demographic
markers of the real situation. The greatest similarity is the development of
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Figure 6.1. Simulated population distribution on the reconstructed environment
(right) and the actual situation (left) in A.D. 1170. Yellow hatching on both
sides is the simulated land under cultivation. Blue represents the depth of the
water table. Darker blue represents higher water table. Colored dots represent
settlements. Black = settlements of 5 or fewer households. Green = 6 to 20.
Red = 21 or more. Settlements tend to be clustered in the same places, but
simulated settlements are more aggregated. The position of the largest simulated
settlement is within 100 m of the largest actual settlement—the red dot on the
upper arm of the narrow canyon on the left. This is the actual site of Long House,
after which the valley was named.

site clusters in the same localities as the actual ones (figures 6.1, 6.2) and
the replication of the location and size of the site of Long House itself,
indicated by arrows in figure 6.2. In the Artificial Anasazi source code,
hierarchy of any kind is not explicitly modeled. However, in the historical
record there is an extremely high correlation between organizational
hierarchy and settlement clustering. Clustering does emerge from the
model, and on this basis we guardedly infer the presence of hierarchy.
Rather than producing a site organizational hierarchy in which the
population is distributed across several kinds of settlement unit, the
simulation tends to pack people into a few large sites that correspond
to each real site cluster (figure 6.2). Given the agent rules, this seems a
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Figure 6.2. Simulated population distribution on the reconstructed environment
(right) and the actual situation (left) in A.D. 1270. In both cases the population
has begun to move out of the southern part of the valley because of deep erosion
and a drop in the water table. Arrows indicate Long House.

reasonable fit, and population size and distribution similarities indicate
that the artificial version of the complexity trajectory is in many ways
equivalent to the actual situation. As shown by the smaller sites and
more scattered settlements in the real valley at A.D. 1100 (figure 6.1),
settlement clustering and size growth begin somewhat earlier in the
model than in the actual valley. This difference likely is due to lags in
the response of the real Anasazi to significant environmental changes.

By A.D. 1170 (figure 6.1), population concentrations have developed
in the same localities in both the real and simulated valleys. In both cases,
a large unoccupied area has appeared in the middle of the valley, and
site density is much reduced along the eastern margin of the valley floor.
Also in both cases, the settlement distributions result from combinations
of three environmental factors: (1) the valley floor, which is subject to
alluvial deposition and erosion and is therefore a poor place to establish
residences; (2) arable land near which settlements can be located; and
(3) domestic water resources that were concentrated along the north-
western margin of the valley floor between A.D. 1130 and 1180 and
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Figure 6.3. Simulated population distribution on the reconstructed environment
(right) and the actual situation (left) in A.D. 1305. The actual population has
abandoned the valley, but there are still settlements in the simulated version.

after A.D. 1250. Large sites in the simulation are equivalent to groups
of small sites in the real world. Early in the process, neither system
exhibits a hierarchical settlement structure. By A.D. 1270 (figure 6.2), the
actual Long House Valley was the locus of the fully developed settlement
organizational hierarchy. This development is evident in the spatial
association of sites of different size (see legend) on the left image. The
simulation (right image) shows less site size differentiation than the real
valley, with most of the population packed into large sites. Nevertheless,
some differentiation is evident along the northwestern margin of the
valley. In addition, the simulation accurately captures the concentration
of sites in the northern part of the valley, the clustering of sites, and the
location and size of the largest actual site in the valley, Long House.

Comparing the simulated (figure 6.4) and real time trajectories of site
sizes generates some provocative inferences. The number of simulated
sites with more than 39 households peaks around A.D. 1100, remains
high for nearly two centuries, and drops precipitously at the end of the
13th century, with the largest sites disappearing shortly after A.D. 1300.
In contrast, simulated sites with fewer than 40 households maintain a
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Figure 6.4. Changes in simulated settlement size. Large settlements (≥80 house-
holds) develop rapidly after A.D. 1050, fluctuate in size for 200 years, and
disappear abruptly after A.D. 1300. In sharp contrast, the number of smaller
sites (4 to 9 households) tends to increase gradually until after A.D. 1300, when
it increases more rapidly.

fairly stable profile and increase in number after the late 13th-century
population crash and demise of the large settlements. While the rapid
decline of the large sites mirrors the Anasazi abandonment of the real
valley around A.D. 1300, the persistence of small to medium sites in
the simulation contrasts sharply with the abandonment of all real sites
at that time.

The different responses by the simulated and real Anasazi to the
environmental crisis of the late 13th century have important explanatory
implications. It has long been clear (Dean 1969) that even the seriously
degraded post-A.D. 1275 environment of the valley could have supported
a certain number of people and that the deleterious environmental
conditions would not have forced all the Anasazi to depart. A smaller
population could have sustained itself by abandoning large settlements
and dispersing into smaller communities situated near the few loca-
tions that remained agriculturally productive. The Artificial Anasazi do
precisely that, the reduced population shifting from large, aggregated
communities into smaller settlements (figure 6.4) scattered across the
northern part of the valley where isolated pockets of farmable land still
exist (figure 6.3). That the real Anasazi employed a different option
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indicates that environmental degradation was not responsible for the
complete abandonment of the valley and that other, undoubtedly social,
factors were involved in the final emigration. That these social factors
included the unwillingness or inability to forsake the relatively high
level of social complexity embedded in the hierarchical settlement system
of the late 13th century for a simpler, disaggregated social system is
supported by the ready dispersion of the Artificial Anasazi, who, driven
primarily by environmental constraints, lacked such cultural inhibitions.

All the evidence indicates that by A.D. 1305, the real Anasazi
(figure 6.3, left) had abandoned the valley. The Artificial Anasazi
(figure 6.3, right), however, survived by spreading out across the part
of the valley that remained productive even under the worsened environ-
mental circumstances of the post-1300 period. This difference accurately
reflects the fact that the real Anasazi could have stayed on by farming
the northern valley floor and dispersing into medium-size communities
(Dean 1969). The environmentally unnecessary total abandonment of
the real valley undoubtedly reflects the pull of social factors drawing
people to the distant communities established by previous emigrants
from Long House Valley. Elements of this social attraction would have
included maintaining a large enough pool of potential marriage partners,
fulfilling ceremonial and social obligations to their former neighbors, and
retaining achieved levels of sociocultural complexity.

Conclusion

In summary, agent-based models are laboratories where competing
hypotheses and explanations about Anasazi behavior can be tested
and judged in a disciplined, empirical way. The simple agents posited
here explain important aspects of Anasazi history while leaving other
important aspects unaccounted for. Site distribution and density are well
approximated by the agent-based simulations. Countless simulations
have been run, and the results we report here are quite robust. The
hierarchical structure identified in the archaeological context can be more
closely approximated with some logical modifications to the settlement
rules in the simulations. The explicit modeling of hierarchical social
structures is a planned topic of future model development. The departure
between real Anasazi and Artificial Anasazi in the final period of
settlement is a fascinating challenge. The pattern of abandonment is
observed in many regions of the prehistoric Anasazi at approximately
this same time.

With agent-based modeling, we can systematically alter the quantita-
tive parameters or make qualitative changes that introduce completely
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new, and even unlikely, elements into the artificial world of the sim-
ulation. In terms of the Artificial Anasazi model, we can experiment
with agent attributes, such as fecundity or food consumption, and we
can introduce new elements, such as mobile raiders, environmental
catastrophes, or epidemics. Actual environmental constraints might have
been the trigger to induce many of the Anasazi to abandon the region;
however, social or ideological factors were responsible for the complete
abandonment of the valley. Demographic and epidemiological models
may be utilized to derive additional parameters for the agent-based
modeling. We have also considered synergies among variables in the real
context that we have not yet experimented with in the modeling efforts.
In this analysis, using this bottom-up approach to modeling prehistoric
settlement behaviors, we have greatly improved our understanding of the
underlying processes involved in the population dynamics.
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Prelude to Chapter 7

GENERATING PATTERNS IN

THE TIMING OF RETIREMENT

What is the connection between individual rationality and aggregate
efficiency? And what is the role of local interactions and social networks
in determining that connection? Regarding the first question, the opening
Generative chapter argues that individual rationality is neither necessary
nor sufficient for the attainment of macroscopic efficiency. The two
are logically independent; neither implies the other. The retirement
model furnishes the necessity half of the independence proof: a society
of autonomous agents arrives at the economically optimal retirement
behavior even though the overwhelming majority do not optimize indi-
vidually. More prosaically, the invisible hand does not require rational
fingers. In my own mind, the other half of the independence proof—
individual rationality is not sufficient for macro efficiency—is given in the
trade chapter of Growing Artificial Societies, where agents do maximize
utility in the orthodox fashion, under evolving preferences. Equilibrium
is not attained despite orthodox optimization of utility functions that are
themselves orthodox at all times (Cobb-Douglas algebraically).

Turning to its specifics, the retirement model exhibits many of the
core themes of the Generative chapter. Here, agents are heterogeneous
by age, by social network, and by retirement status. Social interactions
are local with most agents playing a coordination game (retire vs. work)
with others in their network. In answer to the second question posed
initially, local interactions in networks is the mechanism whereby overall
optimality is attained in our population of predominantly nonoptimizing
individuals. One novel feature of this model, however, is that these
networks change over time—they are transient. Bounded rationality is
evident in that most agents simply imitate within their dynamic network,
or play a random strategy, rather than optimizing in any economic
sense. That few agents optimize is, of course, consistent with a wealth
of data from psychology and experimental economics. The model thus
aims to provide a more plausible microfoundation for an important
macroeconomic phenomenon than the optimizing representative agent
picture.

The research was motivated by an empirical puzzle brought to our
attention by Brookings colleagues Henry Aaron and Gary Burtless.
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In truth, neither Rob Axtell nor I was thinking about retirement
economics at all. But Henry and Gary quickly convinced us that there
was an empirical challenge here and, more intriguing, a promising area
for agent-based modeling. Although the model concerns stylized facts,
and is “quasi-empirical,” I dare say that, with reference to the U.S. data,
it is stronger on the observed dynamics of retirement norms than the
neoclassical efforts to date.
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Chapter 7

COORDINATION IN TRANSIENT SOCIAL

NETWORKS: AN AGENT-BASED COMPUTATIONAL

MODEL OF THE TIMING OF RETIREMENT

ROBERT L. AXTELL AND JOSHUA M. EPSTEIN*

Though motivated by a policy question, this work has theoretical
dimensions. There are two related theoretical issues. One is the con-
nection between individual rationality and aggregate efficiency—between
optimization by individuals and optimality in the aggregate. The second
is the role of social interactions and social networks in individual deci-
sion making and in determining macroscopic outcomes and dynamics.
Regarding the first, much of mathematical social science assumes that
aggregate efficiency requires individual optimization. Perhaps this is why
bounded rationality is disturbing to some economists: they implicitly
believe that if the individual is not sufficiently rational, it must follow that
decentralized behavior is doomed to produce inefficiency. The invisible
hand requires rational fingers, if you will.

Experimental economics and psychology have produced strong empir-
ical support for the view that framing effects, as well as contextual and
other psychological factors, create a large gap between homo economicus
and homo sapiens.1 Individual rationality is bounded. The questions we
pose here are: Does that matter? How does it matter?

To answer these questions, we have developed a model in which
imitation in social networks can ultimately yield high aggregate levels of
optimal behavior despite extremely low levels of individual rationality.
The fraction of agents who are rational in such an imitative system will

*Thanks are due George Akerlof, Chris Carroll, Bob Hall, Peyton Young, and partici-
pants in the Brookings Work-in-Progress seminar. Research assistance from Trisha Brandon
and David Hines is gratefully acknowledged. This research was partially supported by the
National Science Foundation, under grant IRI-9725302.

This essay was published previously in Behavioral Dimensions of Retirement Economics,
edited by Henry J. Aaron. 1999. Washington, D.C.: Brookings Institution Press; New York:
Russell Sage Foundation.

1See the recent review in Rabin 1998.
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definitely affect the rate at which a steady state sets in. But the eventual
(asymptotic) attainment per se of such a state need not depend on the
extent to which rationality is bounded. Perhaps the main issue, then,
is not how much rationality there is at the micro level, but how little
is enough to generate macro-level patterns in which most agents are
behaving “as if” they were rational, and how various social networks
affect the dynamics of such patterns. Of particular concern are the
puzzling dynamics of retirement.

In 1961 Congress reduced the minimum age at which workers could
claim social security benefits from sixty-five to sixty-two. By any mea-
sure, this was a major policy shift. Yet it took nearly three decades for the
modal retirement age to fall correspondingly. While various explanations
are possible, we suggest that imitative behavior and social interactions—
factors absent from traditional economic models—may be fundamental
in explaining the sluggish response to policy.

For modeling purposes, one can represent retirement decision making
(and perhaps a range of other problems) in the following stylized terms.
First, there is an initial state of the world in which the individually
optimal age at which to take some action is Y. Suddenly, a policy is
instituted exogenously. Given this policy, the individually optimal age at
which to take the action becomes Y∗ �= Y. What one observes, however,
is not the instantaneous shift from Y to Y∗ that would be predicted
assuming universal, fully informed, rational behavior. Rather, there is a
long process of patchy social adjustments, in which different clusters of
individuals migrate to Y∗ at different rates, with some groups perhaps
not getting there at all. In our model, the action in question is individual
retirement, the exogenously instituted policy is the 1961 congressional
reduction in the age of eligibility for social security, and Y and Y*
are sixty-five and sixty-two, respectively. The actual data are plotted
in figure 7.1.2 As noted above, it took nearly three decades for the
response—a downward shift in the modal retirement age from sixty-five
to sixty-two—to manifest itself. We develop a relatively general model,
involving imitation in social networks, that generates such patchy and
sluggish dynamics. It is not the only approach possible.3

One body of research has sought to explain the data with aggregate
models in which a representative agent solves some life-cycle optimiza-
tion problem.4 If the goal is simply to fit the data, it is not unreasonable
to attribute to agents the capacity to explicitly formulate and solve

2We thank Gary Burtless for supplying these data.
3See, for instance, Burtless 1986.
4See, for example, Rust and Phelan 1997; Laibson, Repetto, and Tobacman 1998.
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Figure 7.1. Male retirement rate by age, 1960, 1970, and 1995–96. (Source: Gary
Burtless, personal communication.)

such dynamic programming problems. However, there is strong empirical
evidence that humans do not perform well on problems whose solution
involves backward induction (see Camerer 1997). For this reason, these
models fail to provide a realistic microeconomic—that is, individualist—
account of the phenomenon. We would like to provide such an account.

Our model does not invoke a representative agent but posits a
heterogeneous population of individuals. Some of these behave “as if”
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they were fully informed optimizers, while others, indeed most, do not.
Social networks and social interactions, clearly absent from the prevailing
literature, play an explicit and central role.

A Model of Retirement Age Norms

The agents in our model fall into three categories. One minority group
of agents adopts the (presumably) optimal policy by a process we do
not model. Another minority group is composed of randomly behaving
agents who retire with a fixed probability once they reach retirement age.
The majority of agents are imitators who mimic members of their social
networks. For lack of better terminology, we designate these groups
“rationals,” “randoms,” and “imitators,” respectively.

Agents, Cohorts, and Social Networks

The agent population is divided into age cohorts ranging from age twenty
to age one hundred. Thus, there are eighty-one cohorts. Each contains C
agents for a total of 81C ≡ Aagents. Each agent is assigned a random age
of death drawn from U[60, 100].5 The average death age is thus eighty.
When an agent dies, it is replaced by a twenty-year-old agent.6 In each
time period each agent is activated exactly once, and if it is eligible to
retire but has not yet done so, decides whether or not to retire.7

Agents are heterogeneous by social network; each has its own. A social
network is simply a list of other agents, specified randomly and fixed
over the agent’s lifetime. The number of other agents is set by drawing
a random network size, S, from U[a, b]. Some of these agents may be
younger or older than the agent in question. The extent, E, represents
how far the agent’s social network extends above and below its own age
cohort; E is drawn from U[0, c]. Thus one agent might have a social
network of seventeen others, ranging in age from five years younger
to five years older than itself, while another agent might have a social
network consisting of thirteen others who are all within a year of its

5Certain variables in our model are assigned random values. In all cases below,
the random variables are assumed to be uniformly distributed. The uniform (that is,
rectangular) distribution on the interval [a, b] is denoted U[a, b].

6The number of cohorts, number of agents per cohort, and distribution of death ages are
all easily modified in the software that we have created for this model.

7In the computational implementation of the model, the order of agent activation is
randomized within cohorts in each period. It is commonly held that such randomization is
necessary in order to suppress so-called simulation artifacts, that is, spurious correlation in
the agent population.
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Figure 7.2. Typical agent social networks.

own age. Any two networks may or may not overlap, that is, have agents
in common.

At any given time, the set of all social networks constitutes a single
random graph, with the agents as nodes and the network relations
as directed edges.8 Figure 7.2 shows a variety of social networks.
Each rectangle represents an agent and each row represents an age
cohort, with progressively older cohorts arrayed from top to bottom
in the figure. Social networks are shown with X’s for the three agents
who are colored black, in the sixty, seventy-seven, and ninety-four age
cohorts. The twenty-four members of the sixty-year-old agent’s social
network include thirteen younger agents and eleven older agents.

Agent Types

As noted earlier, there are three broad types of agents. Rational agents
retire at the earliest possible age allowed by government policy. Random
agents retire with probability p each period, once they reach the age of
eligibility for retirement.

8For more on social networks, see Kochen 1989 and Scott 1991.
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Imitator agents are the most heterogeneous and interesting. Each
imitator has a unique social network. Within this individual network,
there is some fraction f of eligible agents who have actually retired.
At each instant this is heterogeneous across agents, since the size and
composition of networks are agent-specific. Agents are assigned an
imitation threshold, τ , representing the minimum proportion of members
of the agent’s social network who must be retired for that agent to retire.
Each agent’s behavioral rule then amounts to comparing τ with f .9 If
f ≥ τ , the agent retires; otherwise, the agent continues working until the
following period, when it reevaluates its decision.

Notionally, the imitator agents play a simple coordination game within
their social networks.10 That is, agents derive utility from coordinating
their behavior with the members of their social network. At every instant
each agent in the population is either working or retired. Since A is
the number of agents, call x ∈ {working, retired}A the state of the
population, and xi agent i ’s state. Agent i ’s social network is denoted
by Ni . Then the utility that iderives from interacting with the members
of its social network in state x, Ui (x), can be written

Ui (x) =
∑

j∈Ni

u(xi , xj ),

where u(xi , xj ) is the utility of i ’s interaction with j .
The function u can be thought of as the payoff function of a two-by-

two symmetric game:
work retire

work w, w 0, 0
retire 0, 0 r, r

Ui is then the payoff function of the social network game. Note that τ

can be expressed in payoff terms. When an agent is young and none of
its social peers are retired, f = 0, and the agent derives maximum utility
from working. However, as its friends begin to retire (f > 0), the utility
from retiring rises to rf, and the utility from working falls from w to
w(1 − f ). The agent will decide to retire if f rises to a level such that
rf ≥ w(1 − f ), or equivalently, f ≥ w/(r + w); thus, the agent’s imitation
threshold τ in terms of payoffs is w/(r + w).

9It makes a difference to the numerical results whether an agent considers all agents in
its social network or only those who are eligible to retire. The qualitative character of the
results described below, however, does not depend on this distinction.

10This development closely follows Young (1998, 3–4).
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In this social network game, then, how does the shift to earlier
retirement diffuse through coupled heterogeneous networks? And how
do the dynamics vary with key parameters, such as the number of rational
agents, the distribution of imitation thresholds, and the probability that a
random player will retire when eligible? We resolve these questions quan-
titatively below by appeal to an agent-based computational model.11

Before delving into detailed analysis of the model, however, a brief
introduction to the general approach is in order.

Agent-Based Computational Models

Compactly, in agent-based computational models, a population of data
structures representing individual agents is instantiated and permitted to
interact.12 One then looks for systematic regularities—often at the macro
level—to emerge from the local interactions of the agents. The shorthand
for this is that macroscopic regularities “grow” from the bottom up.
No equations governing the overall social structure are stipulated in
multiagent computational models, thus avoiding any aggregation or
misspecification bias. Typically, the only equations present are those
used by individual agents for decision making. Different agents may
have different decision rules and different information; usually, no agents
have global information, and the behavioral rules involve bounded
computational capacities—the agents are “simple.” This relatively new
methodology facilitates the modeling of agent heterogeneity, boundedly
rational behavior, nonequilibrium dynamics, and spatial processes.13 A
particularly natural way to implement agent-based models is through
“object-oriented” programming. Our object-oriented implementation of
the present model is described in the appendix.

Establishment of an Age Sixty-five Norm:
Two Realizations of the Model

We begin our analysis by describing in detail two particular realizations
of our model, one with a relatively large fraction of rational agents
and the other with relatively few. Because the model involves stochastic
elements, each realization is essentially unique, even for fixed numerical

11Coordination games on fixed social networks have been studied by Blume (1995) and
Young (1998). But because our networks are transient, their analytical results do not apply.

12For extended discussions of the agent-based computational approach, see Epstein and
Axtell 1996; Axelrod 1997.

13For more on the comparative advantages of this modeling technique, see Epstein and
Axtell 1996.
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values of all parameters. While we do characterize large numbers of
realizations statistically below, we first focus on individual realizations,
in order to build up some intuition about how the model works.

In all runs of the model described below, each cohort consists of
C = 100 agents. Therefore the population size, A, is 8100. The size of
each individual’s social network is set by drawing a random number from
U[10, 25]. Each agent’s network extends up to five age cohorts above and
below its own. Imitating agents have a homogeneous imitation threshold,
τ , of 0.5, meaning that 50 percent of the members of an agent’s social
network must be retired before that agent will retire. Random agents
retire with probability p = 0.5 each period, once they are eligible. The
government age of eligibility for retirement is sixty-five, and there is no
age of forced retirement.

In the first realization, 15 percent of the agents are rationals, 80
percent are imitators, and 5 percent are randoms. Animation 7.1 portrays
the evolution of retirement in this society and conveys a sense of how
imitation propagates the retirement decision through social networks.14

As in figure 7.2, each agent is a rectangle. Agents are arrayed across the
page by cohort and down the page by increasing age. Retired agents are
shown in red and dead agents are colored white. Among the unretired
agents, the pink agents are rationals, the blue agents are imitators, and
the few yellow agents are randoms.

It is worthwhile to explain exactly how to “read” an animation. At the
start, there are one hundred agents in each of eighty-one age cohorts, of
which the eldest forty-six are displayed. So, the top row of the animation
represents one hundred agents of age fifty-five. Call the upper left-hand
agent Tom. In matrix notation, at time t = 1, Tom is cell (1, 1). At t = 2,
Tom is the cell immediately below: (2, 1). In general, at time t, Tom is cell
(t, 1). A change in color indicates that an agent has either retired or died.

In animation 7.1, notice that a uniform retirement age of sixty-
five quickly sets in, despite the fact that only a fairly small minor-
ity (15 percent) of the population arrives at this decision rationally.
Figure 7.3 gives a time-series plot of the fraction of agents eligible for
retirement who actually are retired. Note that this trajectory is essentially
monotone. Within the first six periods, essentially all of the eligible
population retires. In the second realization, the mix of agent types
is changed: now only 5 percent of the agents are rationals and 90
percent are imitators. Animation 7.2 is a typical result. Note that the
older cohorts show extensive fluctuation in retirement levels before the
system converges to full retirement at age sixty-five. It is as if retirement

14QuickTimeTM movies are available on the CD accompanying this book.
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Figure 7.3. Fraction of eligible agents retired over time, typical realization,
15 percent rational agents.

“percolates up” from older to younger agents. Figure 7.4 gives the time
series of the fraction of agents eligible for retirement who are retired.
It takes a long time for the absorbing state to be achieved in this case.
Notice that now the trajectory is not monotone.

Some Sensitivity Analysis

Each of the realizations described above yields interesting qualitative
information about the model. However, in order to characterize the
model’s overall behavior quantitatively, it is necessary to make many
realizations for a particular set of parameters and progressively build up
a statistical portrait of the solution space computationally. That is, the
intrinsic stochasticity of the model can be approximately characterized
through a sufficiently large number of realizations. Once this is done for
a particular configuration, one can study the effect of varying parameters.
We first define a base case configuration of the model:

Parameter Value

Agents/cohort (C) 100
Rational agents 10 percent
Imitative agents 85 percent
Imitation threshold (τ ) 0.50
Social network size (S) U[10, 25]
Network age extent (E) U[0, 5]
Random agents 5 percent
p 0.50
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Figure 7.4. Fraction of eligible agents retired over time, typical realization,
5 percent rational agents.

We study the effect of each of these parameters on the time required
for the age sixty-five retirement norm to emerge, the transition time.
The first parameter, the number of agents per cohort (C), was found to
have no effect on the average transition time for C > 100. So we begin
our exploration of the model by varying the relative proportions of the
three agent types—rationals, imitators, and randoms—keeping all other
parameters as in the base case. We performed fifty realizations for each
configuration of the model and estimated mean transition times along
with standard deviations. Figure 7.5 shows the average transition times
for three levels of randomly behaving agents as a function of the fraction
of rationals (and hence imitators). Note that the ordinate is in logarithmic
coordinates; error bars are ±1 standard deviation and are asymmetrical,
due to the logarithmic scale.

Reducing the proportion of rationals, while holding constant the pro-
portion of randoms, increases transition time. When randoms comprise
0 or 5 percent of the population, certain minimum proportions of the
population must be rational for a retirement age norm to arise. For a
given fraction of rationals, the transition time decreases as the proportion
of randoms increases. Notice that the variances increase rapidly with
transition times.

Our next sensitivity analysis concerns the effect of the imitation
threshold (τ ) on transition time. Since social networks are composed of
individuals, the fraction of agents in a given network who are engaged
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Figure 7.5. Effect of fraction of rational agents on transition to age 65 retirement
norm, by fraction of randomly behaving agents.

in some behavior can only take on certain discrete values. That is, small
changes in τ may have no effect on agent decision making, and thus
no effect on transition times. For example, imagine that all agents have
social networks of size ten. Clearly, increasing τ from 0.55 to 0.58 has no
effect; agents either have five or fewer retired agents in their network or
they have six or more. Only when τ is moved across a discrete boundary,
such as from 0.58 to 0.62, is there an effect.

Therefore instead of studying the dependence of transition times on
the average imitation threshold—surely a very “lumpy” dependence—
we investigate the effect of making the threshold progressively more
heterogeneous in the agent population while holding the average value
of τ constant. Figure 7.6 shows how transition times depend on the
standard deviation in the imitation threshold, with the average threshold
fixed at 0.50. Once again, the ordinate is in logarithmic coordinates.
Increasing the variance in the threshold decreases the average transition
time. The reason is that in high-variance populations there are relatively
more agents with low thresholds, and these agents quickly retire, leading
the rest of the population to retire quickly as well. Note that when there
is low variance in the imitation threshold, there is significantly more
variance in transition time.
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Figure 7.6. Effect of standard deviation in imitation threshold on transition to
age 65 retirement norm.

The three panels of figure 7.7 explore the dependence of transition time
on the size of agent networks (S). The separate (and opposite) effects
of changing the average size and the size variance are presented in the
first two panels. They are combined to produce the overall effect shown
in the third panel. In particular, the first panel describes the effect of
increasing network size, holding variance constant. Note that the time
required to transit to a uniform retirement age increases very rapidly with
increasing social network size; in large networks, it is difficult for a new
norm to become established. The second panel gives the dependence of
the transition time on the dispersion (the population standard deviation)
in social network size, holding the average size constant. In this case,
as the variance increases the transition time decreases, although this is
a relatively weak effect. The reason for this is that the small networks
catalyze the transition to a new norm, and as the variance increases, there
are more small networks.

These two effects are combined in the third panel, where the abscissa,
call it S̄, represents the maximum size of any social network; that is,
the size (S) of an agent’s network is set by drawing a random number
from U[10,S̄]. As S̄ increases, both the average social network size and
the variance rise, and the two competing effects on transition time given
in the first two panels of the figure play out, yielding the third panel.
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Figure 7.7. Effect of size of social network on transition to age 65 retirement
norm.
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Figure 7.8. Effect of extent of social network on transition to age 65 retirement
norm, by fraction of rational agents.

Overall, the general effect is that the transition time increases very rapidly
with S̄.

Next, we consider the effect of increasing the extent of agent social
networks in the age cohort dimension (E). Throughout the discussion
above, the maximum extent of a social network has been five cohorts
above and below an agent’s own cohort. Figure 7.8 shows the effect of
varying this parameter. Note that increasing the extent of agent social
networks in the age dimension decreases transition times. The reason for
this is that networks having greater extent include older agents, who are
more likely to be retired.

Dynamics and “As If”

Notice that in figure 7.6 the only variable affected by the fraction of
rationals is the transition time. The attainment, per se, of the age sixty-
five retirement norm is compatible with any rationality fraction above a
critical level. So while in establishing the social norm, the system does
behave “as if” all agents are rational, it also behaves “as if” none are!
However, in taking a long time to achieve the norm it does not behave
“as if” all agents are rational; indeed, it behaves as if most are not.
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Response to Policy Change: Shifting the Retirement Age from
Sixty-five to Sixty-two

Above, our model permitted agents to retire when they wished; no
mandatory retirement age was in effect. We now require that all agents
retire at age seventy. This increases the speed at which the age sixty-five
retirement norm is established. We wish to investigate the effect of policy
interventions on retirement age norms. Therefore once the norm of sixty-
five is established, we throw a “policy switch” and lower the retirement
age to sixty-two, mimicking the 1961 policy change by Congress. In
our model, this switch means only that rationals claim benefits at
age sixty-two and that randoms and imitators may receive benefits at age
sixty-two. We measure how long it takes for a new retirement age norm
to become established. Keep in mind that when the age of eligibility for
social security benefits was lowered from sixty-five to sixty-two, it took
nearly thirty-five years for a new norm to emerge (see figure 7.1). In
animation 7.3, with rationals and randoms each constituting 5 percent
of the population, τ distributed on U[0.5, 1.0], and the social networks
as in the base case, a new norm emerges after some twenty periods. In
short, the model replicates the sluggish adjustment that in fact occurred,
at least qualitatively.

We have made many realizations of this model, varying the number
of rationals in the population. The results are shown in figure 7.9. Note
that the transition time to the age sixty-two norm falls as the fraction of
rational agents increases. Based on this parameterization of the model, a
new norm is instituted in about thirty-five periods if between 1 and 4 per-
cent of the population responds rationally—that is to say, immediately—
to the new policy. The sensitivity analyses described in figures 7.6 through
7.8 indicate how the speed of adjustment depends on other parameters
in the model. In particular, we expect the time required to adjust to a
policy shock to rise for less variance in the imitation threshold (τ ) and
for increases in the average size and extent of social networks.

This use of the agent-based computational model as a kind of labo-
ratory in which alternative policies can be studied seems to us a fertile
application of the technology, and one that has not been systematically
exploited.

Two Subpopulations, Loosely Coupled by Social Networks

Some subgroups in society may be better informed and educated than
others. Such differences can affect the relative rates at which these
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Animation 7.3. Propagation of retirement behavior through social networks,
mandatory retirement age of 70 and policy change from earliest retirement age
of 65 to 62.



July 19, 2006 Time: 03:59pm chapter7.tex

TIMING OF RETIREMENT 165

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

Age

Frame 4

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

Age

Frame 5

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

Age

Frame 6

Animation 7.3. Continued.
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Figure 7.9. Effect of fraction of rational agents on transition to age 62 retirement
norm.

communities adopt various norms. In animation 7.4 the agents have been
divided into two distinct subpopulations of the same size: the agents on
the left do not include any rational agents, while of the agents on the
right, 10 percent are rationals. Other parameters are as in the base case
configuration. The two subpopulations are coupled through their social
networks as follows: 10 percent of each agent’s network belongs to the
other subpopulation, with the remainder belonging to its own group. We
term this quantity—10 percent—the coupling between subpopulations.
Even this rather loose coupling is sufficient for the group containing some
rationals to pull the other into conformity with its retirement norm, as
shown in animation 7.4.

We have studied this general effect by systematically varying the extent
of coupling between subpopulations and measuring the times required
for each group to reach a retirement norm of age sixty-five from an
initially unretired state. The results are shown in figure 7.10; each point
is an average of over fifty realizations. Note that very little coupling is
needed for the nonrational subpopulation to be pulled into conformity
with the more rational subpopulation.
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Figure 7.10. Effect of social network coupling on transition to age 65 retirement
norm.

Conclusions

With social network interactions and imitative dynamics, very little
individual rationality may be needed for society as a whole ultimately
to exhibit optimal behavior. More pointedly, there is a large literature,
experimental and theoretical, devoted to the question: how rational are
individual humans? From the perspective of network imitation, it may
not matter. Moreover, the nonequilibrium dynamics and the social patch-
iness of a response to policy will depend on both the size and the structure
of networks. It is not clear how one would adapt the representative
agent approach to study either of these dependencies. However, they are
naturally explored within the agent-based computational framework.

This chapter has barely scratched the surface of a rich and promis-
ing area of study. Many fruitful avenues for future research suggest
themselves, both analytical and computational. On the analytical side,
it would be extremely useful to have—for the transient networks
we describe—theorems analogous to those of Lawrence Blume and
H. Peyton Young, which give conditions under which social norms will
be established eventually for static networks (Blume 1995; Young 1998).
Furthermore, it would be desirable to have formal expressions for the
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way in which transition time distributions depend on model parameters
such as the fraction of imitators and size of social networks.

Computationally, it would be useful to extend our model of retirement
age norms to include income shocks and imitative consumption behavior
over the life cycle, as in the agent-based model of Christopher Carroll
and Todd Allen (1997). We suspect that doing so would add more
heterogeneity to the outcomes observed in our model. Furthermore, such
a model would provide a useful laboratory in which to explore new
theoretical ideas, like the effect of hyperbolic discounting, as well as to
experiment with policy alternatives, like increasing the retirement age or
privatizing social security.

While we have interpreted this model as applying to retirement, it
could be applied to a wide range of settings in which social interactions
mediate purely rational behavior. Obvious candidates include contagion
behavior in markets, migration to different health plans, or the diffusion
of technological innovations. In reality, these phenomena occur in social
networks, while most existing models treat them either as occurring
in “perfectly mixed” environments or via local interactions on regular
lattices or other highly specialized topologies. The agent-based compu-
tational approach is well suited to studying such processes with any
topology of interactions.

Appendix A. Implementation of the Model: Agents as Objects

There are many ways to computationally implement agent-based models.
This can be done in any modern programming language, or with any of
several mathematical or simulation software packages. However, since
the model is stated in terms of individual agents, there is one idea
from modern computer science that renders the implementation both
transparent and efficacious: object-oriented programming.

Objects are contiguous blocks of memory that contain both data (so-
called instance variables) and functions for modifying these data (the
object’s so-called methods). This ability of objects to hold both data
and functions operating on data is called encapsulation.15 Agent-based
models are very naturally implemented using objects, by interpreting an
object’s data as an agent’s state information and the object’s functions as
the agent’s rules of behavior. A population of agents who have the same
behavioral repertoire but local state information is then conveniently

15Other features of the object model, such as inheritance and polymorphism, seem to be
less relevant to agent-based computational models than encapsulation.
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implemented as multiple instantiations of a single agent object type or
class.16

We have implemented the model described in the text using object-
oriented programming. Not only are individual agents objects, but so
too are cohorts, albeit objects of a different class than agents. In fact, it
has proven convenient for the population of cohorts as a whole to be an
object as well.

The agent object has a variety of state variables and behavioral
methods. An agent’s state information includes type (rational, imitator,
or random), age, current employment status (working or retired), and the
age at which it will die (“death age”).17 All of this information is stored
locally, in the agent object. Each agent also keeps track of some number
of other agents who are identified as its social network. These data are
maintained in a social network object, described below. The agent’s main
decision in the present model is whether or not to retire: this is the agent
object’s basic method. This agent object specification is summarized as
follows:

Pseudo-Code Block 1: Agent Object

OBJECT agent;
type;
age;
death_age;
alive_or_dead;
social_network;
working_or_retired;
next_agent_in_agent_list;
FUNCTION initialize;
FUNCTION retirement_decision;
FUNCTION draw.

In practice, it makes sense to implement as private some of these data and
methods—that is, accessible only to the agent to whom they belong—
while others are public, although this is not essential.18

Each social network is also conveniently implemented as an object.
The size of each social network is data local to that object, as is an array

16For a discussion of the distinction between object and agent, see Jennings, Sycara, and
Wooldridge 1998.

17The agent is assumed not to know its death age.
18Private data and methods are accessible only to the agent to whom they belong, unless

other objects are given special access privileges.
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of pointers to (that is, memory addresses of) the agents who constitute
the network. Methods associated with this object include routines for
determining how many agents in the network are eligible to retire, and
how many are actually retired. This social network object specification is
summarized as follows:

Pseudo-Code Block 2: Social Network Object

OBJECT social_network;
size;
array_of_agents;
FUNCTION initialize;
FUNCTION number_eligible_to_retire;
FUNCTION number_retired;
FUNCTION fraction_retired_of_eligible;
FUNCTION draw.

Cohorts are also implemented as objects. The size of the cohort is
kept as local data, as is an array of agents who constitute the cohort.
The methods of this object are primarily data-gathering and statistical
routines, useful in characterizing the behavior of the cohort overall. The
cohort object is summarized as follows:

Pseudo-Code Block 3: Cohort Object

OBJECT cohort;
size;
array_of_agents;
FUNCTION initialize;
FUNCTION average_social_network_size_among_agents_in_cohort;
FUNCTION number_retired;
FUNCTION fraction_retired_of_eligible;
FUNCTION draw.

The population of cohorts is also an object. Similar to the cohort object, it
is merely an array of entities (here, cohorts), together with data gathering
and statistical methods for discerning the state of the population overall.

Putting all of this together, the agent-based computational model
amounts to

1. initializing all agents, social networks, and cohorts;
2. choosing an agent at random and incrementing its age;
3. checking to see if the agent has achieved its death age; if yes, then go to 2;

else
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4. having the agent decide whether to retire;
5. repeat 2 through 4 for all agents;
6. periodically gather and report statistics on the population.

This algorithm is summarized as follows:

Pseudo-Code Block 4: Overall Model

PROGRAM retirement;
initialize agents;
initialize social networks;
initialize cohorts;
repeat:

select an agent at random;
increment its age;
if age < death_age then do

retirement_decision;
get statistics on the agents and cohorts;

until user terminates.

The object model is largely responsible for the relatively compact
description of this code.19
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Prelude to Chapter 8

GENERATING CLASSES WITHOUT CONQUEST

The preceding chapter concerned norms of retirement. We turn now
to norms of a different, overtly discriminatory, type. In the Classes
model, initially meaningless “tags” acquire socially organizing salience:
tag-based discriminatory norms arise, and persist for long periods. The
Classes model illustrates once more a core theme of the Generative
chapter: that simple rules of individual behavior can generate—or map
up to—macroscopic regularities, in this case, class structures. Of course,
social classes can arise through outright conquest and subjugation. But,
it is notable that they can “self-organize” as well. Indeed, a nice title for
chapter 8 would have been “Classes without Conquest.”

In some respects, this self-organizing (no conquest) model seems
particularly disturbing in that a discriminatory—and, in welfare terms,
suboptimal—social order emerges in a population of individuals, all of
whom are behaving rationally. In this respect, the result is reminiscent
of mutual defection in the one-shot Prisoner’s Dilemma Game (discussed
in the subsequent chapter).

The generativist motto, we recall from chapter 1, is “If you didn’t
grow it, you didn’t explain it.” The distinction between existence and
attainment—the focus of chapter 3—arises again here. While it has been
proved analytically that the state with highest long-run (asymptotic)
probability is the equity norm, we demonstrate computationally that
the waiting time to transition from inequitable states to the equitable
one can be astronomically long. In particular, the waiting time scales
exponentially in a number of variables. In such cases, the transient, out-
of-equilibrium dynamics are of fundamental interest, and can be studied
rigorously in the multi-agent system. The model thus illustrates a useful
hybrid of analytical asymptotic equilibrium analysis and computational
nonequilibrium analysis.

Finally, it is worth stating outright that we do not engage in any
concerted defense of the term classes in this research, and will readily
grant that scholars steeped in the vast sociological literature on that topic
may justifiably bridle at our cavalier usage. Indeed, Tom Schelling, upon
seeing the model, suggested that—in the spirit of understatement—we
rename it the Sneetches model, after Dr. Seuss’s wonderful tale of baseless
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discrimination, which begins as follows:

Now, the Star-Belly Sneetches
Had Bellies with stars.
The Plain-Belly Sneetches
Had none upon thars.1

Those stars weren’t so big. They were really so small
You might think such a thing wouldn’t matter at all.

But, of course, just as in our model, a baseless tag matters a great deal,
as Seuss recounts. For example,

When Star-Belly children went out to play ball,
Could a Plain-Belly get in the game . . .? Not at all.
You could only play if your bellies had stars
And the Plain Belly children had none upon thars.

Moreover, while the Sneetches ultimately—“asymptotically”—arrive in
the equity norm, just as in our model the inequitable regime is long-lived:

When the Star-Belly Sneetches had frankfurter roasts
Or picnics or parties or marshmallow toasts,
They never invited the Plain-Belly Sneetches,
They left them out cold, in the dark of the beaches,
They kept them away. Never let them come near.
And that’s how they treated them year after year.

Well, you get the idea; Tom’s point is well taken. Whether what follows
is a better model of Sneetches or classes, I therefore leave for you, the
reader, to judge.

1Dr. Seuss, The Sneetches and Other Stories (New York: Random House Children’s
Books, 1961).
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Chapter 8

THE EMERGENCE OF CLASSES IN A MULTI-AGENT

BARGAINING MODEL

ROBERT L. AXTELL, JOSHUA M. EPSTEIN,
AND H. PEYTON YOUNG*

Introduction

Norms are self-enforcing patterns of behavior: it is in everyone’s interest
to conform given the expectation that others are going to conform.
Many spheres of social interaction are governed by norms: dress codes,
table manners, rules of deference, forms of communication, reciprocity
in exchange, and so forth. In this chapter we are interested in norms
that govern the distribution of property. In particular, we are concerned
with the contrast between discriminatory norms, which allocate different
shares of the pie according to gender, race, ethnicity, age, and so forth,
and equity norms, which do not so discriminate. An example of a
discriminatory norm is the practice of passing on inherited property to
the eldest son (primogeniture). Another is the custom, once common
in the southern United States, that blacks should sit in the back of
the bus. A third is the notion that certain categories of people (e.g.,
women, blacks) should receive lower compensation than others doing
the same job, and in other cases that they not be given the job at all.
These kinds of discriminatory norms can lead to significant differences in
economic class, that is, long-lived differences in property rights based on
characteristics that are viewed as socially salient.1

*For valuable comments the authors thank Sam Bowles, Jeff Carpenter, Steve Durlauf,
Nienke Oomes, John Roemer, John Rust, Thomas Schelling, John Steinbruner, Leigh Tes-
fatsion, Frank Thompson, Erik Olin Wright, and seminar participants at Brookings, Davis,
Michigan, the Santa Fe Institute, Stanford, and the University of Massachusetts (Amherst).
Steven McCarroll’s research assistance was invaluable. Support from the National Science
Foundation under grant IRI-9725302 is gratefully acknowledged. Additional support was
provided to the Center on Social and Economic Dynamics by the MacArthur Foundation.

This essay was published previously in Social Dynamics, edited by Steven N. Durlauf and
H. Peyton Young. 2001. Cambridge, Mass.: MIT Press.

1For other models of classes see Roemer 1982 and Cole, Mailath, and Postlewaite 1998.
This chapter differs from these by focusing on the dynamic process by which classes emerge,
rather than on the equilibrium conditions that sustain them.
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In this chapter we study the question of how such classes can emerge
and persist, given a norm-free, classless world initially. The framework
combines concepts from evolutionary game theory on the one hand and
agent-based computational modeling on the other. The essential idea is to
show how norms can emerge spontaneously at the social level from the
decentralized interactions of many individuals that cumulate over time
into a set of social expectations. Due to the self-reinforcing nature of
the process, these expectations tend to perpetuate themselves for long
periods of time, even though they may have arisen from purely random
events and have no a priori justification. We show that social expectations
gravitate to one of three conditions: (i) an equity norm in which property
is shared equally among claimants, and there are no “class” distinctions;
(ii) a discriminatory norm in which the claimants get different amounts
based on observable characteristics that have become socially salient (but
are fundamentally irrelevant); and (iii) fractious states in which norms
of distribution have failed to coalesce, resulting in constant disputes
and missed opportunities. In both the first and second cases, society
functions efficiently in the sense that no property is wasted. There is
no equity-efficiency tradeoff, just a difference in the way property rights
are distributed. The third case, by contrast, is highly inefficient and may
involve substantial inequality as well.

The long-run probability of being in these three different regimes can
be computed using techniques from stochastic dynamical systems theory
(Freidlin and Wentzell 1984; Foster and Young 1990; Young 1993a,
1998; Kandori, Mailath, and Rob 1993). But these methods are less
helpful in characterizing the short- and intermediate-run behavior of
these processes. Here agent-based computational techniques can play a
central role, by identifying regimes that are long-lived on intermediate
time scales, though not necessarily stable over very long time scales
(Epstein and Axtell 1996; Axtell and Epstein 1999).

Overview of the Model

Our model of class formation is based on Young’s evolutionary model
of bargaining (Young 1993b). The model is bottom-up in the sense that
norms emerge spontaneously from the decentralized interactions of self-
interested agents.2 In each time period two randomly chosen agents
interact, bargaining over shares of available property. Their behavior,
and their expectations about others’ behavior, evolve endogenously based

2We use the term “emergent” as defined in Epstein and Axtell 1996 to mean simply
“arising from the local interactions of agents.” The term and its history are discussed at
length in Epstein 1999.
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on prior experiences. These expectations may be conditioned on certain
visible characteristics or “tags” that serve to differentiate people. These
tags have no inherent social or economic significance—they are merely
distinguishing features, such as dark or light skin, or brown or blue
eyes. Over time, however, they can acquire social significance due to
path dependency effects. It might happen, for example, that blue-eyed
people get a larger share of the pie than brown-eyed people due to a
series of chance coincidences. The existence of these precedents causes
the expectation to develop that blue-eyed people generally get more than
brown-eyed people, and a discriminatory norm or class system emerges.
Alternatively, an equity norm can develop in which the tags have no
significance, and both sides get equal shares.

It can be shown that, asymptotically, the equity norm is more stable
than any discriminatory norm. In other words, starting from arbitrary
initial conditions, society is more likely to be at or near an equal
sharing regime than an unequal or discriminatory one if we wait long
enough. Nevertheless, metastable regimes can emerge that are discrimi-
natory and inequitable, yet persist for substantial periods of time. These
inequitable regimes correspond, roughly speaking, to situations where
a discriminatory intergroup norm divides society into upper and lower
classes, while a different, intragroup norm causes dissension within one
(or both) of the classes. Based on many realizations of the agent-based
computational model, we estimate the time it takes to exit from these
discriminatory regimes as a function of the number of agents, the length
of agents’ memory, and the level of background noise. In this case, the
waiting time increases exponentially in memory length and the number
of agents, and can be immense even for relatively modest values of the
parameters. The contrast between asymptotic and nonequilibrium results
illustrates how analytical and computational methods complement one
another in studying a given social dynamic.

Bargaining

We begin by modeling a bargaining process between individual agents.
Consider two players, A and B, each of whom demands some portion of
a “pie,” which we take as a metaphor for a piece of available property.
The exact nature of the property need not concern us here. For simplicity,
however, we shall suppose that the property is divisible, and that both
parties have an equal claim to it a priori.3 A posteriori differences in
claim will emerge endogenously from the process itself.

3Indivisible forms of property, such as a bus seat, can be made divisible by giving the
claimants equal a priori chances at being the occupant.
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Table 8.1
The Nash Demand Game

H M L

H 0,0 0,0 70,30
M 0,0 50,50 50,30
L 30,70 30,50 30,30

To specify the process, we must first delineate how agents solve the
one-shot bargaining problem. A standard way of modeling this situation
is the Nash demand game: each party gets his demand if the sum of the
two demands is not more than 100 percent of the pie; otherwise each
gets nothing. For instance, if employers and employees demand more
than 100 percent of total revenues, negotiations break down.

To simplify the analysis, we shall suppose that each agent can make just
three possible demands: low (30 percent of the pie), medium (50 percent),
and high (70 percent).4 For example, if row demands H and column
plays M, their demands sum to 120 and each gets nothing. The payoffs
(in percentage share) from all combinations of demands are shown in
table 8.1.

This yields a coordination game in which there are exactly three pure-
strategy Nash equilibria, shown in bold: (L, H), (M, M), and (H, L).
While various theories have been advanced that identify a particular
equilibrium as being most plausible a priori (e.g., Harsanyi and Selten
1988), we do not find these equilibrium selection theories to be especially
compelling. Instead of assuming equilibrium, we wish to explore the
process by which equilibrium emerges (if indeed it does) at the aggregate
level, from the repeated, decentralized interactions of individuals.

The Model with One Agent Type

We begin by studying this question for a population of agents who are
indistinguishable from one another, but who have different experiences
(life histories) that condition their beliefs. Then we consider a population
consisting of two distinct types of agents, who are differentiated by
a visible “tag” (dark or light skin, brown or blue eyes) that has no
intrinsic economic significance, but on which agents may condition their
behavior. In the latter case, long-lived discriminatory norms can develop
purely by historical chance, while this does not happen in the case

4The more general case is considered in Young 1993b.
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of homogeneous agents. But in both situations, fractious regimes can
emerge in which society fails to develop any coherent norm for long
periods of time.

Let the population consist of N agents. Each time period consists of
[N/2] “matches.” In each match, one pair of agents is drawn at random
from the population, and they play the game in table 8.1.5 Each agent’s
data about its world—its beliefs—are based on experience from pre-
vious plays. In particular, every agent remembers the demands—H, M,
or L—played by each of her last m opponents, where m is memory
length.6 The concatenation of all agent memories defines the current state
of the society. Behaviorally, each agent forms an expectation about her
opponent’s demands. She assumes that the probability of the current
opponent demanding L, M, or H is equal to the relative frequency
with which her previous opponents made these demands in the last m
interactions. But with some relatively small probability, ε, she selects her
demand randomly. Her behavior is thus a kind of “noisy best reply” to
her past experience:

• With probability 1 − ε an agent makes a demand that maximizes her
expected payoff given her expectations about the opponent’s behavior.
If several demands maximize expected payoff, they are chosen with equal
probability.

• With probability ε the agent does not optimize but chooses one of the
three demands, H, M, or L, at random.

These rules for matching, belief formation, and behavior define a
particular social dynamic as a function of the population size N, memory
length m, and error rate ε. Notice that it is a Markov process, because
there is a well-defined probability of moving from any given state s to
any other state s ′ in the next period.

In this model, agents’ beliefs evolve according to their particular expe-
riences. Thus, at any given time, the beliefs can be highly heterogeneous
because agents will have had different histories of interactions with
others. Importantly, moreover, these beliefs may be inconsistent with
the actual state of the world. A given agent’s experiences may not be
representative of behavior in the whole population. For example, one
agent, say A, might by chance have been matched against opponents
who demanded H in each of the last m periods. Thus A will believe

5Some agents may be active more than once in a particular period, while others are
inactive. On average, agents are active once per period.

6Some agents may have larger memories than others; that is, m may be a random variable
in the agent population.
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that the next opponent is likely to demand H, so she is very likely to
demand L (which is a best reply to H). But another agent, say B, may
have been matched against opponents who always demanded M; for this
agent it makes sense to demand M. The reality, however, could be that
most people in the population actually plan to demand L, in which case
the beliefs of both A and B are at variance with the facts. Moreover, if
A is matched against B in the next round, they will make the demands
(L, M) with high probability, which is not an equilibrium of the one-shot
bargaining game.

A social norm is a self-perpetuating state in which players’ memories,
and hence their best replies, are unchanging. In other words, it is a
rest point or equilibrium of the dynamical system when the error term
ε = 0. Consider, for example, the state in which everyone’s experience
is that opponents always demand M. Then everyone believes that her
next opponent will play M. Given these beliefs, M is a best response.
Assuming there are no errors (ε = 0), both sides demand M in the next
period. Thus, agents’ beliefs about opponents turn out to be correct,
and this situation perpetuates itself from one period to the next. This
is the equity norm in which everyone expects the other to demand one-
half, and as a result everyone does in fact demand one-half. Note that
this social norm involves no tradeoff between equity and efficiency: the
solution is equitable because both sides get equal shares of each pie, and
it is efficient because there is no rearrangement of shares that makes all
agents better off. It can be verified that, when there are no observable
differences among agents, the equity norm is the unique equilibrium of
the Nash demand game and is the unique rest point of the unperturbed
social dynamic.

Simplex Representation of Agent States

We represent the state of the agent population on a simplex with three
differently shaded regions, as shown in figure 8.1. At each time, every
agent occupies a position on the simplex that is determined by the content
of her memory. For example, an agent who has encountered only agents
playing L is located at the lower-right vertex of the simplex (labeled
“low”). The shading within the simplex represents the best reply strategy
given the agent’s memory. That is, since each agent best replies to her
memories, an agent’s location on the simplex can be though of as repre-
senting her expectation about her opponents’ play. In the white region, L
is the best reply since memory configurations here are dominated by H.
In the dark gray zone, the opposite occurs—memories are dominated by
Hs—so L is the best reply. Agents in the light gray zone have memories
for opponents playing M, so it is best for them to play M as well.
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medium low

high

Figure 8.1. Memory simplex for one agent type.

medium low

high

Figure 8.2. Convergence to the equity norm.

Starting from different initial states, we can examine various realiza-
tions of the process.7 Suppose, for example, that N= 100, m= 10, and
ε = 0.1, and the initial state is random about the point of indifference
between the three strategies. After eighty periods the process can evolve
to the situation shown in figure 8.2.8 In this new state, all agents

7A working version of this model is available on this book’s CD.
8There are less than one hundred dots shown in the figures because some agents have the

same memory state.
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medium low

high

Figure 8.3. Emergence of a fractious state.

have encountered frequent demands of M in the past, and thus they
expect their opponents to play M in the next period. Given this expec-
tation, M is the best response. Hence most agents play M next period,
which reinforces the expectation of M. However, by a process we do
not model, agents occasionally deviate from best reply and play either H
or L. This may occur due to random errors, conscious experimentation,
simple imitation, or for any number of other reasons. This is analogous
to mutation in biological models and serves to create variety in the
population.9

If the process is allowed to continue from the state shown in figure 8.2,
the probability is high that most agents will remain in the light gray
region for quite a long period of time. This is because the equity norm
has a large basin of attraction, and even substantial deviations caused by
random “mutations” in individual behavior may not be enough to tip
society into a fundamentally different regime. Nevertheless such tipping
events will eventually occur, and they can lead to regimes that have a
fundamentally different character.

Such inequitable regimes may also emerge right away when we start
from a different initial state. Figure 8.3 illustrates this for one realization
of the process, showing the state after 150 periods.

In this fractious state, people at each instant are either aggressive or
passive; they have not learned to compromise. If, in one’s experience,

9Each matched agent chooses randomly with probability ε = 0.20. However, there is a
one-third chance that the random choice will in fact be the best reply, hence the probability
that an “error” is realized is 0.1333 . . .
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a sufficient proportion of one’s opponents are aggressive (demand H),
then it is better to submit (play L) than to offer to share equally, and
conversely. (It can be checked, in fact, that M is never a best response for
someone who has never experienced an opponent who played M.) This
fractious state persists in excess of 109 time periods, though it is neither
equitable nor efficient. There is frequent miscoordination in which the
players either demand too much (both play H) or demand too little (both
play L) and end up leaving part of the pie on the table. In the state shown
in figure 8.3, the average share of pie per person in each period is only
about one-quarter, or about half the expected share under the equity
norm. But while this is an inefficient state, it does not exhibit classes,
because agents frequently migrate between zones, sometimes demanding
H and sometimes demanding L.

Transitions between Regimes

Using asymptotic methods, it can be shown that when m and N
are sufficiently large, the probability of being in the equity region is
substantially higher than being in the fractious region if one waits long
enough and the error rate ε is small. In the terminology of evolutionary
game theory, the equity norm is stochastically stable (Foster and Young
1990). The intuitive reason is that it takes much longer to undo the
equity norm once it is established than to undo the fractious regime
once it is in place. However, the inertia of the system—the waiting
time to reach the stochastically stable regime—can be very large indeed.
Suppose that we start the agent society off in the fractious regime with
N= 10, ε = 0.10, and compute the expected number of periods to transit
to a neighborhood of the equity norm (i.e., to a state where all agents
have at least (1 − ε)m instances of M in their memories). As figure 8.4
shows, the waiting time increases exponentially in memory length. For
example, when m= 13 it takes in excess of 105 periods on average for
the fractious regime to be displaced in favor of the equity norm.

Similarly, the transit time increases exponentially with population size,
as shown in figure 8.5.

Hence, although the equity norm is stochastically stable, the agent-
based computational model reveals that—depending on the number of
agents and the memory length—the waiting time to transit from the
fractious regime to the equity norm may be astronomically long.10

10It is important to note that the expected waiting time depends crucially on the geometry
of the interaction structure. In this model we have assumed that agents are paired at
random from the whole society. In reality, agents interact in social networks in which
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Transition Time
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Figure 8.4. Transition time between regimes as a function of memory length,
N= 10, various ε.
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Figure 8.5. Transition time between regimes as a function of population size,
m= 10 , various ε.

Broken Ergodicity

In figure 8.4, for m= 18, the expected number of time periods the
society must wait in order to move from the split regime to the equity
norm is O(106). In human societies, a million interactions per agent

there are both local (neighborhood) and global (long-range) interactions. The existence
of such neighborhood structures can greatly reduce the dependence of the social learning
process on population size (Ellison 1993; Young 1998). Intuitively, the reason is that a
local switch in regime—say from fractious to equitable—may be relatively easy because it
involves only a small number of agents (the local population size is small). Agent behavior
in local interaction models is, however, quite different than in the model described here.
Agents repeatedly interact with the same agents in such models, and memory plays no
essential role, namely, interactions are not anonymous.
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is not realizable. So how are we to interpret such large interaction
requirements?

Dynamical systems that are formally ergodic but that possess sub-
regions of the state space that confine the system with high probability
over a long time scale are said to display broken ergodicity11 with respect
to that time scale.12 Call Rtrans(m, N, ε), the rate of transition from the
split state to the equity norm. For example, from figure 8.4, for m= 18,
this rate would be approximately 10−6. Now, say that the lifetime of
the society is T � 1/Rtrans(m, N, ε). Then, to a first approximation the
probability of regime transition Prtrans(T, m, N, ε) = TRtrans(m, N, ε). A
system has effective broken ergodicity if Prtrans(T, m, N, ε) < p0, where
p0 is some small level of significance, say 0.001. Clearly, the exponential
dependence of transition times on memory length and population size
implies that our model society displays broken ergodicity.

We can summarize these results as follows. Occasional random choices
create noise in the system, which implies that no state is perfectly
absorbing. However, there are two regions of the state space—one
equitable, the other fractious—that are very persistent: once the process
enters such a region, it tends to stay there for a long period of time. A
particular implication is that, while there is only one pure equilibrium
of the game (corresponding to the equity norm), it may be difficult for
decentralized decision makers to discover this equilibrium from certain
initial conditions. Put differently, the computation of the equity norm
by a decentralized society of agents is “hard” in the sense that it takes
exponential time to achieve it from some states.13

Two Agent Types: The “Tag” Model

Thus far agents have been indistinguishable from one another. Even
though they have different experiences that lead them to act differently,
they look the same to others. Let us now suppose that agents carry a
distinguishing tag (e.g., light or dark).14 The tag is completely mean-
ingless in that agents are identical in competence; for example, they

11The authors thank Kai Nagel and Maya Paczuski for suggesting the relevance of this
concept to our results.

12For a review article on broken ergodicity see Palmer 1989.
13The view of social systems as distributed computational devices and the associated

characterization of various social problems as computationally hard are developed more
fully in Epstein 1999 and Epstein and Axtell 1996; see also Shoham and Tennenholtz 1996
and DeCanio and Watkins 1998.

14For different uses of tags and taglike devices in agent-based models, see Epstein and
Axtell 1996, Holland 1996, and Axelrod 1997.
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have the same amount of memory and follow the same behavioral rule
(conditional on experience). However, the presence of the tag allows
agents to condition their behavior on the tag of their opponents. To
be specific, assume that each agent records in his memory the tag of
his opponent and the demand that he made. Faced with a new dark
opponent, the agent demands an amount that maximizes the expected
payoff against his remembered distribution of dark opponents.15 Faced
with a light opponent, the agent plays a best reply against his remembered
distribution of light opponents. All of this happens with high probability,
but with some small probability ε > 0 agents make random demands. In
this model, the social possibilities are richer than before, since equity or
fractiousness can prevail both between and within types.

To fix ideas, assume for the moment that there is no noise in the
agents’ strategy choice (ε = 0). Define an intergroup equilibrium as a state
in which each agent in the light group demands x against members in
the dark group, each agent in the dark group demands 1 − x against
each opponent from the light group, and this is true for every previous
encounter that each agent remembers. An intragroup equilibrium is a
state in which everyone demands one-half against members of his own
group, and this is true for every previous encounter that each agent
remembers.

Using methods from perturbed Markov process theory (Young 1993a),
it can be shown that when m and N/m are sufficiently large, then
the unique stochastically stable state corresponds to the particular case
where x= 1/2; that is, equity prevails both between and within groups.
When ε is sufficiently small, this state or something close to it will be
observed with very high probability in the long run. But, as before,
there exist fractious states and inequitable norms that have considerable
staying power. Furthermore, the dynamics governing the emergence (and
dissolution) of intergroup norms differs from that governing intragroup
norms.

To study these dynamics computationally, we shall represent events
on two simplexes: the one on the right corresponds to agent memory
states when playing agents of the opposite type—it depicts the intergroup
dynamics—while the one on the left displays agent memories for playing
agents of the same type—the intragroup dynamics. Black dots refer to
dark agents, gray dots to light ones. In each run, there are a total of one
hundred agents, fifty of each type. All agents have memory length twenty
and the noise level ε = 0.1. The initial state differs between the runs in
order to illustrate the effects of path dependency.

15In the event that an agent has no memory of blue opponents, it picks a random strategy.
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Figure 8.6. Equity between and within types.
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Figure 8.7. Equity between, but not within, types.

Figure 8.6 illustrates our first case. Starting from random initial
conditions, it depicts the state of the system at time t = 150.

At this point the process has reached a state where something close to
the equity norm prevails both between and within groups. In particular,
the process is in the basin of attraction of the equity norm for dark
against dark, light against light, and light against dark. Average payoffs
in this regime are high, because most agents succeed in dividing the pie
rather than fighting over it.

Figure 8.7 tells a different story. Starting from different random
initial conditions, it shows the system at t = 150. Internally, the darks
(black dots) have come close to the equity norm while the lights (gray
dots) are still in a fractious state. However, something close to the equity
norm prevails between the lights and the darks.
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Classes

Yet another history unfolds in figure 8.8. In this case the process evolves
fairly rapidly (after 225 periods) to a state in which the equity norm holds
within each group, whereas a discriminatory norm governs relations
between the two groups. When agents meet others of their own type,
most of them expect to divide the pie in half. But when a dark agent
meets a light agent, the darks act aggressively and the lights act passively.
The result is that, on average, the payoff to dark agents (70) is over twice
as high as it is to light agents (30). In other words, class distinctions
have emerged endogenously. Once established, such class structures can
persist for very long periods of time. The reason is that lights have come
to expect that darks will be very demanding, so it is rational to submit
to their demands. Similarly, darks have come to expect that lights will
submit, so it is rational to take advantage of them.

The final case is to us the most interesting and disturbing. Starting
from a different random initial state, society evolves after 260 periods to
the state shown in figure 8.9. As evident in the right (inter-type) simplex,
the darks dominate the lights. However, from the left simplex, it is clear
that the equity norm prevails within the dominant darks while the lights
are a fractious society. This, then, is the picture of a divided underclass
oppressed by a unified elite. This result seems particularly disturbing
in that every individual is behaving rationally—playing the best reply
strategy—and yet the social outcome is far from optimal. Even though
this regime does not correspond to a coordination equilibrium of the
bargaining game (unlike fig. 8.8), it may nevertheless persist for long
periods of time.

medium low

high

medium low

high

Figure 8.8. Equity within, but not between, types.
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Figure 8.9. Equity above, division below.

Transition Dynamics

Figures 8.4 and 8.5 above show how the transition time from the
fractious configuration to the equity state depends on the population
size and memory length, for various values of ε. A similar analysis is
possible for the classlike configurations displayed in figure 8.9. That is,
we can start the system off in a configuration with classes and measure
how long it takes to transit to the equity norm, as a function of the model
parameters. We have not executed such analyses for a simple reason: even
for model configurations that should be hospitable to such transitions
(e.g., 10 agents of each type, m = 10, and ε = 0.1), these events are
very rare, and thus difficult to systematically investigate. This is in sharp
contrast to earlier results where O(103) periods were sufficient on average
for such equity transitions to occur. The “basin of attraction” of the
classlike configuration is much deeper than the fractious outcome, and
the transition times are correspondingly longer. It is an open problem to
estimate analytically the expected duration of these transient regimes as
a function of the parameters of the process.

Summary

Although class systems can certainly arise through outright coercion
(Wright 1985), we have argued that various kinds of social orders—
including segregated, discriminatory, and class systems—can also arise
through the decentralized interactions of many agents in which acci-
dents of history become reinforced over time. In these path-dependent
dynamics, society may self-organize around distinctions that are quite
arbitrary from an a priori standpoint. Above, initially meaningless "tags"
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acquire socially organizing salience: tag-based classes emerge. Asymp-
totically, equity norms have an advantage over discriminatory norms.
Computational analysis indicates, however, that long-lived regimes may
emerge that are very far from equitable and may be highly inefficient
as well.

Appendix: State Space of the Multiagent Bargaining Game

This model admits a Markovian formulation. Briefly, call ξ the set of all
possible individual memory configurations—each one a string of length
m (the memory length) recording the demands (H, M, or L) made by an
agent’s opponents in the most recent m periods played. In a population
of N agents, the state space Z of this process is the set of all possible
N-tuples of ξ . The random matching and strategy choice rules then
determine a Markov chain with fixed transition probabilities—that is,
a |Z| × |Z| transition matrix, dependent on N, m, and the noise level ε.

The origin of the broken ergodicity displayed by this model for
seemingly modest configurations—10 to 100 agents, each of whom has
memory length O(10)—arises from the enormous dimension of the state
space, Z. For memory length m and three strategies, the number of
distinct memory configurations is 3m. Generally, for S strategies there are
Sm memory configurations. For N agents, since individual memories are
independent, |Z| = 3Nm; SNm generally. Therefore, the |Z|×|Z| transition
matrix will have 32Nm entries, S2Nm generally. However, because any
individual’s memory configuration can only be converted into nine others
in a single interaction (S2 others generally), the transition matrix is
sparse—there are only 32N transitions possible for each state, thus
only 32N × 3Nm = 3N(m+2) entries in the transition matrix are nonzero;
generally, SN(m+2). Table 8.A.1 gives numerical values for these various
quantities as a function of m, for a population of ten agents (N= 10).

Even for this relatively small population size, most of these quantities
are enormous. As a practical matter, a state-of-the-art workstation is
not even capable of holding the m= 2 state vector in memory, since
this would require some 6 gigabytes of RAM at two bytes per entry,

Table 8.A.1

3m 3Nm 3N(m+2) SNm; S = 5

m = 2 9 ≈3 × 109 ≈1 × 1019 ≈1 × 1014

m = 7 2187 ≈3 × 1033 ≈9 × 1042 ≈8 × 1048

m = 10 59,049 ≈5 × 1047 ≈2 × 1057 ≈8 × 1069

m = 20 3,486,784,401 ≈3 × 1095 ≈9 × 10104 ≈6 × 10139
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Table 8.A.2

3m 3Nm 3N(m+2) SNm; S = 5

m = 2 9 ≈3 × 1095 ≈1 × 10190 ≈1 × 10139

m = 7 2187 ≈3 × 10334 ≈9 × 10429 ≈8 × 10489

m = 10 59,049 ≈5 × 10477 ≈2 × 10572 ≈8 × 10698

m = 20 3,486,784,401 ≈3 × 10954 ≈9 × 101049 ≈6 × 101397

a conceivable although untypically large quantity of memory (ca. 1999).
Furthermore, the corresponding (sparse) transition matrix is so large that
it could not be stored by conventional means—its entries would therefore
have to be computed as needed.

The situation is vastly worse for a population size of one hundred.
Table 8.A.2 gives the number of memory configurations, dimension
of the state space, and the size of the sparse transition matrix, this
time for N= 100. These quantities are unimaginably large. However,
it turns out that it is possible to shrink these sizes significantly. This
is because the best reply (BR) rule of the type employed here does not
use any information on the order in which past opponents’ strategies
were encountered. That is, for m= 6, memory string (H, H, H, L, L, L)
is equivalent to (L, L, L, H, H, H) for purposes of BR; in each the
frequency of L and H is 0.5. Because the order of an agent’s memories is
unimportant—at least to this variant of BR—the number of BR-distinct
memory configurations is much smaller than Sm. This permits significant
reduction in sizes of the state space and transition matrix of the overall
Markov process. Let us call Z, where |Z| = 3Nm, the naive state space.
We explore this smaller (aggregated) state space, Z′, presently.16

Call nL, nM, nH, the number of low, medium, and high memories,
respectively, that some particular agent possesses. Because these must
sum to m, nH can be written as m−nL −nM. Thus, the pair (nL, nM) gives
all information needed by the agent in order to execute BR. Now, since
each n(·) ∈ [0, 1, . . . , m], the number of distinct memory states is simply
(m+1)+m+ (m−1)+· · ·+1 = (m + 1)(m + 2)/2 = (m2 + 3m + 2)/2; for
m= 10, the total is 66. So, |Z′| = [(m + 1)(m + 2)]N/2N; for N = m= 10
the state space has 6610 ≈ 1.6 × 1018 dimensions, which is smaller than
the naive state space from table 8.A.1 of 5 × 1047 by approximately
3 × 1029. A dense transition matrix for a state space of this size is
[
(m + 1)(m + 2)

]2N
/4N in size. But for the problem at hand this is yet

16For more on aggregating Markov processes, see Howard 1971.
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sparse—each state can be converted into only nine others—and thus
only 32N

[
(m + 1)(m + 2)

]N
/2N entries need to be stored; for N= m= 10,

there are some 5 × 1027 nonzero entries, which is a massive reduction
from the 3 × 1052 entries of the transition matrix associated with the
naive state space.

Unfortunately, the vast reduction in the size of the state space in going
from Z to Z′ does not make the problem tractable computationally. In
particular, consider the case of S = 3, N= m= 10. In this instance, there
are only two recurrent communication classes (see Young 1993a, 68 for
definition), one in which all agents are in state (M, M, M, M, M, M, M,
M, M, M), the unperturbed equity norm—call it H1, |H1| = l—and one in
which each agent has some combination of (only) Ls and Hs in memory—
call this H2, and note that there are at most 2100 ≈ 1.3 × 1030 of these
states in the naive state space, while in Z′, |H2| = 1110 ≈ 2.6 × 1010.
Since |Z′| = 6610, the number of states outside of both H1 and H2 is
6610−1110 − 1 ≈ 6610 ≈ 1.6 × 1018. Finding the path with least total
resistance between H1 and H2 is indeed a shortest path problem (Young
1993a, 69), but in 1.6×1018 vertices with approximately 910 ≈ 3.5×109

times that many edges, namely, 5.5 × 1027 total. Now, shortest path
problems can be solved in an amount of time linear in the number of
vertices + edges (cf. Bertsekas and Tsitsiklis 1989), but a problem of this
magnitude is far beyond the scope of conventional computation.
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Prelude to Chapter 9

GENERATING ZONES OF COOPERATION IN

THE PRISONER’S DILEMMA GAME

The famous two-person Prisoner’s Dilemma (PD) is widely assumed to
raise the problem of cooperation in an arresting way (no pun intended).
Two strategies are available to each player: cooperate or defect. In the
one-shot game, the dominant strategy is to defect, even though higher
payoffs would accrue to each individual were they to cooperate. As when
Oedipus solves the riddle of the Sphinx, individual rationality leads to
a suboptimal outcome. It is a very elegant puzzle and leads to a core
question in social science: How can cooperation evolve in populations
whose pairwise interactions have the PD payoff structure?

One gambit has been to introduce repeated play with memory. A
“strategy” then specifies a contestant’s behavior given some history of
interaction. The well-known Tit for Tat (TFT) strategy, for example, is
a memory-one strategy: open with cooperation, but then play whatever
strategy your opponent played in your last interaction. TFT (not at all
uniquely) will sustain cooperation (though it is obviously defeated by
Always Defect).1 There is a large literature on cooperation-supporting
strategies in the iterated PD with memory. Of course, the higher the mem-
ory, the greater the computational load. It strains credulity that humans
could ever arrive at “solutions” involving high memory, so as explana-
tions of observed human cooperation, they are not very appealing. Truth
be known, the cognitive load of even one-shot play strains my credulity.

My main reason for saying so is this: I have taught the one-shot
PD at Princeton. And it requires a lecture to convey, to attentive and
analytical students, exactly what the dominant strategy is. Nonetheless,
behavior violating it (cooperation), in populations of inattentive and
highly nonanalytical folks, is seen as a central anomaly for social science.
Why? We’re not puzzled if the man on the street can’t work out “mate in
two moves” chess endings. Why are we puzzled that people don’t work
out the dominant strategy in the one-shot prisoner’s dilemma? Obviously,
if people know that the optimal strategy is defect, and they play cooperate

1Defect wins on play number one, and ties TFT thereafter (since both then defect
eternally).
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anyway, that is anomalous; but they don’t know. To me, therefore, the
real challenge is to build a model in which cooperation does emerge, but
in which people aren’t challenged to think much—indeed, at all.

Now, classical evolutionary game theory relieves the cognitive load
completely. In the so-called replicator dynamics, a society of thoughtless
hardwired agents can evolve precisely the strategy that a perfectly
rational player would adopt in the one-shot PD. That is very elegant.
But, that strategy is to defect, and we are still left with no explanation
for cooperation, which, again, is not very appealing.

So the problem, as I saw it in developing this model, was as follows:
posit the most extreme form of bounded rationality, as in the replica-
tor dynamics, but somehow (unlike the replicator dynamics) generate
cooperation. The solution is a variation I dubbed the Demographic
Game, so-called because it involves spatial, evolutionary, and population
dynamics.

Events transpire on a lattice (a topological torus). Agents continually
move to random unoccupied sites within their finite vision, playing a
fixed inherited strategy of cooperate (C) or defect (D) against neighbors.
Unlike the Classes model, agents have no “tags” and are indistinguish-
able to one another. While payoff orderings are PD, they are negative for
mutual defectors and those playing C against D, and positive for mutual
cooperators and those playing D against C. Importantly, payoffs accu-
mulate in this model. If these cumulative payoffs exceed some threshold,
agents clone offspring of the same strategy onto neighboring sites and
continue play. If accumulated payoffs go negative, agents are assumed
to die and are removed from circulation. On these assumptions, spatial
zones of cooperation emerge. Their stability under various assumptions
(e.g., mutation rates) is explored. But here is one way to evolve zones
of cooperation in populations of locally interacting boundedly rational
agents. Of the points emphasized in the Generative chapter, it is perhaps
the role of space that looms largest here.

Given that one evolutionary model (the replicator dynamics) returns
the classic result (defect) while another equally evolutionary model (the
demographic game) returns cooperate, I am left wondering whether
evolutionary theory will end up saving economics or burying it. Time
will tell.

Since its original publication, there has been some nice mathematical
work formalizing the Demographic PD and proving theorems in agree-
ment with the computational results I report.2

2Victor Dorofeenko and Jamsheed Shorish, “Dynamical Modeling of the Demographic
Prisoner’s Dilemma,” Economic Series 124, Institute for Advanced Studies, Vienna.
November, 2002.
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A natural line of future work would be to develop a classification
theory for demographic games generally. In a new appendix to the
chapter, I present the demographic version of the two-person symmetric
coordination game. If we imagine a “rules of the road” interpretation
with left-hand and right-hand driving being the only strategic options,
traditional game theory offers no way to adjudicate between the equally
attractive pure strategy Nash equilibria: drive on the left and drive
on the right. The replicator dynamics for the symmetric coordination
game predicts convergence to one or the other (i.e., the mixed strategy
interior equilibrium is unstable). By contrast to both the traditional
and evolutionary game theory pictures, the demographic coordination
game eventuates in spatial maps divided into connected regions within
each of which a specific norm prevails, with “accidents” on the region
boundaries. The agent-based demographic games approach again yields
a novel result.
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Chapter 9

ZONES OF COOPERATION IN DEMOGRAPHIC

PRISONER’S DILEMMA

JOSHUA M. EPSTEIN*

The emergence of cooperation in prisoner’s dilemma (PD) games is generally

assumed to require repeated play (and strategies such as Tit for Tat, involving

memory of previous interactions) or features (“tags”) permitting cooperators and

defectors to distinguish one another. In the demographic PD, neither assumption

is made: Agents with finite vision move to random sites on a lattice and play

a fixed culturally-inherited zero-memory strategy of cooperate (C) or defect

(D) against neighbors. Agents are indistinguishable to one another—they are

“tagless.” Positive payoffs accrue to agents playing C against C, or D against

C. Negative payoffs accrue to agents playing C against D, or D against D. Payoffs

accumulate. If accumulated payoffs exceed some threshold, agents clone offspring

of the same strategy onto neighboring sites and continue play. If accumulated

payoffs are negative, agents die and are removed. Spatial zones of cooperation

emerge.

The Prisoner’s Dilemma

The prisoner’s dilemma (PD) game raises the problem of cooperation
in a stark form. Two strategies are available to each player: cooperate
or defect. The payoff to mutual cooperation (R) exceeds the payoff to
mutual defection (P). But the highest payoff (T) goes to one who defects
against a cooperator, while the lowest payoff (S) goes to one who
cooperates against a defector. The letters T, R, P, and S are used to

The author is a Senior Fellow in Economic Studies, The Brookings Institution, Washing-
ton, D.C., 20036, USA, and a member of the External Faculty, Santa Fe Institute, Santa Fe,
NM, 87501, USA.
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denote the Temptation to defect, the Reward for mutual cooperation, the
Punishment for mutual defection, and the Sucker’s payoff accruing to a
sole cooperator. With T > R > P > S, the PD payoff matrix is

( C D

C (R, R) (S, T)
D (T, S) (P, P)

)
(1)

In a one-shot game, the dominant strategy is D for both players.
Rationality yields an outcome that, from the individual’s perspective, is
suboptimal. Indeed, the PD is seen as posing a fundamental problem in
social science (and biology): How can cooperation evolve in populations
whose bilateral interactions are governed by the PD?

Repeated Games

One important line of attack has involved repeated play. This is a bit of a
misnomer—it really means repeated play with memory. The distinction
is crucial for this research. If A plays B repeatedly with no recollection
of previous engagements (as in the demographic game below), that is
not a repeated game. A “strategy” in a repeated game is a rule that
specifies a player’s behavior given some history of interactions against
the opponent in question. For example, the well-known Tit for Tat
(TFT) strategy is: cooperate on the first move; thereafter, adopt whatever
strategy your opponent played in your last interaction. TFT is a memory
one strategy and will sustain cooperation (Axelrod 1984). The iterated
PD must be of indeterminate length or there is regress to pure defection.
An extensive literature has developed cooperation-supporting strategies
for the repeated PD.1 An important issue is the computational complexity
of various strategies.2 These can involve large memory and what, for
humans, might be considered high computational loads. (Memory can
be defined as the number of states in a finite automaton that implements
the strategy. See Papadimitriou and Yannakakis 1994.)

1Axelrod 1984; Albin and Foley 1997; Binmore 1992; Guttman 1996; Hirshleifer and
Martínez Coll 1988; Lindgren and Nordahl 1994b; Lomberg 1996; Martínez Coll and
Hirshleifer 1991; Miller 1996; Rubinstein 1986.

2For a survey, see Kalai 1990. See also Rubinstein 1986; Abreu and Rubinstein
1988; Ben-Porath 1990; Binmore 1987, 1988; Binmore and Samuelson 1992; Deng and
Papadimitriou 1994; Gilboa 1988; Neyman 1985; Papadimitriou 1992.
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Evolutionary Games

At the other end of the cognitive requirements spectrum is classical
evolutionary game theory (Smith 1982; Weibull 1995). Here, agents do
not consciously optimize over strategic alternatives. Rather, they inherit
a fixed strategy (a phenotype) and then replicate depending on that strat-
egy’s payoff (fitness). One elegant feature of these replicator dynamics
is that their evolutionarily stable strategies (ESSs) can correspond to the
strategies that would be adopted by fully informed rational players of
the game. (For a thorough development of this equilibrium concept,
see Binmore 1992.) For the PD specifically, the classical replicator
dynamics (see below) lead straight to a world of pure defection—
precisely the dominant strategy in one-shot rational play. In a social
science context, the basic evolutionary reasoning is nicely set forth by
Frank (1988).

His exposition begins with the assumption “that everyone in the
population is one of two types—cooperator or defector. A cooperator
is someone who, possibly through intensive cultural conditioning, has
developed a heritable capacity to experience a moral sentiment that
predisposes him to cooperate. A defector is someone who either lacks
this capacity or has failed to develop it” (Frank 1988). From a modeling
standpoint, then, individuals are “hard wired” to execute a fixed strategy.
Now, Frank continues, “suppose, for argument’s sake, that cooperators
and defectors look exactly alike, thus making it impossible to distinguish
the two types. In this hypothetical ecology . . . individuals will pair at
random . . . . The expected payoffs to both defectors and cooperators
therefore depend on the likelihood of pairing with a cooperator, which
in turn depends on the proportion of cooperators in the population”
(Frank 1988). (In the model below, agents look indistinguishable to
one another, but do not pair at random.) If cooperators comprise a
fraction c of the population and individuals are paired randomly, then the
probability of a given cooperator being paired with another cooperator
is c; the probability of her being randomly paired with a defector is
(1 − c). Expected payoffs in the two cases are E[C] = cR + (1 − c)S
and E[D] = cT + (1 − c)P. For expository purposes, we will assume
the payoffs below. (Frank uses different numerical values. These do
not affect Frank’s argument and will be used for illustrative purposes
throughout. These values satisfy the common additional condition that
2R > T + S.)

( C D

C (5, 5) (−6, 6)
D (6,−6) (−5, −5)

)
(2)
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Then, we have average returns of E[D] =−5 + 11c for defectors and
E[C] = −6 + 11c for cooperators. For all c in [0, 1], E[D] > E[C] and
Frank’s summary claims apply: “Since defectors always receive a
higher payoff here, their share of the population will grow over time.
Cooperators, even if they make up almost all of the population to begin
with, are thus destined for extinction. When cooperators and defectors
look alike, genuine cooperation cannot emerge” (Frank 1988). (This is
one motivation for introducing features, “tags,” allowing cooperators
and defectors to distinguish one another. On tags, see Holland 1995.
See also Tesfatsion 1995.)

The same conclusion follows in the closely related classical replicator
dynamics (Smith 1982; Weibull 1995; Taylor and Jonker 1978; Hofbauer
and Sigmund 1988; Samuelson 1997; Young 1993; Young and Foster
1991). Here, the relative frequency zi of a strategy i grows in accor-
dance with

dzi

dt
= zi [(Return to pure i) − (Average Return)] (3)

For a symmetric payoff matrix A, this becomes

dzi

dt
= zi [(Az)i − zTAz], (4)

where, for n strategies,

z = (z1, . . . , zn).

For our two-strategy PD, this z vector is simply (x, 1−x), where x ∈ [0, 1]
is the relative frequency of defection. For the symmetric payoff matrix (1)
above, A takes the form

A =
(

R S
T P

)

and, expanding (4), the dynamics are given by

dx
dt

= (T − R)x + (P + 2R − S − 2T)x2 + (T + S − P − R)x3,

a cubic whose equilibria are x= 0, x= 1, and x= (R−T)/(R−T+ P −S).
For PD payoff orderings, x= 0 (defection frequency zero) has eigenvalue
T − R > 0, making it unstable, while x= 1 (universal defection) has
eigenvalue S− P < 0 making it asymptotically stable. With the numerical
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Figure 9.1. Phase diagram for PD replicator dynamics.

assumptions from (2), A becomes

A =
(

5 −6
6 −5

)
(5)

With this A matrix, the phase diagram for the replicator dynamics (4) on
[0,1] is given in figure 9.1.

Just as in Frank’s example, even the slightest perturbation from pure
cooperation (x= 0) results ultimately in pure defection (x= 1). (In a more
deliberate development, one would distinguish the evolutionarily stable
strategies from the asymptotically stable equilibria. However, for n = 2,
they are the same. See Binmore 1992.)

Demographic Games

I wish to extend this evolutionary literature with a class of agent-based
models that I call demographic games. In the demographic PD, (1)
agents inherit a fixed strategy of cooperate or defect and (2) agents
are indistinguishable to one another, just as in the models above. Yet,
cooperation can emerge and endure.

Demographic games seems an appropriate name for this class of
models because they involve spatial, evolutionary, and population
dynamics. (I am using the term “demography” in its broad sense, as
including migration.) The space on which agents interact is a 30-by-30
lattice of sites. Periodic boundary conditions obtain. Visually, agents who
exit the lattice on the right/bottom reenter from the left/top. (Topolog-
ically, the space is a torus.) Agents move around this space, interact
with von Neumann neighbors, and have offspring. (They are not fixed
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cellular automaton sites, as in Nowak and May 1992; Nowak, May, and
Sigmund 1995; Feldman and Nagel 1993; Lindgren and Nordahl 1994a.)
Each agent is an object whose main attributes are vision, wealth, age, and
strategy. Vision is the distance an agent can see, looking north, south,
east, or west. In the evolutions presented below, vision is one. Agents
are born with a strategy of cooperate (C) or defect (D). The agents’
sole rule of behavior is as follows: Choose a random unoccupied site
within your vision; go there and play your strategy against each neighbor.
(If there is no unoccupied site within the agent’s vision, it remains in
place and plays all current neighbors.) The agent and the neighbor
receive payoffs from some game matrix, here the PD bimatrix (1), where
T > R> P > S. For the demographic PD, we introduce negative payoffs.
(A discussion of this assumption and an equivalent formulation involving
non-negative payoffs are presented below.) Specifically, we require that
T > R> 0 > P > S, as in (2), which we shall use here.

Payoffs (wealths) accumulate. Since our payoff matrix has negative
entries (Rapoport 1996), an agent’s accumulated wealth may go negative.
In that event the agent “dies”—it is removed from play and its wealth
disappears. By the same token, if an agent’s accumulated wealth exceeds
some positive threshold and there is an unoccupied site within the agent’s
vision, the agent has an offspring, who begins life on one of these sites
with a nominal initial endowment subtracted from the parent’s wealth.
(By contrast with this use of a simple threshold, the standard replicator
dynamic assumes that a phenotype’s [i.e., a strategy’s] frequency grows
as the difference between the strategy’s fitness and the population’s
average payoff. For the runs discussed here, the threshold is 10 units of
accumulated payoff and offspring inherit an initial endowment of 6 units.
An agent’s initial age is a random integer between one and the maximum
age.) Here (with vision one) these are neighboring sites. Progeny are
born with a fixed strategy; in the zero mutation case, it is the parent’s
strategy. (Oliphant [1994] also studies the evolution of cooperation in
a spatial model of the noniterated PD. That interesting model differs
from the demographic game in fundamental respects, including the use
of a genetic algorithm, a fitness-biased probability of individual play,
fixed population size [no population dynamics], and gaussian interaction
probabilities on a different [one-dimensional] space.)

Perhaps it is worth emphasizing that, in adopting this assumption of
a fixed agent strategy, we are not claiming that human strategies are
literally hard-wired genetically. Rather, for modeling purposes, we are
assuming that they are culturally transmitted from parents to children—
vertically transmitted—with high fidelity, like certain religious or eth-
nic affiliations, tastes, and native tongues. (On cultural transmission,
see Cavalli-Sforza and Feldman 1981; Boyd and Richerson 1985.)
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Below we consider the effect of degradation (mutation) in this vertical
transmission fidelity. In a more elaborate model, horizontal (intragen-
erational) transmission would also be included. (For models including
horizontal transmission, see Epstein and Axtell 1996; Axelrod 1997b.)
However, here we follow Shubik’s injunction: “Start with radical simpli-
fication . . . do not reject the simplest models because they are a priori too
simple. Reject them when a quick investigation shows that the phenom-
enon of interest to you cannot appear at this level of simplicity” (Shubik
1996). The phenomenon of interest here is persistent cooperation, and
we demonstrate that an extremely simple spatial model with vertical
transmission suffices to generate it.

Run 1. No Maximum Age, Zero Mutation

For our first run of the model, we impose no upper bound on agent
lifespans. Initially, 100 agents are assigned random fixed strategies (C
or D) and random initial positions. Numerical and other assumptions
are collected in table 9.1. The five panels of figure 9.2 show the spatial
situation at selected times illustrative of the main points. Cooperators
are colored blue, defectors red. A time step represents one cycle through

Table 9.1
Run 1 Assumptionsa

T 6
R 5
P −5
S −6
Space 30 × 30 torus
Neighborhoods von Neumann
Vision 1
Mutation Rate 0
Metabolism 0
Maximum Lifetime None
Accumulation Needed to Clone 10
Initial Endowment to Offspring 6
Initial Number of Agents 100
Initial Locations Random
Initial Strategies Random
Updating Asynchronous
Call Order Random
aDepartures from these assumptions are noted in the text.
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Figure 9.2. An evolution to cooperative dominance.

the agent list, which is randomized after every cycle. (Randomization
of the agent call order works as follows: Agent objects are held in a
doubly linked list and are processed serially. If there are N agents, a
pair of agents is selected at random and the agents swap positions in
the list. This random swapping is done N/2 times after each cycle.)
The agents are updated asynchronously. On the importance of asyn-
chronous updating, see Huberman and Glance 1993. (Regarding the
Huberman and Glance [1993] critique of Nowak and May [1992],
my model shares with Nowak and May the assumption that agents
play zero-memory strategies of always cooperate or always defect. It
differs in many other respects, including agent movement, population
dynamics, mutation, accumulations and negative payoffs, and, notably,
asynchronous updating. As Huberman and Glance point out, Nowak and
May’s main results on the persistence of cooperation depend crucially
on synchronous updating. When, ceteris paribus, Huberman and Glance
introduce asynchronous updating into the Nowak and May model, the
result is convergence to pure defection. Like Huberman and Glance, my
model employs asynchronous updating, but—by mechanisms different
from Nowak and May’s—it generates persistent cooperation for many
parameter settings. In that sense, it supports the general result obtained
by Nowak and May, that cooperation can flourish in populations of
simple agents.)



July 6, 2006 Time: 03:27pm chapter9.tex

DEMOGRAPHIC PRISONER’S DILEMMA 207

Figure 9.3. Typical aggregate population time series. Note: Blues are cooperators,
reds are defectors.

Panel 1 of figure 9.2 gives the early situation, with a few random
agents scattered about the lattice. As cooperators randomly encounter
one another, the positive payoffs associated with their interactions
accumulate and they “clone” cooperator offspring onto neighboring
sites. Neighborhoods of cooperation are thus formed. The first of these
have clearly taken shape by t = 15, as seen in panel 2. By t = 50, a
stable ratio of cooperators to defectors (approximately 5 to 1), has set
in, as shown in panel 3. And this slightly noisy equilibrium persists.
Panels 4 and 5 give the spatial configuration at t = 100 and t = 1000.
In stark contrast to the replicator dynamics picture, cooperators are not
annihilated. Indeed, they endure and predominate.

The time series showing aggregate cooperator and defector population
dynamics is given in figure 9.3.

A phase diagram of these same data is given in figure 9.4. The x and y
coordinates of each point correspond respectively to the cooperator and
defector populations at that time. We see direct attraction to a (dark)
invariant region of phase space corresponding to the noisy equilibrium
noted earlier.

The basic point, then, is that cooperation can emerge and flourish in
a population of tagless agents playing zero-memory fixed strategies of
cooperate or defect in this demographic setting.

Statistical Analyses

Moreover, for the given payoffs this result is robust to random effects.
“The analysis of a single run can be misleading. In order to determine
whether the conclusions from a given run are typical it is necessary
to do several dozen simulation runs using identical parameters (using
different random number seeds) . . . . The ability to do this is one major
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Figure 9.4. Phase diagram.

Table 9.2
Statistics

Measure Cooperators Defectors

Range (752, 806) (93, 148)
Mean 779 121
Standard deviation 15 15
95% CI for the mean (773, 784) (115, 126)

advantage of simulation: The researcher can rerun history to see whether
the particular patterns observed in a single run are idiosyncratic or
typical” (Axelrod 1997a).

Table 9.2 gives the result of such a statistical analysis. (On the
statistical analysis of simulation output, see Law and Kelton 1991;
Feldman and Valdez-Flores 1996.) The model was rerun 30 times with
the same initial conditions and parameter values, but with a different
random seed each time. In each run, data were sampled at t = 500 (after
the essentially steady state had set in). Cooperator levels ranged from 752
to 806, while defector levels ranged from 93 to 148. Sample distributions
for both populations are tightly clustered about their means, as reflected
in the small standard deviations; 95 percent confidence intervals for the
mean, in turn, are narrow. For the given payoffs, cooperator persistence
is robust.

How sensitive is this core result to variations in the payoffs themselves?
To explore this, a more extensive analysis is conducted. For simplicity, we
maintain the symmetries assumed in payoff matrix (2), namely S = −T
and P = −R. We also assume integer-valued payoffs. To “sweep” the
payoff space, we then let T range from its minimum possible value
of 2 up to some maximum, here set at 10. For each such T value, R
ranges from 1 up to T − 1. Hence, for a given maximum T, there are
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T(T − 1)/2 payoff vectors. Table 9.3 gives the results for all 45 payoff
vectors entailed by our maximum T value of 10. For each payoff vector
(T, R, −R, −T), the same analysis as in table 9.2 was conducted, running
30 times out to t = 500 with different random seeds each time. Table 9.3
gives the ranges, means, standard deviations, and 95 percent confidence
intervals for the means for cooperators and defectors for each such
sample of 30.

The essential pattern is clear. When R (the reward to mutual coop-
eration) is close to T (the defector’s payoff against a cooperator),
cooperators dominate. This preponderance wanes as R is systematically
reduced, though cooperators persist. However, when R falls far enough
(e.g., to 2 in the T = 9 cases) cooperators are wiped out. And ultimately,
so too are the defectors since, with zero mutation and negative payoffs
to mutual defection, societies of pure defection are doomed in the long
run. (It is important to distinguish between convergence in the space
of strategies and convergence of the population dynamics. The strategy
distribution can and (for R sufficiently low) does converge to pure defec-
tion. However, with negative payoffs and zero mutation, a nontrivial
population of pure defectors is not sustainable, though it may persist
for many cycles after the demise of cooperation. As shown below, with
non-negative payoffs, populations of pure defection can be sustained
indefinitely.)

Run 2. Maximum Age, Zero Mutation

In Run 1, agents could live forever. A cooperator living for a long
time in the interior of a cooperative zone could amass vast wealth.
An enormous number of encounters with defectors would then be
needed to eliminate him. This is not entirely unrealistic: Once a human
becomes extremely wealthy, a great many small setbacks are required
before he or she is ruined financially. But, just to explore whether our
results depend sensitively on this assumption, let us impose a maximum
lifetime of 100 on the agents. (This actually ends up being slightly
favorable to the defectors since the richest possible cooperator would
then have 500 while the richest possible defector would have 600.) All
other settings are as in Run 1. The time series for this case is shown
in figure 9.5.

The time series for this realization is clearly more oscillatory than
Run 1. Not surprisingly, the cross-sectional statistics for 30 runs (sam-
pling again at t = 500) also exhibit greater variability, and for the
defectors a reduction in the mean, as displayed in table 9.4. Clearly,
cooperation persists as before. Now, as noted, we see in figure 9.5 the
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Table 9.3
Payoff Sensitivity for Run 1

Payoffs
(T, R)

Cooperators Defectors

Range Mean SD 95% CI Range Mean SD 95% CI

10, 9 (772, 845) 809 19 (802, 816) (43, 109) 77 17 (71, 83)
10, 8 (707, 802) 748 27 (738, 757) (82, 169) 132 23 (124, 140)
10, 7 (568, 717) 654 38 (641, 668) (154, 280) 198 30 (188, 209)
10, 6 (312, 604) 469 60 (447, 490) (191, 329) 274 30 (264, 285)
10, 5 (150, 383) 258 51 (240, 277) (202, 319) 270 26 (261, 279)
10, 4 (0, 598) 231 151 (177, 285) (0, 287) 199 74 (172, 225)
10, 3 (0, 1) 0 0 (0, 0) (0, 1) 0 0 (0, 0)
10, 2 (0, 0) 0 0 (0, 0) (0, 0) 0 0 (0, 0)
10, 1 (0, 0) 0 0 (0, 0) (0, 0) 0 0 (0, 0)
9, 8 (766, 850) 806 21 (799, 814) (39, 117) 81 19 (74, 88)
9, 7 (669, 793) 728 34 (716, 740) (86, 190) 146 28 (136, 156)
9, 6 (490, 768) 604 58 (583, 625) (102, 303) 225 38 (212, 239)
9, 5 (268, 460) 374 44 (358, 390) (252, 323) 290 20 (283, 297)
9, 4 (98, 442) 203 78 (175, 231) (159, 296) 235 36 (222, 248)
9, 3 (0, 382) 35 89 (3, 67) (0, 284) 38 84 (8, 68)
9, 2 (0, 0) 0 0 (0, 0) (0, 0) 0 0 (0, 0)
9, 1 (0, 0) 0 0 (0, 0) (0, 0) 0 0 (0, 0)
8, 7 (744, 879) 807 30 (796, 818) (14, 142) 80 27 (70, 89)
8, 6 (626, 787) 721 36 (708, 734) (98, 231) 153 30 (142, 163)
8, 5 (460, 604) 530 39 (516, 544) (209, 312) 263 22 (255, 271)
8, 4 (128, 387) 259 57 (239, 279) (227, 313) 271 22 (263, 279)
8, 3 (0, 513) 93 113 (53, 134) (0, 279) 113 99 (77, 148)
8, 2 (0, 0) 0 0 (0, 0) (0, 0) 0 0 (0, 0)
8, 1 (0, 0) 0 0 (0, 0) (0, 0) 0 0 (0, 0)
7, 6 (739, 852) 797 28 (787, 807) (43, 133) 88 25 (79, 97)
7, 5 (542, 782) 668 44 (652, 684) (101, 271) 187 33 (175, 199)
7, 4 (323, 547) 430 55 (410, 449) (244, 345) 286 26 (277, 295)
7, 3 (0, 370) 126 101 (90, 162) (0, 267) 153 76 (126, 180)
7, 2 (0, 0) 0 0 (0, 0) (0, 0) 0 0 (0, 0)
7, 1 (0, 0) 0 0 (0, 0) (0, 0) 0 0 (0, 0)
6, 5 (752, 806) 779 15 (773, 784) (93, 148) 121 15 (115, 126)
6, 4 (524, 658) 587 33 (576, 599) (193, 278) 241 22 (233, 248)
6, 3 (120, 344) 266 53 (247, 285) (199, 320) 280 29 (270, 291)
6, 2 (0, 482) 24 92 (0, 57) (0, 166) 13 37 (0, 27)
6, 1 (0, 0) 0 0 (0, 0) (0, 0) 0 0 (0, 0)
5, 4 (689, 810) 741 33 (729, 752) (79, 179) 136 28 (126, 146)
5, 3 (379, 574) 473 46 (456, 489) (243, 329) 283 24 (274, 291)
5, 2 (0, 589) 125 155 (70, 180) (0, 260) 114 89 (82, 145)
5, 1 (0, 0) 0 0 (0, 0) (0, 0) 0 0 (0, 0)
4, 3 (613, 814) 710 47 (693, 727) (76, 231) 159 36 (146, 172)
4, 2 (171, 380) 282 56 (262, 302) (176, 322) 265 32 (254, 376)
4, 1 (0, 0) 0 0 (0, 0) (0, 0) 0 0 (0, 0)
3, 2 (516, 699) 624 38 (610, 637) (164, 284) 221 30 (210, 232)
3, 1 (0, 123) 4 22 (0, 12) (0, 197) 7 35 (0, 20)
2, 1 (256, 471) 361 47 (344, 377) (234, 337) 280 21 (273, 288)

Note: We assume S = −T and P = −R. For each parameter setting, 30 runs were conducted,
using different random seeds each time. Values were computed at t = 500. All figures are
rounded to the nearest integer. Numbers less than 0.5 are rounded down to zero.
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Figure 9.5. Typical population time series with maximum age.

Table 9.4
Statistics

Measure Cooperators Defectors

Range (708, 846) (45, 160)
Mean 784 99
Standard deviation 29 25
95% CI for the mean (773, 794) (90, 108)

emergence of some oscillatory dynamics. We can amplify these by reduc-
ing one of the entries in our payoff matrix.

Run 3. Mutual Cooperation Payoff Reduced from 5 to 2

Specifically, with mutation still at zero, and leaving all else fixed as before,
let us begin to “dial down” the mutual cooperation payoff (the value
of R), first from 5 to 2. A typical realization is shown in figure 9.6.
Cooperators do worse than in figure 9.5, defectors do better, and the
oscillations are now more evident.

Run 4. Mutual Cooperation Payoff Reduced to 1

This oscillatory dynamic is more pronounced if, ceteris paribus, we
reduce R further to 1. The panels of figure 9.7 summarize the spatial
story. Panel 1 of figure 9.7 shows the initial agents in their random
starting positions. By t = 40, cooperative neighborhoods have begun
to take shape, as shown in panel 2. Cooperators dominate by t = 60,
as shown in panel 3. However, the cooperative zone is bordered by
defectors. These surrounding defectors gradually “eat away” at the
cooperative region and by t = 160 have nearly annihilated it, as shown
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Figure 9.6. Population time series with R= 2.
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Figure 9.7. Evolution of cooperative zones.
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in panel 4. In time, the defectors will have few cooperators with whom
to interact; most interactions are then with other defectors. But since
these interactions carry negative payoff, the quarrelsome defectors are
no sooner the majority than they begin to kill one another off, making
way for a resurgence of cooperation, evident by t = 240, shown in panel
5. This is a typical cycle. Another such cycle is shown in panels 6,
7, and 8, corresponding to times 560, 625, and 700. A time series of
this evolution is shown in figure 9.8. Figure 9.9 offers a phase diagram
of the same dynamics. We see, essentially, a perturbed limit cycle. The
dynamics are reminiscent of predator-prey cycles. (The amplitude of the
cycles depends on the lattice size.) And, indeed, defectors “feed” on
cooperators in the sense that they require interactions with cooperators

Figure 9.8. Oscillatory dynamics.

Figure 9.9. Phase diagram.
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Figure 9.10. Two surrounded cooperators.

to accumulate positive payoff, quite as if they were predators and
cooperators were prey. In panel 4 of figure 9.7, we clearly see a
cooperative neighborhood ringed by defector parasites. In the simulation
proper, it looks very much like a predatory red species “eating through”
a blue prey concentration. But defectors need cooperators for a less
obvious reason, also illustrated in this run: Cooperators function to
separate defectors from one another spatially. Because defector-defector
interactions carry negative payoff, defector neighborhoods seldom take
shape and are highly self-destructive—and hence ephemeral—when they
do. Indeed, their self-destruction is what clears the way for the resurgence
of cooperative zones.

I have not attempted to count cooperative zones over the course of this
run. A rough index of cooperative blotchiness is a count of cooperators
all of whose eight Moore neighbors are also cooperators; I call these
surrounded cooperators. For example, the 14-cooperator configuration
in figure 9.10 would count as 2 (circled) surrounded cooperators. The
time series for this index is plotted in figure 9.11 and reflects the rise and
fall of cooperative zones in Run 4.

In contrast to Runs 1 and 2, different random seeds do produce
different outcomes for these same payoffs. While the oscillatory dynamic
is robust to such variation, the oscillations are extreme enough that
qualitatively different long-run outcomes are possible. In some cases,
cooperators and defectors coexist. In others, cooperators inherit the
earth, while in others they are the first to go extinct (followed by the
defectors, since the latter’s mutual interactions carry strictly negative
payoffs). In those realizations where cooperators inherit the earth, they
do so for an interesting and counterintuitive reason. With the higher R
value (the payoff to mutual cooperation) of 5, the cooperators never
“thin out” enough spatially to let the defectors annihilate each other,
while with R= 1 they may, paving the way for their own monopoly.
In such cases, cooperators ultimately do better with a low payoff (R= 1)
than with a high one (R= 5)!

This counterintuitive result is reminiscent of altruistic behavior in
which one generation (here the generation of cooperators that thins out)
sacrifices itself for the long-run benefit of the species. But it is not robust.



July 6, 2006 Time: 03:27pm chapter9.tex

DEMOGRAPHIC PRISONER’S DILEMMA 215

Figure 9.11. Time series of surrounded cooperators.

Run 5. Maximum Age, Mutation

Let us now restore our initial value of R= 5, the payoff to mutual
cooperation, and explore the sensitivity of our basic result—cooperator
persistence—to mutation, defined as the probability that an agent will
have a strategy different from its parent’s (e.g., that a cooperator’s
offspring will be a defector).

In this spatial setting, cooperator mutation can introduce defector
“invaders” into the very heart of cooperative zones. One might well
imagine that these will then spread until cooperators are annihilated.
In fact, cooperator persistence will withstand very high mutation rates.
In figure 9.12, all else is as in Run 2 (finite lives with maximum
age of 100), except that a 50 percent mutation rate is assumed. (The
same qualitative result obtains at a mutation rate of 25 percent, with
cooperators averaging around 350 and defectors around 400.) While
the dynamics are much more oscillatory than in the first case, and
the cooperator-defector ratio closer to 1, the long-term persistence of
cooperation is intact through 10 thousand cycles.

Simulation and Sufficiency

Simulation is a particularly direct tool when the aim is to establish
that some set of micro assumptions is sufficient to generate a macro
phenomenon of interest. (On generative sufficiency, see Epstein and
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Figure 9.12. Cooperation withstands mutation.

Figure 9.13. Space and non-negative payoffs.

Axtell 1996, 1997.) In this case, the macro phenomenon is the persistence
of cooperation. A widely accepted view is that “when cooperators and
defectors look alike, genuine cooperation cannot emerge” (Frank 1988).
In the simulations above, cooperators and defectors have no “tags”;
they do “look alike” in the relevant sense that they are indistinguishable
to one another. Yet, on certain micro-assumptions, cooperation emerges
and endures. This basic sufficiency result is robust and withstands the
introduction of a maximum age and high mutation rates. Of course,
there are variations it will not withstand. Specifically, if we replace
space and local interactions with soup (equiprobable random agent
pairings), then the system runs to pure defection despite negative payoffs,
quite consistent with the related replicator dynamics reviewed earlier.
Moreover, space alone is not sufficient to ensure cooperation; with
maximum age of 100, zero mutation, and all payoffs shifted up by 6, so
that T = 12, R= 11, P = 1, and S = 0, the spatial system again converges
to pure defection, as shown in figure 9.13. And on these assumptions, the
society of pure defection is sustained.
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Negative Payoffs Unnecessary but Appealing

Negative payoffs (for P and S) are not necessary for cooperation to
persist, or even monopolize. (For instance, with all payoffs hiked by
ten (so that T = 16, R= 11, P = 5, S = 4) and the maximum lifetime
reduced from 100 to 10 cycles, and using the same random seed, we
again see an evolution to cooperative monopoly.) However, with all
payoffs non-negative, the only way for agents to die is through an
exogenous “old age” (i.e., a random maximum age assigned when the
agent is initialized). With negative payoffs, agents can die through an
endogenous series of infelicitous social interactions. To “bottom-up”
modelers, this endogeneity is an appealing feature of negative payoffs.
However, it should be noted that, since defector-defector interactions
then carry negative payoffs, a society composed purely of defectors is not
viable in the long run. Of course, with mutation, defectors may persist—
by spawning cooperators to “save them from themselves,” as it were.
Negative payoffs admit an alternative interpretation, which will lead to
an interesting conjecture.

An Alternative Formulation of Negative Payoffs

At the outset, we assumed a payoff ordering:

T > R> 0 > P > S. (6)

Negative per-period payoffs can accumulate until an agent’s aggregate
holding goes negative, at which point it dies. Equivalent mathematically,
but quite different conceptually, is a set-up with all payoffs non-negative
(as is perhaps more typical in the literature), but with some fixed
“global” metabolic rate imposed on all agents after every interaction.
(By metabolic rate, I mean a fixed decrement to accumulated payoff per
cycle.) For example, if we add |S| to all payoffs in (2) and denote the new
values with asterisks, we have

T∗ > R∗ > P∗ > S∗ = 0. (7)

Now, taking as the unstarred values the entries in matrix A (6, 5,

−5,−6), we obtain (adding |S | = 6 to each), the nonnegative payoffs
12, 11, 1, 0. With metabolism set at zero, these are the ex post payoffs
as well and we generate the immediately preceding run (figure 9.12), in
which cooperators are annihilated. However, with the global metabolic
rate hiked to 6, we recover, in effect, our initial payoffs and generate the
run in which cooperators are not annihilated.
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Necessity the Mother of Cooperation?

Now, one can think of this global metabolic rate as a kind of “environ-
mental” or “selective” pressure. When the environment is hospitable—
when selection pressure is weak—there is no particular advantage to
cooperation, and defectors rule. However, as we turn up the selection
pressure, we find that cooperators are more persistent. This makes
some sense. After all, if there’s an abundance of food lying around, we
don’t need to cooperate agriculturally. A conjecture, then, is that, in
the demographic setting we have been exploring, cooperation acquires
selective advantage as selection pressures increase. Or, more prosaically,
necessity is the mother of cooperation.

Concluding Thoughts

Perhaps, in conclusion, it deserves emphasis that the results reported
above involve a particular space (a 30-by-30 torus) and a limited set of
numerical assumptions—payoffs, maximum ages, mutation rates, initial
populations levels, and so forth. The only claims that can be advanced
definitively are that certain ensembles of assumptions are sufficient to
generate cooperative persistence on the time scales explored in the
research. As it happens, that is fairly notable given the existing literature.
While some sensitivity analysis was conducted, it would of course be
worthwhile to further sweep the parameter space of the model, exploring
the robustness of the main results and, if possible, to assess their
generality mathematically. Meanwhile, the sufficiency results and basic
dynamics were deemed notable enough, and the conjecture interesting
enough, to warrant wider dissemination and discussion.

Implementation

The source code was written in C++ in the Metrowerks CodeWarrior
development environment for the Macintosh. Readers interested in
running the model under their own assumptions—payoffs, mutation
rates, maximum lifetimes, and so forth—may do so using this book’s CD.
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Appendix to Chapter 9

GENERATING NORM MAPS IN

THE DEMOGRAPHIC COORDINATION GAME

One natural research question is this: What happens if, keeping
everything else (movement, space, cloning) as is, we simply change the
payoff structure from PD to the symmetric two-person coordination
game? Does the demographic variant produce an outcome different from
both one-shot rational play and the replicator dynamics? The answer is,
again, yes.

For expository purposes, assume the payoff matrix below:

Lef t Right
Lef t 1 −3
Right −3 1

We imagine two drivers approaching one another on a road. If each
drives on his left, they pass without incident, whereas a failure to
coordinate in this sense eventuates in a collision, and negative payoff.
The pure strategy pairs—(L, L) and (R, R)—are both Nash equilibria.

Figure 9.A.1. Replicator dynamics phase portrait for coordination game.
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Run 9.A.1. Evolution of norm maps in the demographic coordination game.

Traditional game theory does not offer a compelling account of how
either is attained in populations of interacting agents.1 Hence, as before,
we turn to evolutionary game theory.

The phase diagram for the replicator dynamics, assuming the payoff
matrix above, is shown in figure 9.A.1.

There are three equilibria: 0, 1/2, and 1. Since df/dx > 0 at the
interior equilibrium and is strictly negative at 0 and 1, we see that

1Young (1996) offers an elegant account using Best Reply to Recent Sample Evidence.
However, as noted (somewhat self-critically) in the prelude to chapter 10, this learning
scheme does assume that agents continue sampling long after a norm is firmly entrenched.



July 6, 2006 Time: 03:38pm chapter9-appendix.tex

224 CHAPTER 9: APPENDIX

the interior equilibrium is unstable, and the coordination equilibria are
attractors. Hence, the replicator dynamics predicts convergence to either
zero (everyone driving on the left) or one (everyone driving on the right).

In the demographic variant, however, we find quite a different result:
spatial maps divided into connected regions within each of which a
specific norm prevails, with “accidents” on the region boundaries. A full
animation is provided on the CD. The frames shown in run 1, however,
are typical.

Agents are, of course, colored by their norm. Events progress from
an initial random distribution (frame 1) to a spatial map of the sort
described above (frame 3).

To generate norm maps of this sort using the CD, open the Prisoners
Dilemma Ascape applet.2 When the Ascape Control Bar appears, click
on the Globe icon (for global variables) and a dialog box will pop up.
In it, change Death Age to 1000, Mutation Rate to 0.0, and the Payoffs
to [1,−3,−3, 1]. Leave all other settings at their default values. Then
click Done, and restart the model. You are unlikely to get the exact run
captured here, because Ascape uses a new random seed for every run.
But they should agree qualitatively, generating spatial norm maps with
accidents on the boundaries.

Reference

Young, H. P. The Economics of Convention. 1996. Journal of Economic
Perspectives 10(2): 105–22.

2See the Read Me file on the CD for further details.
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Prelude to Chapter 10

GENERATING THOUGHTLESS CONFORMITY

TO NORMS

Let me try to get at something big with something small. Here are two
small experiments: (1) Stand four inches too close to someone when
conversing. (2) The next time someone at a conference table makes a
clever academic quip, try laughing heartily for ten full seconds after
the obligatory polite chuckles have subsided. In both cases, you’ll feel
uncomfortable. Why? Because we have a very finely tuned sense of what’s
inside a norm and what’s outside it. But we don’t think about that
boundary in any conscious way; not, that is, until it is crossed.

We don’t think about how to walk normally, but we can detect
remarkably slight departures from a normal human gait, or a normal
human face. We don’t think about how to talk normally, but we’d notice
immediately if someone put a one-second silence after every third word.
That which is normal is maintained as a kind of homeostatic target, and
we only notice when the observed value wanders outside the acceptable
range, just like a thermostat. Perhaps we are endowed with something
like a normostat.

Societies may differ in the normostat’s target value (what constitutes
normalcy), and a given social group can change its value (as when
fashions change) endogenously. But once a norm is entrenched—once
the normostat is set to a value—we don’t think about it, until a violation
is observed. That is at once understandable and, arguably, adaptive.
Clearly, if we spent the entire day consciously deciding whether or
not to conform to every norm of locution, dress, gesture, hygiene,
social comportment, and so on, we’d have no time left to accomplish
anything. Thoughtless conformity to entrenched norms has an adaptive
computation-saving aspect. But it is also very disturbing that we can just
as thoughtlessly adopt discriminatory norms: racial biases, xenophobias,
and so on.

A great deal of social science is concerned with conscious choices and
decisions. Homo economicus collects information, arrays alternatives,
and makes conscious strategic choices. He’s thinking. To me, however,
one of the more remarkable aspects of homo sapiens is how much of
our social behavior is entirely thoughtless. Indeed, as argued in the
Generative chapter, the major patternings in the fabric of humankind
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are of this sort: We didn’t decide to identify with our particular ethnic
group; we didn’t consider the alternatives and select our particular native
tongue; we didn’t lay out a range of religions and pick orthodox Judaism;
we didn’t choose, in any meaningful sense, to prefer ragas to sonatas, or
pancakes to monkey brain for breakfast.

Not all of the above examples are equally momentous. And none of
them is specifically modeled in the next chapter. Rather, I try to get at the
general phenomenon of thoughtless conformity in a simple two-norm
setting.

As emphasized in the Generative chapter, space and heterogeneity are
typical of agent models, and they are important here. Agents are arranged
on a one-dimensional ring. Although they differ by norm, they are most
heterogeneous by their search radius—that is, by how much they are
thinking about what norm to adopt. In regions of the space where there
is norm variation (i.e., on norm boundaries), agents are worrying about
how to behave. In zones where one norm or another is monolithic (i.e.,
norm interiors), there is no thinking. Norm innovators (represented as
noise) can jog the thoughtless into worrying, a process that can eventuate
in local “tipping” from one norm to another. The dynamics can then
exhibit what Young has identified as hallmarks of complex systems: local
conformity (norm patches), global diversity, and punctuated equilibria.1

Best Reply to Adaptive Sample Evidence

The essential point of the model is to generate thoughtlessness itself.
Hence, the number of sites an agent samples in figuring out how to
behave is adaptive. It increases in the face of variation (observed norm
violations), and, most importantly, it shrinks—in principle, to zero—once
a norm is entrenched. Agents play a coordination game with others in this
adaptive search radius. Hence, I have dubbed the learning dynamic Best
Reply to Adaptive Sample Evidence. Now the attentive reader will notice
that this departs from precisely the scheme used in the earlier Classes
model (chapter 8). There, agents played Best Reply to Sample Evidence,
but the sample size was fixed, not adaptive. In a sense, then, this chapter
criticizes that one. So be it. As Emerson said, “A foolish consistency is
the hobgoblin of little minds.”2 Best Reply misses something important
in cases where thoughtless conformity (not merely conformity) is the
“emergent” phenomenon of interest.

1H. P. Young, Individual Strategy and Social Structure: An Evolutionary Theory of
Institutions (Princeton: Princeton University Press, 1998).

2Ralph Waldo Emerson, “Self-Reliance,” in Essays by Ralph Waldo Emerson: First Series
(New York: Houghton, Mifflin, 1904), 57.
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Unobservables

The chapter introduces a graphical technique also exploited in the
subsequent chapter’s Civil Violence models. Two screens are used. On
the left is the screen of observable action: one’s norm (e.g., left-hand
driving) in the present model; one’s rebellious state (active or not) in
the next. On the right screen is an unobservable: one’s search radius
(how much one is thinking) in the present model; one’s level of political
grievance in the next. Unobservable theoretical entities have a long and
venerable history in science, and I do not shrink from using them in this
and other chapters. Contrary to popular inductivist myth, moreover, it
often occurs in science that theory precedes observation. Electromagnetic
theory predicted the existence of radio waves, which were only later
observed. Further examples abound.

Without theory, it is not obvious what data to collect. In any case,
when deep in a norm, the adaptive agents you are about to meet (and, in
my view, many humans) collect no data at all!
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LEARNING TO BE THOUGHTLESS: SOCIAL NORMS

AND INDIVIDUAL COMPUTATION

JOSHUA M. EPSTEIN*

This paper extends the literature on the evolution of norms with an agent-based

model capturing a phenomenon that has been essentially ignored, namely that

individual thought—or computing—is often inversely related to the strength of a

social norm. Once a norm is entrenched, we conform thoughtlessly. In this model,

agents learn how to behave (what norm to adopt), but—under a strategy I term

Best Reply to Adaptive Sample Evidence—they also learn how much to think

about how to behave. How much they are thinking affects how they behave,

which—given how others behave—affects how much they think. In short, there is

feedback between the social (inter-agent) and internal (intra-agent) dynamics. In

addition, we generate the stylized facts regarding the spatio-temporal evolution of

norms: local conformity, global diversity, and punctuated equilibria.

Two Features of Norms

When I’d had my coffee this morning and went upstairs to get dressed
for work, I never considered being a nudist for the day. When I got in my
car to drive to work, it never crossed my mind to drive on the left. And
when I joined my colleagues at lunch, I did not consider eating my salad
barehanded; without a thought, I used a fork.

The point here is that many social conventions have two features
of interest. First, they are self-enforcing behavioral regularities (Lewis
1969; Axelrod 1986; Young 1993a, 1995). But second, once entrenched,
we conform without thinking about it. Indeed, this is one reason why
social norms are useful; they obviate the need for a lot of individual

*For valuable discussions the author thanks Peyton Young, Miles Parker, Robert Axtell,
Carol Graham, and Joseph Harrington. He further thanks Miles Parker for translating the
model, initially written in C++, into his Java-based ASCAPE environment. For production
assistance, he thanks David Hines.

This essay was published previously in Computational Economics, vol. 18, no. 1, August
2001, pp. 9–24.
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computing. After all, if we had to go out and sample people on the
street to see if nudism or dress were the norm, and then had to sample
other drivers to see if left or right were the norm, and so on, we would
spent most of the day figuring out how to operate, and we would not
get much accomplished. Thoughtless conformity, while useful in such
contexts, is frightening in others—as when norms of discrimination
become entrenched. It seems to me that the literature on the evolution
of norms and conventions has focused almost exclusively on the first
feature of norms—that they are self-enforcing behavioral regularities,
often represented elegantly as equilibria of n-person coordination games
possessing multiple pure-strategy Nash equilibria (Young 1993a, 1995;
Kandori, Mailith, and Rob 1991).

goals

My aim here is to extend this literature with a simple agent-based model
capturing the second feature noted above, that individual thought—or
computing—is inversely related to the strength of a social norm. In this
model, then, agents learn how to behave (what norm to adopt), but they
also learn how much to think about how to behave. How much they are
thinking affects how they behave, which—given how others behave—
affects how much they think. In short, there is feedback between the
social (inter-agent) and internal (intra-agent) dynamics. In addition, we
are looking for the stylized facts regarding the spatio-temporal evolution
of norms: local conformity, global diversity, and punctuated equilibria
(Young 1998).

An Agent-Based Computational Model

This model posits a ring of interacting agents. Each agent occupies a fixed
position on the ring and is an object characterized by two attributes. One
attribute is the agent’s “norm,” which in this model is binary. We may
think of these as ‘drive on the right (R) vs. drive on the left (L).’ Initially,
agents are assigned norms. Then, of course, agents update their norms
based on observation of agents within some sampling radius. This radius
is the second attribute and is typically heterogeneous across agents. An
agent with a sampling radius of 5 takes data on the five agents to his left
and the five agents to his right. Agents do not sample outside their current
radius. Agents update, or “adapt,” their sampling radii incrementally
according to the following simple rule:

radius update rule

Imagine being an agent with current sampling radius of r . First, survey
all r agents to the left and all ragents to the right. Some have L (drive on
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the left) as their norm and some have R(drive on the right). Compute the
relative frequency of Rs at radius r ; call the result F (r ). Now, make the
same computation for radius r + 1. If F (r + 1) does not equal F (r ),
then increase your search radius to r + 1.1 Otherwise, compute F (r − 1).
If F (r − 1) does equal F (r ), then reduce your search radius to r − 1. If
neither condition obtains (i.e., if F (r + 1) = F (r ) �= F (r − 1)), leave your
search radius unchanged at r .

Agents are “lazy statisticians,” if you will. If they are getting a different
result at a higher radius (F (r +1) �= F (r )), they increase the radius—since,
as statisticians, they know larger samples to be more reliable than smaller
ones. But they are also lazy. Hence, if there’s no difference at the higher
radius, they check a lower one. If there is no difference between that and
their current radius (F (r − 1) = F (r )), they reduce. This is the agent’s
radius update rule. Having updated her radius, the agent then executes
the Norm Update Rule.

norm update rule

This is extremely simple: match the majority within your radius. If, at the
updated radius, Ls outnumber Rs, then adopt the L norm. In summary,
the rule is: When in Rome, do as the (majority of ) Romans do, with the
(adaptive) radius determining the “city limits.” This rule is equivalent
to Best Reply to sample evidence with a symmetric payoff matrix
such as:

L R
L (1,1) (0,0)
R (0,0) (1,1)

Following Young (1996), we imagine a coachman’s decision to drive on
the left or the right. “Among the encounters he knows about, suppose
that more than half the carriages attempted to take the right side of the
road. Our coachman then predicts that, when he next meets a carriage
on the road, the probability is better than 50-50 that it will go right.
Given this expectation, it is best for him to go right also (assuming
that the payoffs are symmetric between left and right).” The coachman
“calculates the observed frequency distribution of left and right, and uses
this to predict the probability that the next carriage he meets will go left
or right. He then chooses a best reply,” which Young terms “best reply

1When we say “not equal” we mean the difference lies outside some tolerance, T. That is,
|F (r + 1) − F (r )| > T for inequality, and |F (r + 1) − F (r )| ≤ T for equality. For our basic
runs, T = 0.05.
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to recent sample evidence.” Best reply maximizes the expected utility
(sum of payoffs) in playing the agent’s sample population.2

The departure introduced here is that each individual’s sample size
is itself adaptive.3 In particular, as suggested earlier, once a norm of
driving on the left is established (firmly entrenched) real coachmen don’t
calculate anything—they (thoughtlessly and efficiently) drive on the left.
So, we want a model in which “thinking”—individual computing—
declines as a norm gains force, and effectively stops once the norm is
entrenched. Of course, we want our coachmen to start worrying again
if suddenly the norm begins to break down. Of the many adaptive
individual rules one might posit, we will explore the radius update rule
set forth above.

Overall, the individual’s combined (norm and search radius) updating
procedure might appropriately be dubbed Best Reply to Adaptive Sample
Evidence.

noise

Finally, there is generally some probability that an agent will adopt a
random norm, a random L or R. We think of this as a “noise” level in
society.

Graphics

With this set-up, there are two things to keep track of: the evolution of
social norm patterns on the agent ring, and the evolution of individual
search radii. In the runs shown below, there are 191 agents. They are
drawn at random and updated asynchronously. Clearly, each agent’s
probability of being drawn k times per cycle (191 draws with replace-
ment) has the binomial distribution b(k; n,1/n), with n = 191. Agents
who are not drawn keep their previous norm. After 191 draws—one
cycle—the new ring is redrawn below the old one (as a horizontal series
of small contiguous black and white dots), so time is progressing down
the page. There are two Panels. The left Panel shows the evolution of
norms, with L-agents colored black and R-agents colored white. With
the exception of Run 4, each entire Panel displays 300 cycles (each cycle,

2For arbitrary payoff matrices, Best Reply is not equivalent to the following rule: Play the
strategy that is optimal against the most likely type of opponent (i.e., the strategy type most
likely to be drawn in a single random draw from your sample). For our particular set-up,
these are both equivalent to our “match the majority” update rule. These three rules part
company if payoffs are not symmetric.

3In Best Reply models, the sample size is fixed for each agent, and is equal across agents.
See Young 1995.
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again, being a sequence of 191 random calls.) The right window shows
the evolution of search radii, using grayscale. Agents are colored black
if r = 1, with progressively higher radii depicted as progressively lighter
shades of gray.

Runs of the Model

We present seven basic runs of this model, and some statistical and
sensitivity analysis. Once more, we are looking for the stylized facts
regarding the evolution of norms: Local conformity, global diversity, and
punctuated equilibria (Young 1998). But we wish also to reflect the rise
and fall of individual computing as social norms dissolve and become
locked in.

Run 1. Monolithic Social Norm, Individual Computing Dies Out

For this first run, we set all agents to the L norm (coloring them black)
initially and set noise to zero. We give each agent a random initial search
radius between 1 and 60 (artificially high to show the strength of the
result in the monolithic case). There is no noise in the decision-making.
The uppermost line (the initial population state) of the right graph (191
agents across) is multi-shaded, reflecting the random initial radii. Let us
now apply the radial update rule to an arbitrary agent with radius r .
First look out further. We find that F (r + 1) = F (r ), since all agents are
in the L norm (black). Hence, try a smaller radius. Since F (r − 1) = F (r ),
the agent reduces from r to r − 1. Now, apply the norm update rule. At
this new radius, match the majority. Clearly, this is L (black), so stay L.
This is the same logic for all agents. Hence, on the left panel of figure
10.1, the L social norm remains entrenched, and, as shown in the right
panel, individual “thinking” dies out—radii all shrink to the minimum
of 1 (colored black).

Run 2. Random Initial Norms, Individual Computing at
Norm Boundaries

With noise still at zero, we now alter the initial conditions slightly. In
this, and all subsequent runs, the initial maximum search radius is 10.
Rather than set all agents in the L norm initially, we give them random
norms. In figure 10.2, we see a typical result.

In the left panel, there is rapid lock-in to a global pattern of alternating
local norms on the ring. In the right panel, we see that deep in each local
norm, agents are colored black: there is no individual computing, no
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Figure 10.1. Monolithic norms induce radial contraction.

Figure 10.2. Local conformity, global diversity, and thought at boundaries.

“thinking,” as it were. By contrast, agents at the boundary of two norms
must worry about how to behave, and so are bright-shaded.4 (For future
reference notice that, since there are two edges for each local norm—each
stripe on the left panel—the average radius will stabilize around different

4For the particular realization shown in figure 10.2, the average radius settles (after the
initial transient phase) to around 3.
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values from run to run, depending on the number of different norms that
emerge.)

Run 3. Complacency in New Norms

In the 1960’s, people smoked in airplanes, restaurants, and workplaces,
and no one gave it much thought. Today, it is equally entrenched that
smoking is prohibited in these circumstances. The same point applies
to other social norms (e.g., revolutions in styles of dress) and to far
more momentous political ones (e.g., voting rights, segregation of water
fountains, lunch counters, and seats on the bus). After the “revolution”
entirely new norms prevail, but once entrenched, people become inured
to them; they are observed every bit as thoughtlessly (in our sense) as
before. I often feel that the same point applies to popular beliefs about
the physical world; these represent a procession of conventions rather
than any real advance in the average person’s grasp of science. For
example, if you had asked the average 14th Century European if the
earth were round or flat, he would have said “flat.” If, today, you ask the
average American the same question, you will certainly get a different
response: “round.” But I doubt that the typical American could furnish
more compelling reasons for his correct belief than our 14th Century
counterpart could have provided for his erroneous one. Indeed, on this
test, the “modern” person will likely fare worse: at least the 14th Century
“norm” accorded with intuition. Maybe we are going backward! In any
event, there was no “thinking” in the old norm, and there is little or no
thinking in the new one. Again, the point is that after the “revolution,”
new conventions prevail, but once entrenched, they are conformed to as
thoughtlessly as their predecessors. Does our simple model capture that
basic phenomenon?

In Run 3, we begin as before, with randomly distributed initial
norms and zero noise. We let the system “equilibrate,” locking into
neighborhood norms (as before, these appear as vertical stripes over
time). Then, at t = 130, we shock the system, boosting the level of noise
to 1.0, and holding it there for ten periods. Then we turn the noise off and
watch the system re-equilibrate. Figure 10.3 chronicles the experiment.

After the shock, an entirely new pattern of norms is evident on the left-
hand page. But, looking at the right-hand radius page, we see that many
agents who were thoughtlessly in the L norm (black) before the shock
are equally thoughtlessly in the R norm (white) after.

A time series plot of average radius over the course of this experiment
is also revealing. See figure 10.4. Following an initial transient phase,
the mean radius attains a steady state value of roughly 2.25. During the
brief “shock” period of maximum noise, the average radius rises sharply,
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Figure 10.3. Re-equilibration after shock.

Figure 10.4. Shock experiment. Time series of average radius.

reflecting the agents’ frenetic search for appropriate behavior in a period
of social turmoil. One might expect that, with noise restored to zero, the
average radius would relax back to its pre-shock value. In fact—as fore-
shadowed above—the post-shock steady state depends on the post-shock
number of local norms. The lower the diversity, the lower the number of
borders and, as in the present run, the lower the average radius.

Run 4. Noise of 0.15 and Endogenous Neighborhood Norms

Now, noise levels of zero and one are not especially plausible. What
norm patterns, if any, emerge endogenously when initially random agents
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Figure 10.5. Noise of 0.15 and endogenous norms.

play our game, but with a modest level of noise (probability of adopting
a random norm)? The next four runs use the same initial conditions as
Run 2, but add increasing levels of noise. With noise set at 0.15, we
obtain dynamics of the sort recorded in figure 10.5.

Again, we see that individual computing is most intense at the norm
borders—regions outlining the norms. We also see the emergence and
disappearance of norms, the most prominent of which is the white island
that comes into being and then disappears. One can think of islands as
indicating punctuated equilibria.

For the realization depicted spatially above, the time series for average
radius is given in figure 10.6. Following an initial transient phase, the
average search radius clearly settles at roughly 2.0 for this realization.5

Even at zero cost of sampling, in other words, a “stopping rule” for

5For the sake of visibility, the vertical axis ranges from zero to five. While, at this
resolution, the plot may appear quite variable, the fluctuations around 2.0 are minor, given
that the maximum possible radius is (n − 1)/2, or 95 in this case.
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Figure 10.6. Noise of 0.15 time series of average radius.

the individual search radius emerges endogenously through local agent
interactions. And this obtains at all levels of noise, as we shall see.

Now, in the cases preceding this one, there was zero noise in the agents’
decision-making, and—although there would be run-to-run differences
due to initial conditions and random agent call order—the point of
interest was qualitative, and did not call for statistical discussion.
However, in this and subsequent cases, there is noise, and quantitative
matters are of interest. Hence, data from a single realization may be
misleading and a statistical treatment is appropriate. The statistical
analysis of simulation output has itself evolved into a large area, and
highly sophisticated methods are possible. See Law and Kelton 1991 and
Feldman and Valdez-Flores 1996. Our approach will be simple.

statistical results

To estimate the expected value of the long-run average search radius
in this noise = 0.15 case, the model was rerun 30 times (so that, by
standard appeal to the central limit theorem, a normal approximation
is defensible) with a different random seed each time (to insure statistical
independence across runs). In each run, the mean data were sampled at
t = 300 (long after any initial transient had damped out). For a consi-
dered discussion of simulation stopping times, and all the complexities
of their selection, see Judd 1999. The resulting 95% confidence interval6

for the steady state mean search radius is [1.89, 2.03]. We double the
noise level to 0.30 in Run 5.

6This is computed as x̄ ± z0.025
s√
n as in Freund (1992, 402), with z0.025 = 1.96, and

x̄ the average and s the standard deviation over our n = 30 runs.
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Run 5. Noise of 0.30 and Endogenous Neighborhood Norms

The result, shown in figure 10.7, is a more elaborate spatial patterning
than in the previous run. Again, however, we see regions of local
conformity amidst a globally diverse pattern.

In this run, we see the emergence of white and black islands, indicating
punctuated equilibria once more. For this realization, the mean radius
time series is plotted in figure 10.8. Computed as above, the 95%
confidence interval for the steady state mean radius is [2.89, 3.04].

Figure 10.7. Noise of 0.30 and endogenous norms.

Figure 10.8. Noise of 0.30 time series of average radius.
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Run 6. Noise of 0.50

Pushing the noise to 0.50 results in the patterning shown in figure 10.9,
for which the average radius is plotted in figure 10.10. The 95%
confidence interval for the long-run average search radius is [3.73, 3.81].

Run 7. Maximum Noise Does Not Induce Maximum Search

Finally, we fix the noise level at its maximum value of 1.0, meaning that
agents are adopting the Left and Right convention totally at random.

Figure 10.9. Noise of 0.50.

Figure 10.10. Noise of 0.5 time series of average radius.



July 6, 2006 Time: 03:47pm chapter10.tex

240 CHAPTER 10

Figure 10.11. Noise of 1.0.

Figure 10.12. Noise of 1.0 time series of average radius.

One might assume that, in this world of maximum randomness, agents
would continue to expand their search to its theoretical maximum of
(n − 1)/2, or 95 in this case. But this is not what happens, as evident
in figure 10.11. Indeed, as plotted in figure 10.12, it rises only to about
4.5. Computed as above, the 95% confidence interval is [4.53, 4.63].
Thinking—individual computing—is minimized in the monolithic world
of Run 1. But, it does not attain its theoretical maximum in the totally
random world of this run.
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Figure 10.13. Steady state average radius and confidence intervals as function of
noise at tolerance = 0.05.

Figure 10.13 gives a summary plot of the long-run average radius
(middle curve) and 95% confidence intervals (outer curves) for noise
levels ranging from 0 to 1, in increments of 0.05. Note that, at all noise
levels, the confidence intervals are extremely narrow.

Sensitivity to the Tolerance Parameter

In all of the runs and statistical analyses given above, the tolerance
parameter (see note 1) was set at 0.05, meaning that in applying the
radius update rule, the agent regards F (r ) and F (r + 1) as equal if they
are within 0.05 of one another. The agent’s propensity to expand the
search radius is inversely related to the tolerance. Figure 10.14 begins
to explore the general relationship. For tolerances of 0.025 and 0.10, it
displays the same triplet of curves as shown in figure 10.13 for T = 0.05
(which curve is also reproduced). All confidence intervals are again very
narrow.

Even at the lowest tolerance of 0.025,7 the average search radius does
not attain the theoretical maximum even if the noise level does.

Finally, just to ensure that these results on the boundedness of search
are not an artifact of sampling at t = 300, we conducted the same

7Tolerances much below this are of questionable interest. First, we detect virtually
no spatial norm patterning. Second, one is imputing to agents the capacity to discern
differences in relative norm frequency finer than 25 parts in a thousand, which begins
to strain credulity.
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Figure 10.14. Steady state average radii and confidence intervals as function of
noise at various tolerances, sampling at t = 300.
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Figure 10.15. Steady state average radii as function of noise at various tolerances,
sampling at t = 300 vs. t = 10,000.

analysis again, but sampling at t = 10,000. The results are compared
in figure 10.15. The solid curves are the average search radii from
the previous figure, computed at t = 300. The dotted curves are the
corresponding data computed at t = 10,000. Clearly, for noise above
roughly 0.20, there are no discernable differences at any of the three
tolerances. (And for the low noise cases where there is some small
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difference, it is in fact the t = 10,000 curve that is lower.)8 Search is
bounded, even when noise is not.9

Summary

My aim has been to extend the literature on the evolution of social
norms with a simple agent-based computational model that generates the
stylized facts regarding the evolution of norms—local conformity, global
diversity, and punctuated equilibria—while capturing a central feature
of norms that has been essentially ignored: that individual computing is
often inversely related to the strength of a social norm. As norms become
entrenched, we conform thoughtlessly. Obviously, many refinements,
further sensitivity analyses, analytical treatments, and extensions are
possible. But the present exposition meets these immediate and limited
objectives.

Java Implementation

The model has been implemented in C++ and in Java. The Java imple-
mentation uses ASCAPE, an agent modeling environment developed at
Brookings. Readers interested in running the model under their own
assumptions may do so using this book’s CD.
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Prelude to Chapter 11

GENERATING PATTERNS OF SPONTANEOUS

CIVIL VIOLENCE

This work grows out of a long-standing interest in security questions.
My first three books1 dealt exclusively with these issues, and developed
mathematical models of combat, the Adaptive Dynamic Model (1985)2

most notably. My fourth book, Nonlinear Dynamics, Mathematical
Biology and Social Science (1997),3 included three chapters on conflict.
In one of them, I explored the use of nonlinear ordinary differential
equations and nonlinear reaction diffusion systems, all drawn from math-
ematical epidemiology, to model the spread of revolutions specifically.
That chapter concluded with the thought that, beyond these methods,
“it would also be interesting to attempt the formulation of such a society
using cellular automata (perhaps as a generalized Greenburg-Hastings
model) or agents.”4 That thought stuck in my mind, but I didn’t do
much about it until instigated by John Steinbruner, who, in the wake
of Rwanda, had just served on the Carnegie Commission on Preventing
Deadly Conflict. Stimulated by discussions with John on the general
problem, I began to accumulate sketches for a civil violence model.

Growing Artificial Societies does include resource combat between
agents of different “tribes,” and these arise endogenously through a
cultural transmission dynamic (which is compared to Axelrod’s cultural
transmission model in Axtell, et al.).5 However, there are no elements of
central political authority (police) or political grievance against it, both
of which loom large in the Civil Violence models that follow.

1Joshua M. Epstein, Measuring Military Power (Princeton: Princeton University Press,
1984); Strategy and Force Planning: The Case of the Persian Gulf (Washington, DC:
Brookings Institution Press, 1987); Conventional Force Reductions: A Dynamic Assessment
(Washington, DC: Brookings Institution Press, 1990).

2Joshua M. Epstein, The Calculus of Conventional War: Dynamic Analysis without
Lanchester Theory (Washington, DC: Brookings Institution Press, 1985).

3Joshua M. Epstein, Nonlinear Dynamics, Mathematical Biology, and Social Science
(Reading, MA: Addison-Wesley, 1997).

4Epstein, Nonlinear Dynamics, 86.
5Axtell R., Axelrod R., Epstein J. M., and Cohen M. D. 1996 Aligning Simulation

Models: A Case Study and Results. Computational and Mathematical Organization Theory
1(2):123–41.
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The aim of the modeling is to generate certain stylized facts and core
dynamics of decentralized rebellions and spontaneous ethnic conflicts. It
illustrates a number of themes of the Generative chapter. Autonomous
agents interact locally on an explicit space. They exhibit bounded
rationality in deciding whether or not to rebel, adapt to ever-changing
local information, and are heterogeneous by hardship, level of political
grievance, propensity to take risks, and ethnic identity. Local conformity,
global diversity, and punctuated equilibrium—hallmarks of complex
systems—are clearly evident here, as is the potential for empirical
reconstruction (e.g., of Rwanda or Bosnia) along the lines of the Anasazi
work, and policy applications in the area of peacekeeping.

The model employs the graphical technique introduced in the preced-
ing chapter: one screen depicts the landscape of overt agent behavior,
while a second simultaneously depicts the underlying “emotionscape,”
in which individuals are colored by their unobservable level of political
grievance. My main motivation in adopting this display is to capture
the “revolutionary situation” in which no one is rebelling (left screen
all blue), despite the fact that political grievance is extremely high (right
screen all red). As Lenin put it, “a revolution is impossible without a
revolutionary situation; furthermore, not every revolutionary situation
leads to revolution.”



July 6, 2006 Time: 03:51pm chapter11.tex

Chapter 11

MODELING CIVIL VIOLENCE: AN AGENT-BASED

COMPUTATIONAL APPROACH

JOSHUA M. EPSTEIN*

This article presents an agent-based computational model of civil violence.

Two variants of the civil violence model are presented. In the first a central author-

ity seeks to suppress decentralized rebellion. In the second a central authority seeks

to suppress communal violence between two warring ethnic groups.

This article presents an agent-based computational model of civil
violence. For an introduction to the agent-based modeling technique,
see Epstein and Axtell 1996. I present two variants of the civil violence
model. In the first a central authority seeks to suppress decentralized
rebellion. Where I use the term “revolution,” I do so advisedly, recog-
nizing that no political or social order is represented in the model.
Perforce, neither is the overthrow of an existing order, the latter being
widely seen as definitive of revolutions properly speaking. The dynamics
of decentralized upheaval, rather than its political substance, is the
focus here.1 In the second model a central authority seeks to suppress
communal violence between two warring ethnic groups.

*This paper results from the Arthur M. Sackler Colloquium of the National Academy of
Sciences, “Adaptive Agents, Intelligence, and Emergent Human Organization: Capturing
Complexity through Agent-Based Modeling,” held October 4–6, 2001, at the Arnold
and Mabel Beckman Center of the National Academies of Science and Engineering in
Irvine, CA.

I extend special thanks to John D. Steinbruner for his long-term involvement and
close collaboration. Miles T. Parker deserves particular credit for implementation of the
models in ASCAPE, extensive statistical and sensitivity analysis, and valuable discussions
and insights. I thank Robert Axtell, Robert Axelrod, Paul Collier, William Dickens,
Michael Doyle, Steven Durlauf, Carol Graham, John Miller, Scott Page, Nicholas Sambanis,
Elizabeth Wood, and Peyton Young for useful comments, criticism, and advice; Ross
Hammond for research assistance; and Kelly Landis and Shubha Chakravarty for assistance
in preparation of the manuscript and its graphics. The National Science Foundation and
the John D. and Catherine T. MacArthur Foundation provided financial support.

This essay was published previously in Proceedings of The National Academy of Sciences,
Colloquium 99(3): 7243–7250.

1The term “decentralized” deserves emphasis. Revolutionary organizations proper are
not modeled. On their economic and other imperatives in important cases, see Collier 2000
and Collier and Hoeffler 1998, 1999, 2001.
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And, as in model I, I am interested in generating certain characteristic
phenomena and core dynamics; I do not purport to reconstruct any
particular case in detail, although, as discussed in Epstein, et al. 2001,
that is an obvious long-term objective.

Civil Violence Model I: Generalized Rebellion against Central
Authority

This model involves two categories of actors. “Agents” are members of
the general population and may be actively rebellious or not. “Cops”
are the forces of the central authority, who seek out and arrest actively
rebellious agents. Let me describe the agents first. As in all agent-based
models, they are heterogeneous in a number of respects. The attributes
and behavioral rules of the agents are as follows.

The Agent Specification

First, in any model of rebellion there must be some representation of
political grievance. My treatment of grievance will be extremely simple
and will involve only two highly idealized components, which, for lack of
better terminology, will be called hardship (H) and legitimacy (L). Their
definitions are as follows:

H is the agent’s perceived hardship (i.e., physical or economic pri-
vation). In the current model, this is exogenous. It is assumed to
be heterogeneous across agents. Lacking further data, each individ-
ual’s value is simply drawn from U(0,1), the uniform distribution
on the interval (0,1). Of course, perceived hardship alone does not
a revolution make. As noted in the Russian revolutionary journal,
Narodnaya Volya, “No village ever revolted merely because it was
hungry” (quoted in Kuran 1989 and deNardo 1985). Another crucial
factor is:

L, the perceived legitimacy of the regime, or central authority. In the
current model, this is exogenous and is equal across agents, and in the
runs discussed below, will be varied over its arbitrarily defined range of
0 to 1.

The level of grievance any agent feels toward the regime is assumed
to be based on these variables. Of the many functional relationships one
might posit, we will assume:

G = H(1 − L).
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Grievance is the product of perceived hardship (H) and perceived
“illegitimacy,” if you will (1 − L).2 The intuition behind this functional
form is simple. If legitimacy is high, then hardship does not induce politi-
cal grievance. For example, the British government enjoyed unchallenged
legitimacy (L= 1) during World War II. Hence, the extreme hardship
produced by the blitz of London did not produce grievance toward the
government. By the same token, if people are suffering (high H), then the
revelation of government corruption (low L) may be expected to produce
increased levels of grievance.

Of course, the decision to rebel depends on more than one’s grievance.
For example, some agents are simply more inclined to take risks than
others. Accordingly, I define R as the agent’s level of risk aversion.
Heterogeneous across agents, this (like H) is assumed to be uniformly
distributed. Each individual’s level is drawn from U(0,1) and is fixed for
the agent’s lifetime.

All but the literally risk neutral will estimate the likelihood of arrest
before actively joining a rebellion. This estimate is assumed to increase
with the ratio of cops to already rebellious—so-called “active”—agents
within the prospective rebel’s vision. To model this, I define v as the
agent’s vision. This is the number of lattice positions (north, south,
east, and west of the agent’s current position) that the agent is able to
inspect. It is exogenous and equal across agents. As in most agent-based
models, vision is limited; information is local. Letting (C/A)v denote the
cop-to-active ratio within vision v, I assume the agent’s estimated arrest
probability P to be given by

P = 1 − exp[−k(C/A)v].

The constant k is set to ensure a plausible estimate (of P = 0.9) when
C = 1 and A= 1. Notice that A is always at least 1, because the agent
always counts himself as active when computing P. He is asking, “How
likely am I to be arrested if I go active?” Again, the intuition behind this
functional form is very simple. Imagine being a deeply aggrieved agent
considering throwing a rock through a bank window. If there are 10 cops
at the bank window, you are much more likely to be arrested if you are
the first to throw a rock (C/A= 10) than if you show up when there are
already 29 rock-throwing agents (C/A= 1/3). For a fixed level of cops,
the agent’s estimated arrest probability falls the more actives there are.
This simple idea will play an important role in the analysis.

2This is not proffered as the unique equation of human grievance. It is a simple algebraic
relation intended as an analytical starting point.
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Table 11.1
Agent State Transition

State
State (G − N) Transition

Q >T Q ⇒ A
Q ≤T Q ⇒ Q
A >T A ⇒ A
A ≤T A ⇒ Q

Clearly, in considering whether or not to rebel, a risk-neutral agent
won’t care what the estimated arrest probability is, whereas a risk-averse
agent will. It will therefore prove useful to define N= RP, the agent’s net
risk—the product of his risk aversion and estimated arrest probability.
(This can be considered the special, α = 0, case of N= RP J α, where J is
the jail term, as discussed in Epstein et al. 2001.) These ingredients in
hand, the agent’s behavioral rule is summarized in table 11.1.

If, for an agent in state Q, the difference G − N exceeds some non-
negative threshold T, which could be zero, then that quiescent agent
goes active. Otherwise, he stays quiescent. If, for an agent in state A,
the difference exceeds T, then that active agent stays active. Otherwise,
he goes quiescent. In summary, the agent’s simple local rule is:

Agent rule A: If G− N> T be active; otherwise, be quiet.

This completes the agent specification.

bounded rationality

It is natural to interpret this rule as stipulating that the agent take
whichever binary action (active or quiescent) maximizes expected utility
where, in the spirit of Kuran (1989), G− N is the expected utility
of publicly expressing one’s private grievance, and T is the expected
utility of not expressing it (i.e., of preference falsification, in Kuran’s
terminology). Typically, T is set at some small positive value. Notice,
however, that if it takes negative values, like −G (i.e., the frustration
level associated with preference falsification equals the grievance level
itself), agents may find it rational to rebel knowing that they will suffer
negative utility. It’s simply worse to “sit and take it anymore.” Agents
weigh expected costs and benefits, but they are not hyperrational. One
might say (with all due respect to Olson 1971) that individual rationality
is “local” also, in the sense that the agent’s expected utility calculation
excludes any estimate of how his isolated act of rebellion may affect
the social order. Notice, very importantly, that deterrence is local in this
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model and depends on the local (individually visible)—not the global—
ratio of cops to actives, which is highly dynamic in this spatial model
with movement.

The Cop Specification

The cops are much simpler than prospective rebels. Their attributes are
as follows:

v*, the cop vision, is the number of lattice positions (north, south, east,
and west of the cop’s current position) that the cop is able to inspect. It is
exogenous and equal across cops. The cops’ v* need not equal the agents’
v, but will typically be small relative to the lattice size: cop vision is local
also. The cops, like the other agents, have one simple rule of behavior:

Cop rule C: Inspect all sites within v* and arrest a random active agent.

Cops never defect to the revolution in this model.

Movement and Jail Terms

Although the range of motion will vary depending on the numerical
values selected for v and v*, the syntax of the movement rule is the same
for both agents and cops:

Movement rule M: Move to a random site within your vision.

Although the range of vision (v) is fixed, agent information (the number
of cops and actives they see) is heterogeneous because of movement.

Regarding jail terms for arrested actives, these are exogenous and
set by the user. Specifically, the user selects a value for the maximum
jail term, J_max. Then, any arrested active is assigned a jail term
drawn randomly from U(0, J_max). J_max will affect the dynamics
in important ways by removing actives from circulation for various
durations. However, for the present version of the model with alpha
implicitly set to zero (see remark above), there is no deterrent effect of
increasing the jail term. Setting alpha to a positive value would produce
a deterrent effect. In addition to having no deterrent effect, it is assumed
that agents leave jail exactly as aggrieved as when they entered.

measurement

It is important to state forthrightly that I make no pretense to measuring
model variables such as perceived hardship (Graham and Pettinato 2002)
or legitimacy. The immediate question is whether this highly idealized
model is sufficient to generate recognizable macroscopic revolutionary
dynamics of fundamental interest. If not, then issues of measurement are
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Figure 11.1. Action and grievance screens.

moot. So, the first issue is whether the model produces interesting output.
In addition to data generated by the model, run-time visualization of
output is very useful. My graphical strategy is as follows.

graphics

Events transpire on a lattice. Agents and cops move around this space
and interact. I am interested in the dynamics of grievance and—quite
separately—in the dynamics of revolutionary action. The point of sep-
arating these private and public spheres is to permit illustration of a
core point in all research on this topic: public order may prevail despite
tremendous private opposition to—feelings of grievance toward—a
regime. Given this important distinction between private grievance and
public action, two screens are shown (see fig. 11.1).

On the right screen, agents are colored by their private level of
grievance. The darker the red, the higher the level of grievance. On the
left screen, agents are colored by their public action: blue if quiescent; red
if active. Cops are colored black on both screens. Simply to reduce visual
clutter, all agents and cops are represented as circles on the left screen and
squares on the right. Unoccupied sites are sand-colored on both screens.

runs

To begin each run of the model, the user sets L, J , v, v∗, and the
initial cop and agent densities. To ensure replicability of the results, input
assumptions for all runs are provided in table 11.2. Agents are assigned
random values for H and R, and cops and (initially) quiescent agents
are situated in random positions on the lattice. The model then simply
spins forward under the rule set: {A, C, M}. An agent or cop is selected
at random (asynchronous activation) and, under rule M, moves to a
random site within his vision, where he acts in accord with rule C (if
a cop) or A (if an agent). The model simply iterates this procedure until
the user quits or some stipulated state is attained. What can one generate
in this extremely simple model?
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Table 11.2
Input Assumptions for Runs

Model One Model Two

Runs
Variable Name Run 1 Run 2 3&4 Run 5 Run 6 Run 7 Run 8

Cop vision 1.7 7 7 7 1.7 1.7 1.7
Agent vision 1.7 7 7 7 1.7 1.7 1.7
Legitimacy 0.89 0.82 0.9 0.8 0.9 0.8 0.8
Max. jail term 15 30 Infinite Infinite 15 15 15
Movement None Random Random Random Random Random Random

site in site in site in site in site in site in
vision vision vision vision vision vision

Initial 0.04 0.04 0.074 0.074 0 0 0.04
cop density

All models: lattice dimensions (40 × 40); topology (tours); cloning probability (0.05); arrest
probability constant, k (2.3); max age (200); agent “active” threshold, for G− N (0.1);
initial population density (0.7) agent updating (asynchronous); agent activation (once per
period, random order). Departures noted in text.

Individual Deceptive Behavior

Despite their manifest simplicity, the agents exhibit unexpected deceptive
behavior: privately aggrieved agents turn blue (as if they were non-
rebellious) when cops are near, but then turn red (actively rebellious)
when cops move away. They are reminiscent of Mao’s directive that
revolutionaries should “swim like fish in the sea,” making themselves
indistinguishable from the surrounding population. Ex post facto, the
behavior is easily understood: the cop’s departure reduces the C/A ratio
within the agent’s vision, reducing his estimated arrest probability, and
with it his net risk, N, all of which pushes G − N over the agent’s
activation threshold, and he turns red. But it was not anticipated.
Moreover, it would probably not have been detected without a spatial
visualization (see Epstein, et al. 2001); individual deception would not
be evident in a time series of total rebels, for example.

Free Assembly Catalyzes Rebellious Outbursts

With both agents and cops in random motion, it may happen that high
concentrations of actives arise endogenously in zones of low cop density.
This can depress local C/A ratios to such low levels that even the mildly
aggrieved find it rational to join. This catalytic mechanism is illustrated
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Figure 11.2. Local outbursts.

in figure 11.2.3 Random spatial correlations of activists catalyze local
outbursts.

This is why freedom of assembly is the first casualty of repressive
regimes. Relatedly, it is also the rationale for curfews. The mechanism is
that local activist concentrations reduce local C/A (cop to active) ratios,
reducing (via the equation for P above) the risk of joining the rebellion.
To be the first rioter, one must be either very angry or very risk-neutral,
or both. But to be the 4,000th—if the mob is already big, relative to
the cops—the level of grievance and risk-taking required to join the
riot is far lower. This is how, as Mao Tse-tung liked to say, “a single
spark can cause a prairie fire” (quoted in Kuran 1989). Coincidentally,
the Bolshevik newspaper founded by Lenin was called Iskra, the spark!
The Russian revolution itself provides a beautiful example of the chance
spatial correlation of aggrieved agents. As Kuran (1989) recounts, “On
February 23, the day before the uprising, many residents of Petrograd
were standing in food queues, because of rumors that food was in short
supply. Twenty thousand workers were in the streets after being locked
out of a large industrial complex. Hundreds of off-duty soldiers were
outdoors looking for distraction. And, as the day went on, multitudes
of women workers left their factories early to march in celebration of

3All animations screen-captured in this article can be viewed in full as QuickTime movies
on this book’s CD.



July 6, 2006 Time: 03:51pm chapter11.tex

MODELING CIVIL VIOLENCE 255

0
0

20

40

60

80

100

120

140

160

180

200

220

100 200 300 400 500 600 700 800 900 1000

Time (iterations)

# 
ac

tiv
es

Figure 11.3. Punctuated equilibrium.

# 
ac

tiv
es

Time (iterations)

Figure 11.4. Punctuated equilibrium persists.

Women’s Day. The combined crowd quickly turned into a self-reinforcing
mob. It managed to topple the Romanov dynasty within 4 days.” A
random coalescence of aggrieved agents depresses the local C/A ratio,
quickly emboldening all present to openly express their discontent.
A time series of total rebels is also revealing. It displays one of the
hallmarks (Young 1998) of complex systems: punctuated equilibrium
(fig. 11.3). Long periods of relative stability are punctuated by outbursts
of rebellious activity. And indeed, many major revolutions (e.g., East
German) are episodic in fact. The same qualitative pattern of behavior—
punctuated equilibrium—persists indefinitely, as shown in figure 11.4,
which plots the data over some 20,000 iterations of the model.
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waiting time distribution

Is there any underlying regularity to these complex dynamics? For many
complex systems, it turns out to be of considerable interest to study the
distribution of waiting times between outbursts above some threshold. In
this analysis we set the threshold at 50 actives. An outburst begins when
the number of actives exceeds 50 and ends when it falls below 50. I am
interested in the time between the end of one outburst and the start of the
next. Sometimes, one must wait a long time (e.g., 100 periods) until the
next outburst. Sometimes, the next outburst is nearly immediate (e.g.,
a gap of only two periods). The frequency distribution of these inter-
outburst waiting times, for 100,000 iterations of the model, is shown in
figure 11.5.

In the complexity literature, one often encounters the notion of
an “emergent phenomenon.” I have argued elsewhere (Epstein 1999)
that substantial confusion surrounds this term. However, if one defines
emergent phenomena simply as “macroscopic regularities arising from
the purely local interaction of the agents” (Epstein and Axtell 1996), then
this waiting time distribution surely qualifies. It was entirety unexpected
and would have been quite hard to predict from the underlying rules
of agent behavior. For instance, figure 11.5 suggests a Weibull or
perhaps Lognormal distribution. Although rigorous identification is a
suitable topic for future research, these data are clearly not uniformly
distributed. But all distributions used in defining the agent population—
the distribution of hardship and risk aversion—are uniform. In a uniform
waiting time distribution, one is just as likely to wait 100 cycles as 50;

Figure 11.5. Waiting time distribution.
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Figure 11.6. Logged data (truncated).

that is not the case in my model, at least for these parameters. The mean
of these data—the average duration between outbursts—is 60. (The SD is
55.) Clearly, most of the probability density is concentrated around this
value: this means that one is much more likely to see successive outbursts
within 60 cycles than within 100.

If one is willing to truncate this distribution—throwing out the most
high-frequency events (waiting times less than 30 cycles), the remaining
distribution is well fit by the negative exponential. In particular, the
logged (truncated) data are shown in figure 11.6.

Ordinary least-squares regression yields an R-squared of 0.98 with
slope −0.07 and intercept 3.5. The negative exponential distribution is
ubiquitous in the analysis of failure rates—the rates at which electrical
and mechanical systems break down. It would be interesting if “social
breakdowns” followed a similar distribution. Another obvious issue
is the sensitivity of this distribution to variations in key parameters.
For example, how would an increase in the jail term deform the
distribution? One might conjecture that, by removing rebellious agents
from circulation for a longer period, increasing the jail term would
“flatten” the distribution and raise its mean. All of these issues could
be fruitfully explored in the future. For the moment, the core point is
that a powerful statistical regularity underlies the model’s punctuated
equilibrium dynamics.

outburst size distribution

A second natural statistical topic is the size distribution of rebellious
outbursts. To study this, I use the same parameterization as above and
adopt the same threshold: 50 actives. But there are numerous ways to
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Figure 11.7. Total activation distribution.

measure outburst size for statistical purposes. For example, imagine a
flare-up lasting 5 days with the following number of actives per day: 60,
100, 120, 95, and 80. This outburst has a peak active level of 120. It has
average (daily) activation of 100 and total activation (the sum) of 500.
The size distribution of outbursts using the total activation measure is
shown in figure 11.7.

The mean and SD are, respectively, 708 and 230. The distributions
using the peak and average data are qualitatively similar. As in the
case of the waiting time distribution, one could conduct further analysis
to identify the best fit to figure 11.7. The point to emphasize here is
not which distribution is best, but that some macroscopic regularity
emerges. A strength of agent models is that they generate a wealth of
data amenable to statistical treatment.

a ripeness index

Turning to another topic, we often speak of a society as being “ripe
for revolution.” In using this terminology, I have in mind a high level
of tension or private frustration. Does the present model allow me to
quantify this in an illuminating way? As a first cut, I noted earlier that
society can be bright red on the right screen (indicating a high level of
grievance) while being entirely blue on the left (indicating that no one
is expressing, or “venting,” their grievance). So, if this combination of
high average grievance G on the right and high frequency of blues B on
the left were the best indicator of high tension, a reasonable “ripeness”
index would be simply their product: GB. This, however, ignores the
crucial question, why are agents blue? If they are inactive simply because
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Figure 11.8. Tension (blue) and actives (red).

they are risk averse and have no inclination to go active, then they are
not truly frustrated in the inactive blue state. So, for fixed G and B a
good tension index should increase as average risk aversion falls (more
agents want to act out, but are nonetheless staying blue). Hence, a better
simple measure is:GB/R, where R is average risk aversion. In figure 11.8,
I plot this against a curve of actives designed to exhibit high volatility. It
is clear that a buildup of tension precedes each outburst and might be the
basis of a warning indicator.

I turn now to a comparison of two runs involving reductions in
legitimacy.4 Both runs begin with legitimacy at a high level. In the first, I
execute a large absolute reduction (from L= 0.9 to L= 0.2) in legitimacy,
but in small increments (of a percent per cycle). In the second, I reduce
it far less in absolute terms (from L= 0.9 to L= 0.7), but do so in one
jump. Which produces the more volatile social dynamics, and why?

Salami Tactics of Corruption

Figure 11.9 shows the results when I reduce legitimacy in small incre-
ments. It displays three curves. The downward sloping upper curve plots
the steady incremental decline in legitimacy over time. (To make these
graphs clear, I actually plot 1,000 L.) The horizontal red curve just above
the time axis shows the number of actives in each time period. Even
though legitimacy declines to zero, there is no red spike, no explosion,
because—as discussed earlier—each new active is being picked off in
isolation, before he can catalyze a wider rebellion. And this is why the

4I thank Miles T. Parker for this comparison.
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Figure 11.9. Large legitimacy reduction in small increments.
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Figure 11.10. Small legitimacy reduction in one jump, t = 77.

middle curve—representing the total jailed population—rises smoothly
over time.

The same variables are plotted in figure 11.10. However, the scenario
is different. I hold legitimacy at its initially high level (of 0.90) for 77
periods. Then, in one jump, I reduce it to 0.70, where it stays. The upper
legitimacy curve is a step function. Even though the absolute legitimacy
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reduction (of 0.30) is far smaller than before, there is an explosion of
actives, shown by the red spike. And, in turn, there is a sharp rise in the
jailed population, whose absolute size exceeds that of the previous run.

Now, why the difference? In the incremental legitimacy reduction
scenario, the potentially catalytic agents at the tail of the grievance
distribution are being picked off in isolation, before they can stimulate a
local contagion. The sparks, as it were, are doused before the fire can
take off. In the second—one-shot reduction—case, even though the
absolute legitimacy decline is far smaller, multiple highly aggrieved agents
go active at once. And by the same mechanism as discussed earlier,
this depresses local C/A ratios enough that less aggrieved agents jump
in. Hence, the rebellious episode is greater, even though the absolute
legitimacy reduction is smaller. It is the rate of change—the derivative—
of legitimacy that emerges as salient.

This result would appear to have important implications for the
tactics of revolutionary leadership. Rather than chip away at the regime’s
legitimacy over a long period with daily exposés of petty corruption, it
is far more effective to be silent for long periods and accumulate one
punchy exposé. Indeed, the single punch need not be as “weighty,” if
you will, as the “sum” of the daily particulars. (The one-shot legitimacy
reduction need not be as great as the sum of all of the incremental
deltas.) Perhaps this is why Mao would regularly seclude himself in
the mountains in preparation for a dramatic reappearance, and why
the return of exiled revolutionary leaders—like Lenin and Khomeini—are
attended with such trepidation by authorities. Perhaps this is also why
dramatic “triggering events” (e.g., assassinations) loom so large in the
literature on this topic; often, they are instances in which the legitimacy
of the regime suddenly takes a dive. By the same token, the earlier run
(incremental legitimacy reductions) explains the counterrevolutionary
value of agent provocateurs: they incite the most aggrieved agents to go
active prematurely, allowing them to be arrested before they can catalyze
the wider rebellion.5 While often sufficient, sharp legitimacy reductions
are not the only inflammatory mechanism.

Cop Reductions

Indeed, “it is not always when things are going from bad to worse that
revolutions break out,” wrote Tocqueville (1955). “On the contrary, it
oftener happens that when a people that has put up with an oppressive
rule over a long period without protest suddenly finds the government
relaxing its pressure, it takes up arms against it.” According to Kuran

5I thank Robert Axelrod for this point.
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Figure 11.11. Cop reductions.

(1989), in the cases of the French, Russian, and Iranian revolutions,
“substantial numbers of people were privately opposed to the regime.
At the same time, the regime appeared strong, which ensured that public
opposition was, in fact, unalarming. What, then, happened to break the
appearance of the invincibility of the regime and to start a revolutionary
bandwagon rolling? In the cases of France and Iran, the answer seems to
lie, in large measure, in a lessening of government oppression.” Indeed,
Tocqueville wrote that “liberalization is the most difficult of political
arts.” Here I interpret liberalization as cop reductions. Beginning at a
high level, I walk the level of cops down. Figure 11.11 shows the typical
result.

Unlike the case of incremental legitimacy reductions above (salami
tactics), there comes a point at which a marginal reduction in central
authority does “tip” society into rebellion. The dynamics under reduc-
tions in repressive potential (cops) are fundamentally different from
the dynamics under legitimacy reduction in this model—and perhaps
in societies. Because both types of reduction are emboldening to rev-
olutionaries, one might have imagined that reductions in the regime’s
repressive power—the cop level—would produce dynamics equivalent to
those under legitimacy reduction. As we see, however, the dynamics are
fundamentally different.

Stylized Facts Generated in Model I

Although model I is exploratory and preliminary, it does produce note-
worthy phenomena with some qualitative fidelity and therefore seems, at
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the very least, promising. It showed, first, the unexpected emergence of
individually deceptive behavior, in which privately aggrieved agents hide
their feelings when cops are near, but engage in openly rebellious activity
when the cops move away. In general, the model naturally represents
political “tipping points”—revolutionary situations in which the screen is
blue on the left (all agents quiescent) but red on the right. Surface stability
prevails despite deep and widespread hostility to the regime. When
pushed beyond these tipping points, the model produces endogenous
outbursts of violence and punctuated equilibria characteristic of many
complex systems. For some parameter settings, the size distribution
of rebellious outbursts and the distribution of waiting times between
outbursts exhibit remarkable regularities. The model explains standard
repressive tactics like restrictions on freedom of assembly and the imposi-
tion of curfews. Such policies function to prevent the random spatial clus-
tering of highly aggrieved risk-takers, whose activation reduces the local
cop-to-active ratio, permitting other less aggrieved and more timid agents
to join in. This same catalytic dynamic underlies the intriguing “salami
tactic” result: Legitimacy can fall much farther incrementally than it can
in one jump, without stimulating large-scale rebellion. The reason is
that, in the former (salami) case, the tails of the radical distribution—
the sparks—are being picked off before they can catalyze joining by
the less aggrieved, and this had implications for both revolutionary
and counterrevolutionary tactics. The model bears out Tocqueville’s
famous adage that “liberalization is the most difficult of political arts,”
showing that (quite unlike legitimacy reductions) incremental reductions
in repressive potential (cops) can produce large-scale tipping events.

It should be added that the individual-level specification is quite
minimal, imposing bounded demands on the agent’s (and cops) informa-
tion and computing capacity, while still insisting that the agent crudely
weigh expected benefits against expected costs in deciding how to act.
Agents are boundedly rational and locally interacting; yet interesting
macroscopic phenomena emerge. As noted at the outset, the model
seems most promising for cases of decentralized upheaval. Although one
could argue that certain effects of revolutionary leadership—reductions
in perceived legitimacy through rousing speeches or writings that expose
regime corruption—are captured, explicit leadership as such is really
not modeled. That could be a weakness in cases—for example, the
communist Chinese revolution—where central leadership was important,
although some would argue that, even there, the main issue was not
the individual leader, but society’s “ripeness for revolution.” As Engels
wrote, “in default of Napoleon, another would have been found” (cited
in Kuran 1989). My tension index might be a crude measure of this
ripeness. Let me turn now to situations of interethnic violence.
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Civil Violence Model II: Inter-Group Violence

Although distinct cultural groups have been generated in agent-based
computational models (Epstein and Axtell 1996; Axelrod 1997), here,
I will posit two ethnic groups: blue and green. Agents are as in model I
and turn red when active. But now, “going active” means killing an agent
of the other ethnic group. The killing is not confined to agents of the
out-group known to have killed. It is indiscriminate. In this variant of
the model, legitimacy is interpreted to mean each group’s assessment of
the other’s right to exist, and for the moment, L is exogenous and the
same for each group. For model II, I also introduce some simple popu-
lation dynamics. Specifically, agents clone offspring onto unoccupied
neighboring sites with probability p each period. Offspring inherit the
parent’s ethnic identity and grievance. Because there is birth, there must
be death to prevent saturation. Accordingly, agents are assigned a ran-
dom death age from U(0, max_age). Here, max_age = 200. Cops are as
before, and arrest—evenhandedly—red agents within their vision. (This
assumption of even-handedness can, of course, be relaxed.) There is no
in-group policing in this version of the model, although Fearon and Laitin
(1996) argue convincingly that this may be important in many cases.

Peaceful Coexistence

For the first run of model II, I set legitimacy to a high number, just to
check whether peaceful coexistence prevails with no cops. Figure 11.12
depicts a typical situation. The left screen clearly shows spatial hetero-
geneity and peaceful mixing of groups with no red agents. On the right,
only the palest of pink shades, indicating low levels of grievance, are
seen. Harmonious diversity prevails. However, with no cops to regulate
the competition, if L falls, even to 0.8, the picture darkens substantially.
Indeed, ethnic cleansing results.

Figure 11.12. Peaceful coexistence.
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Ethnic Cleansing

The sequence of five panels in figure 11.13 clearly shows local episodes
of ethnic cleansing, leading ultimately to the annihilation of one group
by the other: genocide.

Over a large number of runs (n = 30), genocide is always observed.
The victor is random. The phenomenon is strongly reminiscent of

Figure 11.13. Local ethnic cleansing to genocide.
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Figure 11.14. Safe havens emerge under peacekeeping.

“competitive exclusion” in population biology (see May 1981). When
two closely related species compete in a confined space for the same
resource, one will gain an edge and wipe the other out. If, however,
the inter-species competition is regulated by a predator that feeds
evenhandedly on the competitors, then both can survive. Peacekeepers
are analogous to such predators. I introduce them presently.

Safe Havens

I begin this run exactly as in the previous genocide case. But, at t = 50,
I deploy a force of peacekeepers. They go to random unoccupied sites
on the lattice. And this typically produces safe havens. A representative
result is shown in figure 11.14. Rather than begin with no cops initially,
as in the previous run, a case with high initial cop density was also
examined. Once a stable pattern had emerged, the cops were withdrawn.
Here, with heavy authority from the start (a high cop density of 0.04),
a stable, but nasty, regime emerges. The presence of cops prevents either
side from wiping the other out, but their coexistence is not peaceful:
ethnic hostility is widespread at all times. When (ceteris paribus) all cops
are withdrawn—the peacekeepers suddenly go home—there is reversion
to competitive exclusion and, eventually, one side wipes out the other.

Clearly, peacekeeping forces can avert genocide. But what is the
overall relationship between the size of a peacekeeping presence and the
incidence of genocide? As an initial exploration of this complex matter,
a sensitivity analysis on cop density is conducted.

Cop Density and Extinction Times

For purposes of this analysis, all cops are in place at time 0. But
there will be random run-to-run variations in their initial positions
and, of course, in their subsequent movements. These initial cop den-
sities are systematically varied from 0.0 up to 0.1, in increments of
0.002. For each such value, the model was run 50 times until the
monochrome—genocide—state was reached. (If it was not reached
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Figure 11.15. Waiting time and initial cop density data.

after 15,000 cycles, the run was terminated.) The data appear in
figure 11.15.

There are three things to notice. First, at low force densities (0 to 0.02),
convergence to genocide is rapid. Second, the same rapid convergence to
genocide is observed at all force densities. Third, reading vertically, at
high force densities (0.08 and above), there is high variance. One can
have high effectiveness (delays of over 15,000 cycles) or extremely low
effectiveness (convergence in tens of cycles). The devil would appear to
be in the details in peacekeeping operations.

As noted earlier, the model was run 50 times at each density (with a
different random seed each time). So, at each density, there is a sample
distribution of waiting times over the 50 runs. I plot the means of
these distributions at each initial density in figure 11.16, along with the
best linear fit to the same data. On average, the larger the initial force
of peacekeepers, the more time one buys. At the same time, however,
the SD is also rising, as shown in figure 11.17. Hence, the confidence
interval about the mean is expanding. Thus, as the mean waiting time to
genocide grows, we have decreasing confidence in it as a point estimate
of the outcome, all of which is to say, perhaps, that the peacekeeping
process is highly path dependent and uncertain. (Giving cops the capacity
to communicate could affect these results.)

This entire analysis proceeds from the assumption that all forces are
in place at time 0. The same analysis could be conducted for different
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Figure 11.16. Waiting time mean and initial cop density.
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Figure 11.17. Waiting time standard deviation and initial cop density.

arrival schedules. At the moment, the claim is simply that the agent-
based methodology permits one to study the effects of early and late
interventions of different scales, which is obviously crucial in deciding
how to size, design, and operate peacekeeping forces.

Summary of Model II Results

With high legitimacy (mutual perception by each ethnic group of the
other’s right to exist), peaceful coexistence between ethnic groups is
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observed; no peacekeepers are needed. However, if the force density
is held at zero, and legitimacy is reduced (to 0.8), local episodes of
ethnic cleansing are seen, leading to surrounded enclaves of victims,
and ultimately to the annihilation of one group by the other. With
early intervention on a sufficient scale, this process can be stopped. Safe
havens emerge. With high cop density from the outset, the same level
of legitimacy (0.8) produces a stable society plagued by endemic ethnic
violence. If cops are suddenly removed, there is reversion to competitive
exclusion and genocide. The statistical relationship between initial cop
densities and the waiting time to genocide was studied. Although
the mean relationship was positive, quick convergence to genocide at
extremely high force levels, it was shown, is not precluded, because
of the path-dependent and highly variable dynamics of interethnic civil
violence.

Conclusion

Agent-based methods offer a novel and, I believe, promising approach
to understanding the complex dynamics of decentralized rebellion and
interethnic civil violence, and, in turn, to fashioning more effective and
efficient policies to anticipate and deal with them.
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Prelude to Chapter 12

GENERATING EPIDEMIC DYNAMICS

I love mathematics. I also believe that mathematical theories can
offer fundamental insights. In areas where there is a well-developed
and powerful mathematical theory, one should master the theory before
building an agent model. Moreover, it is often of great value to “dock”
the agent model—or some special case of it—to the classical mathemati-
cal one.

In the field of epidemiology, there is a beautiful underlying mathemat-
ical theory that applies powerfully to an important class of cases. While
we offer an agent-based epidemic model in chapter 12, the effort began
with a “docking exercise” worth recounting as a prelude.

The Kermack-McKendrick Equations

Perhaps the most famous equations of mathematical epidemiology are
the Kermack-McKendrick equations, published in 1927.1 In the basic
model, the total population is constant and is comprised of three
homogeneous pools: Susceptibles S(t), Infectives I(t), and Removeds
R(t). Conceptually, susceptibles contract the disease through contact with
infectives; the infected are then removed from circulation through death
or permanent immunity. Since the flow is from susceptible (S) to infective
(I) to removed (R), it is termed an SIR epidemic model.2 The flow from
state to state is governed by three differential equations. Letting r denote
the infection rate (the per contact transmission probability) and p the
rate at which infectives are removed from circulation (e.g., by death),
the Kermack-McKendrick model is

dS/dt = −r SI (1)

dI/dt = r SI − pI (2)

dR/dt = pI. (3)

1W. O. Kermack and A. G. McKendrick, “Contributions to the Mathematical Theory of
Epidemics,” Proceedings of the Royal Statistical Society, ser. A, 115:700–721.

2For a thorough modern mathematical exposition, see Paul Waltman, Deterministic
Threshold Models in the Theory of Epidemics (New York: Springer, 1974).
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Figure 12.P.1. Illustrative time series solution. Note: S(t) is monotonically
decreasing, R(t) monotonically increasing, and I(t) rises and then falls.

A typical solution of this system is graphed in figure 12.P.1.
The susceptible curve falls, as individuals contract the disease and

transfer into the infective pool. Accordingly, the infective curve rises.
But, after a period of growth, this curve begins to fall also, as agents
are removed from circulation, through death or permanent immunity,
for example.

Now these equations assume a type of perfect mixing with which we
will dispense in the agent-based smallpox model proper. In particular,
the equations posit that the rate of flow from the susceptible to the
infective pool dS/dt is proportional to the product of the pool sizes,
S(t) and I(t). Implicitly, the model lines up all S susceptibles in a row.
Then each of the I infectives marches down the entire line of susceptibles
and sneezes in each one’s face. That produces SI contacts. That’s perfect
mixing, and the model is very unrealistic in many cases. So what? Realism
per se is overrated. It is a very revealing model! Two important and
counterintuitive insights are immediate, and they apply even in the agent
model we will ultimately build. Indeed, an agent model incapable of
capturing them will be of dubious value.

First Counterintuitive Insight: Herd Immunity

Imagine a contagious disease of some sort. And imagine that you possess
a perfectly effective vaccine for that disease. Intuition would surely
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suggest that, to prevent epidemics of the disease, it is necessary to
vaccinate the entire population. The Kermack-McKendrick equations
say otherwise! How?

To say that an epidemic occurs is to say that the infectious pool, I(t),
is growing. In other words, dI/dt > 0. But, by (2), this occurs if and only
if r SI > pI, which is to say

S > p/r. (4)

The ratio on the right—the removal rate over the infection rate—is
a threshold. If the susceptible pool exceeds it, the infection spreads.
If not, the epidemic fizzles. The very important implication of this
threshold result is that less than universal immunization is required to
prevent epidemics. Indeed, by (4), the fraction immunized need only be
big enough that the unimmunized fraction—the remaining susceptible
pool, S—be below the threshold p/r . Not every cow needs to be
immune for the herd to be immune. For instance, diphtheria and scarlet
fever require 80 percent immunization to achieve “herd immunity,”3

as the effect is known. Hethcote and Yorke argue that “a vaccine
could be very effective in controlling gonorrhea . . . for a vaccine that
gives an average immunity of 6 months, the calculations suggest that
random immunization of 1/2 of the general population each year would
cause gonorrhea to disappear.”4 While our smallpox model will differ
profoundly from the Kermack-McKendrick picture, the goal of herd
immunity is at the core of our vaccination strategy.

Second Counterintuitive Insight

As for the second insight, consider the following proposition: The more
deadly a disease is to the individual, the more widespread is the epidemic
it produces. Right? Surprisingly, the answer is no, and this, too, is
evident from the threshold equation (4). The equation says that if we
vaccinate until the remaining susceptible (i.e., unvaccinated) pool falls
below p/r , the epidemic will fizzle. So, for the sake of argument, fix
r (contagiousness per contact). Now, as p (individual deadliness) gets
higher and higher, so does p/r , and we need to vaccinate fewer and fewer
to achieve herd immunity. In the limit of perfect deadliness, we don’t need
to vaccinate anyone: the disease kills off its hosts before they can spread

3Leah Edelstein-Keshet, Mathematical Models in Biology (New York: Random House,
1988), 255.

4H. W. Hethcote and J. A. Yorke, Gonorrhea Transmission Dynamics and Control (New
York: Springer, 1980).
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the disease to others, precluding any epidemic! The original proposition
is not right. A disease can be so deadly to the individual that it can’t
spread efficiently. (Smallpox, as we shall see, is more clever than that.)

The Kermack-McKendrick equations, highly idealized as they may be,
thus offer two fundamental qualitative insights. And, as a first activity,
our team built an extremely simple agent model to “dock” to that classic
model.

An Agent Model

In this minimal agent model, events transpire on a green “playground,”
if you like. Healthy susceptible agents are colored blue, while a few
initial infective agents are colored red. As an approximation to Kermack-
McKendrick perfect mixing, agents move to neighboring sites randomly
(they execute a 2D random walk in their von Neumann neighborhoods),
bumping into other agents. Any time an infective (red) bumps into a
healthy (blue), the disease is transmitted with fixed probability (0.2),
just as in Kermack-McKendrick. And, as in that model, there is no
heterogeneity within the susceptible or infective pools, and infectives are
removed (die) with probability 0.4 per period. A movie of the typical
epidemic is on the CD. Snapshots are offered in run 1.

Over time, the blue population turns red, as susceptibles contract
the disease, and reds disappear, as they are removed from circulation. The
time series are exactly as in the figure 12.P.1 solution curves for the
Kermack-McKendrick model, as shown in figure 12.P.2. So this is a

31 2

4 5

Run 1. Agent Kermack-McKendrick model.
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Figure 12.P.3. Influenza epidemic data, 1978, English boarding school. Of 763
boys, 512 were confined to bed, 22 January–February 1978. (Source: British
Medical Journal, 4 March 1978.)

reasonable “docking” of an agent model to the classic one. Moreover,
they both do very nicely in cases where the well-mixed assumption holds,
as in the data from a 1978 influenza epidemic in an English boys’ school
shown in figure 12.P.3. The epidemic took place in winter on a small
campus where dining commons and dormitories ensured high contact
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rates, permitting the well-mixed model to apply nicely. Notice the close
fit between theoretical and observed infective curves.

For modeling the spread of smallpox in modern urban settings,
however, this well-mixed assumption can be dangerously misleading, and
we will depart from it. Some degree of spatial realism is fundamentally
important. Agents, moreover, will need to be heterogeneous in a variety
of important ways not reflected in the Kermack-McKendrick model.

However, that model, and explicit mathematical models in general, are
very important tools. We are all prisoners of our tools. But if one must
live in a prison cell, one would like it to be as spacious as possible. So
one should try to master all the tools one can.
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TOWARD A CONTAINMENT STRATEGY FOR

SMALLPOX BIOTERROR: AN INDIVIDUAL-BASED

COMPUTATIONAL APPROACH

JOSHUA M. EPSTEIN, DEREK A. T. CUMMINGS,
SHUBHA CHAKRAVARTY, RAMESH M. SINGHA,

AND DONALD S. BURKE*

Introduction

Since the September 11, 2001, terrorist attacks in New York and
Washington and the subsequent anthrax outbreaks on the east coast of
the United States, bioterror concerns have focused on smallpox. Routine
smallpox vaccinations in the United States ended in 1972. The level of
immunity remaining from these earlier vaccinations is uncertain but is
assumed to be degraded substantially. For present modeling purposes,
we assume it to be nil.

As a weapon, smallpox would be very different from anthrax. Anthrax
is not a communicable disease. Smallpox is highly communicable. With
a case fatality rate of roughly 30 percent (meaning that 30 percent of
infected individuals die), it is also very deadly. Many of those who survive
the disease, furthermore, are permanently disfigured, their well-being
compromised for life.

There is now heated debate on the appropriate national strategy
for smallpox bioterror.1 Who should be vaccinated? Everyone who
volunteers? Targeted subpopulations? When should immunization begin?

*This research was funded by a grant from the Alfred P. Sloan Foundation. For helpful
discussion, the authors thank Ellis McKenzie, Edward Kaplan, James Koopman, Jon Parker,
Nancy Gallagher, Elisa Harris, and John Steinbruner.

This essay was published previously as a monograph by The Brookings Institution Press,
Washington, D.C. 2004.

1In the summer of 2001, researchers at the Johns Hopkins Center for Civilian Biodefense
Strategies, in collaboration with several other organizations, formulated a policy exercise
known as Dark Winter, which raised many important questions for bioterror attack
response; see O’Toole, Mair and Inglesby 2002.
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Immediately? Only after a confirmed attack? What is the role of
quarantine?

In this monograph, we present a county-level individual-based compu-
tational model of a smallpox epidemic.2 We review and criticize the two
main vaccination strategies currently under discussion: trace and mass
vaccination. Based on the model, we then develop a distinct “hybrid”
strategy that differs sharply from both, while combining useful aspects
of each. It involves both preemptive (that is, pre-release) and reactive
measures. As the basis for a national smallpox containment strategy, we
believe it offers important advantages over the alternatives.

Models

In gauging the scale of a smallpox bioterror threat, and in designing an
effective policy response, it is crucial to have epidemic models depicting
the spatial spread of the disease in a relevant setting. Without the use
of explicit models, there is no systematic way to gauge uncertainty
or to evaluate competing intervention strategies. Building on previous
work, we have developed an individual-based computational modeling
environment for the study of epidemic dynamics in general (see appendix
A).3 This can be applied to an indefinite variety of pathogens and social
structures. Here, we develop an individual-based model of smallpox at
the county level (an application to genetically modified smallpox is also
noted).4

In contrast to compartmental epidemic models, which assume perfect
homogeneous mixing and mass action kinetics (Anderson and May 1991;
Kaplan, Craft, and Wein 2002), the individual-based approach explicitly
tracks the progression of the disease through each individual (thus popu-
lations become highly heterogeneous by health status during simulations)
and tracks the contacts of each individual with others in relevant social
networks and geographical areas (for example, family members, co-
workers, schoolmates). All rules for individual agent movement (for
example, to and from workplace, school, and hospital) and for contacts
with and transmissions to other people are explicit, as is stochasticity
(for example, in contacts). No homogeneous mixing assumptions are

2Individual-based modeling is also called agent-based modeling. To avoid confusion
between our agents (individual people) and infectious disease agents, we use the term
individual-based modeling predominantly.

3See Burke 1998; Grefenstette et al. 1997; Burke et al. 1998; Epstein and Axtell 1996;
Epstein 1997.

4For an introduction to the individual-based modeling technique, see Epstein and Axtell
1996. For diverse applications of the methodology, see Brian et al. 2002.
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employed at any level. The prime social units that loom largest in the
smallpox data (Mack 1972), such as hospitals and families, are explicitly
represented, and our vaccination (and isolation) strategy is focused on
these units of social structure. Calibration of our model to these data,
and statistical analysis of core model runs, are discussed below.

Our model differs from the primary (and valuable) competing
approaches, in a number of ways. For example, it differs from that
of Halloran et al. (2002) in its explicit inclusion of hospitals. Most
fundamentally, as a “pure” individual-based model, it eschews all homo-
geneous mixing assumptions at any level, in contrast to the models of
both Halloran et al. (2002) and Kaplan, Craft, and Wein (2002).5

The County-Level Model

The software we have developed permits generalization to multiple levels
of social structure. For present purposes, we model a county composed
of towns, hospitals, households, schools, and workplaces.

Structure and Calibration

The model structure was chosen for comparability to historical data
describing the relationship between smallpox cases and the individuals
who transmitted the disease to those cases in forty-nine outbreaks of
smallpox in Europe from 1950 to 1971. This data set reveals the crucial
role of hospital and household transmission in smallpox outbreaks. We
wished to build the simplest model that captured the heterogeneity of
transmission in the different settings of hospitals, families, workplaces,
and schools. To ensure the replicability of our results, numerical assump-
tions and technical details are given in appendix A. Selected salient
assumptions are noted in the text.

The model parameters governing the probability of transmission per
contact and the contact rates in different social settings were chosen
through a calibration of simulated epidemics with the historical data.
As noted above, these data describe outbreaks resulting from forty-nine
importations of a single case of smallpox into nonendemic Europe during
the period 1950–71 (Mack 1972). Two distributions from these data
were used for the calibration: the distribution of the number of cases

5There are further differences, including parametric ones. For useful remarks comparing
continuous and discrete individual approaches in the present connection, see Koopman
(2002).
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resulting from each of these importations and the distribution describing
the proportion of cases resulting from exposure in a hospital setting, in
a workplace or school setting, and in the home. A combinatorial sweep
of the core parameters—the per contact transmission probability and the
contact rates in the hospital, the home, and the workplace or school—
was performed and the distribution of these results over many simulation
runs was compared to the historical data. In all, approximately 10,000
runs were performed. The parameters that minimized the sum of squared
deviations from the two historical distributions were chosen. In the
present version of the general model, each town is assumed to contain
100 family households, each with two working adults and two school-
aged children—400 individuals in total. With two towns, the county
population is thus 800.

Each town has one school and one workplace. All children attend
their own town’s school (there is no intertown busing). A small fraction
of adults, by contrast, do commute to work in the other town. In our
base runs, we assume that 10 percent of adults commute. There is a
single county hospital, used by both towns. A small number of adults
(in the present version, five) from each town work in the common
hospital. Finally, there is a single morgue housing all individuals who
have died.

Time and Contacts

Each modeling day is equally divided between a “daytime,” when adults
work and children attend school, and a “nighttime,” when family
members (exclusively) interact at home. Each of these phases of the day
is composed of several rounds, in which each individual is processed,
or “activated,” once. The essential event that occurs when an indi-
vidual is active is contact with other individuals. In our model, the
active individual is contacted by randomly selected individuals from
the relevant pool (family members or immediate neighbors at work or
school). Numerical assumptions regarding contacts and transmissions
per contact are given in appendix A. Note that the per contact probability
of contracting the infection depends on the stage of illness the contacting
individual is in.

Graphics

The graphical setup is depicted in figure 12.1, which shows two snap-
shots of the county, labeled nighttime and daytime. Two towns can
be seen, Circletown and Squaretown, inhabited respectively by circle
individuals and square individuals. (Circles and squares are used simply
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Figure 12.1. County view: night and day. Note: An illustrative commuter is
colored green and circled.

to make commuting individuals discernible and to depict the hospital
workers’ hometowns.) As runs progress, individuals return home at
night and go to work and school during the day, a process that iterates
indefinitely. That summarizes the social contact process. Meanwhile, the
epidemic is running its course.
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Figure 12.2. Progression of smallpox. (Source: Fenner et al. 1988.)

Smallpox Assumptions

Our assumptions about the natural history of smallpox in the individual
are illustrated by the timeline in figure 12.2, which also describes the
color coding used in the model graphics. Before we release our index
case—the first infective individual—into the population, we assume
all individuals to be susceptible; that is, we assume no background
of immunity (for example, from previous vaccinations). Susceptible
individuals are colored blue. Referring to the timeline, let us assume
an individual contracts the infection at day 0. At that point, she/he is
colored green. Although the person is infected with smallpox, she/he
is asymptomatic and noncontagious for twelve days. However, unless
the infected individual is vaccinated within four days of exposure, the
vaccine is ineffective. As a policy matter, this is a critical point: it
will be necessary to vaccinate infected people before they manifest any
symptoms. From day 12 to day 15, infected individuals are assumed to be
febrile and contagious (infectious) with smallpox, but do not yet exhibit
the smallpox rash. They feel sick, but precise diagnosis is not yet possible.

At the end of day 15, smallpox rash is finally evident. After twelve
hours in this state, individuals are assumed to be hospitalized. After eight
more days (day 23 of illness), during which they have a cumulative 30
percent probability of mortality, surviving individuals recover and return
to circulation permanently immune to further infection. Dead individuals
are colored black and placed in the morgue.6 Immune individuals are
colored white. Contagiousness varies in the course of the infection.

6The morgue is a closed system, so no transmission occurs there.



July 20, 2006 Time: 10:39am chapter12.tex

CONTAINMENT OF SMALLPOX 283

Individuals are assumed to be 2 times as infectious during days 16
through 19 as during days 12 through 15. In the final phases of the rash,
infectivity returns to the day 12 value, as indicated in figure 12.2. In
the simulated epidemics below, individuals will be colored by their state:
healthy (blue), infected (green), contagious early rash (yellow), rash (red),
dead (black), or immune (white). At any time, the population will be
heterogeneous by health status.

Simulated Epidemics

We present a number of runs and statistical analyses. All simulations
in this paper assume a single initial infective individual (for example, a
bioterrorist or bioterror victim), who is an adult commuter.7

We present snapshots from our computer simulation. It is important
to note, when presenting a simulated epidemic, that any such realization
is but one sample path of a stochastic process. There are run-to-run
differences due to random effects, even when all parameters are fixed
across runs. Indeed, as we shall see, these random effects can be dramatic,
spelling the difference between large-scale epidemics and abortive ones.
Hence, a statistical treatment is necessary and is offered below. To begin,
however, it builds intuition to “watch” the base case epidemic unfold
in our county over time. Again, we imagine a smallpox bioterrorist
initiating the epidemic by infecting (or by being) a commuting adult.

Base Case: No Intervention

The base case scenario is obtained by setting model parameters to values
found by calibration to the European data set and by assuming no
preexisting immunity in the population. The epidemic is allowed to
simply run its course, without any vaccination or isolation strategy.
Figure 12.3 presents nine frames (snapshots) from the full simulation,
which can be viewed as a movie on this book’s CD.

Frame 1 simply shows our index case, a Circletown commuter, at home
at night. He is green, indicating that he is infected but asymptomatic.

7On reflection, the assumption of a single index case is quite conservative. In a city of 12
million (such as Manhattan), one initial infective per 800 would translate into 15,000 initial
infectives. Of course, this assumes a linear scale-up, which may well be unrealistic. Our
point is simply that, scaled in any plausible way, one in 800 will translate into an enormous
attack force in the bioterror interpretation. Although we do not believe we are artificially
simplifying the problem, our software allows for expansion by orders of magnitude, as
discussed below.
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Figure 12.3. Base case run: no interventions. (continued on next four pages)

Frame 2 shows the index case at his Squaretown workplace the next
day. Frame 3 depicts the situation on day 15, at which point our index
case has developed the full smallpox rash. Notice that by this point, he
has spread the disease to others (colored green), but none of them are
aware that they are ill, a situation that persists into day 16 (frame 4),
when the index reports to the hospital. In this particular run, he dies
eight days later and is taken to the morgue on day 24, as shown in
frame 5. No one else in the county yet realizes that he or she is sick.
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Figure 12.3. (continued)

Frame 6 depicts the situation at day 42. Notice that the epidemic is
now far worse in Squaretown than in Circletown, despite the fact that it
began in Circletown. So, seemingly sensible strategies like “concentrate
vaccination on the town where the outbreak begins” may do poorly.
By the time one vaccinates there, the epidemic may well have spread
beyond. Frame 7 (day 52) and frame 8 (day 62) show the hospital filling
to capacity and the morgue filling up. They also show that many people
recover (colored white). Finally, the epidemic’s end state is shown in
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Figure 12.3. (continued)

frame 9 (day 82). With no intervention, everyone in the county eventually
contracts smallpox, and roughly 30 percent die of the disease.8 It is
noteworthy that the base case assumes no background of immunity.
It may represent well the dynamics when European smallpox was first
introduced into virgin indigenous populations.

8Here, we assume that agents continue to go to work and school, that hospitalized
individuals are not isolated, and that no agents flee the county.
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Figure 12.3. (continued)

Figure 12.4 shows typical time series of incidence (top panel) and
number of infected individuals (bottom panel) for a representative
simulation in which there is no intervention.

This, then, is the problem we wish to address. What is the appropriate
policy response? We begin with a review of traditional vaccination
strategies and their problems. We then offer a hybrid vaccination strategy
of our own. The substantial role of voluntarism is noted.
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Figure 12.3. (continued)

Vaccination Strategies

The vaccination strategies that have loomed largest in the policy debate
thus far are trace vaccination and mass vaccination. Each has advantages
and disadvantages.

Trace Vaccination

Trace vaccination is an elegant idea. Given a confirmed smallpox
case, one traces every contact the individual has had and vaccinates
that group. The Centers for Disease Control has adopted priority-
based trace vaccination in its Smallpox Response Plan and Guidelines,9

discussed more fully in appendix B. Contacts are technically defined as
“persons who had . . . close proximity contact (<2 meters = 6.5 feet) with
a confirmed or suspected smallpox patient after the onset of the smallpox
patient’s fever.”

This approach was effectively used in the worldwide smallpox eradi-
cation effort (Fenner et al. 1988). However, there is great concern that
in advanced industrial settings, an individual’s network of contacts is
huge. It will include persons who rode the same urban metro system

9U.S. Centers for Disease Control, “Smallpox Response Plan and Guidelines” (version
3.0), ww.bt.cdc.gov/agents/smallpox/response-plan/ [accessed December 5, 2002].
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Figure 12.4. Typical results for base case run.

or flew out of the same airport, and thus contacts will be dispersed all
over the city or country. The resource demands for full trace vaccination
quickly become daunting. The value of incomplete, or imperfect, trace
vaccination has not received sufficient attention. Below, we present a new
strategy involving such an approach.

Mass Vaccination

Indiscriminate mass vaccination poses a distinct set of problems. The first
is that administration of the smallpox vaccine is not without risk. Com-
plications from the vaccine include post-vaccinal encephalitis, progres-
sive vaccinia, eczema vaccinatum, generalized vaccinia, and accidental
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infection. It is estimated that forty complications would result from every
1 million doses given. Of these, an estimated one in every 1 million
persons vaccinated would die from complications (Lane et al. 1969).

Second, vaccination is not recommended for a significant proportion
of the population—groups at special risk of vaccine complications. These
groups include persons with eczema; patients undergoing chemotherapy
for leukemia, lymphoma, or generalized malignancy; patients with HIV;
persons with hereditary immune deficiencies; and pregnant women
(Henderson et al. 1999). Vaccination of these persons, or even inadver-
tent inoculation with the vaccine strain, could lead to serious disease or
death.

In summary, while perfect trace vaccination is infeasible from a
practical standpoint, mass vaccination carries relatively greater risks of
vaccine-related morbidity and mortality.

The Policy Challenge

The challenge for government is therefore as follows: Design a policy that
is more feasible than trace vaccination, less risky than mass vaccination,
and highly effective in containing a smallpox epidemic. In designing
such a policy, we exploit the essential feature of epidemics as dynamic
processes: they are nonlinear stochastic phenomena.

Bifurcation and Epidemic Quenching

Epidemiologists have long known that introductions of disease into
populations with some background level of immunity can yield large
outbreaks or outbreaks of just a handful of cases, with no outbreaks
of sizes between the very small and the very large. This bifurcation
phenomenon is described in the literature by the results of stochastic
compartmental models, using the terms stochastic extinction or fade-out
(Anderson and May 1991; Bailey 1953; Whittle 1955). We introduce
the term epidemic quenching to denote dynamics in which the stochastic
extinction occurs at the scale of discrete social units. Thus, introductions
can be quenched at the level of the family, the workplace, or the town.
We believe this approach accurately captures the local stochastic nature
of real epidemics. The best vaccination strategies may well be those that
take advantage of the importance of social structure to real epidemics.
What strategies might give the public a reasonable chance that an
epidemic will be “quenched”?

The actual data on European introductions of smallpox from 1950
to 1971 are shown in figure 12.5. This data set is focused on the
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Figure 12.5. Smallpox cases, by relationship to transmitting case, Europe,
1950–71. Note: Sample includes 680 cases. (Source: Mack 1972.)

question, where did infected individuals contract smallpox? Importantly,
50 percent contracted it at the hospital and 22 percent contracted it from
family. The remaining community transmission (28 percent) resulted
primarily from workplace, school, and casual contacts.10 Our model was
built with these units of social structure in mind, and includes hospitals,
families, work, and other venues precisely to allow calibration to these
data. As discussed above, we have fit the model to these data. A strength
of the agent-based approach is that it facilitates a focus on heterogeneous
social units with distinctive internal dynamics, in contrast to models with
homogeneous compartments. These European smallpox epidemic data
clearly suggest that vaccinating hospital workers preemptively (before an
attack) and vaccinating family contacts reactively (as soon as possible
afterward) would be a powerful defense. Figure 12.6 indicates that this
is, in fact, the case. The red curve is the time series for a typical run
with no interventions. The black curve is the time series for the strategy
just stated: preemptive hospital vaccination, isolation of cases in the
hospital, and reactive contact tracing of household members of cases.
Notice that none of these measures involves elaborate contact tracing. If,
to these measures, we begin to add moderate levels of mass preemptive
vaccination, a significant fraction of epidemics are quenched in our
model.

10These data exclude fomite transmissions and include some undetermined and un-
reported transmissions.
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Figure 12.6. Results of interventions. Note: The black time series shows a typical
run that implements our suggested interventions. The red time series is the
original curve from figure 12.4, which shows the no-intervention case.

Quenching through Combined Vaccination Efforts

Combining vaccination efforts—preemptive mass vaccination, preemp-
tive vaccination of hospital workers, and reactive household trace
vaccination—has dramatic effects on both the quenching (confinement
of the disease to discrete social units) and the extent (absolute number
of cases) of the epidemic. Since epidemics are stochastic, single runs can
be misleading. Therefore, we conducted a statistical analysis. We assume
that all hospital workers in the model are vaccinated preemptively. Then,
for five distinct levels of reactive family trace vaccination (0, 25, 50, 75,
and 100 percent), we study how the course of the epidemic varies as we
increase the level of preemptive mass vaccination. At each level of mass
vaccination, the model was run 100 times, with a different random seed
each run. The number infected in each run is plotted in red.

The entire analysis is shown in figure 12.7. The main observation is
that with increasing levels of family contact tracing, the distribution of
the number infected in each epidemic shifts downward at every level of
preemptive mass vaccination.

While the best policy results are obtained at 100 percent family contact
tracing (panel 7e), the most illuminating scientific results are evident in
panel 7d, which displays 75 percent family contact tracing. Here, we
see clear bifurcations: particularly at lower levels of preemptive mass
vaccination (50 percent or less) the addition of reactive family contact
tracing produces a trimodal distribution of epidemics. We examine
this 75 percent family contact tracing case in much greater detail in
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Figure 12.7. Number of infected individuals versus percent preemptively vacci-
nated, by level of family contact tracing.
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Figure 12.8. Probability surface of the 75 percent family contact tracing case.

figure 12.8. This offers a higher resolution version of panel 7d, with the
frequency explicitly plotted above each point.

We believe that the bifurcations seen in figures 12.7 and 12.8 are
clear evidence of quenching at the level of structural social units. We
are studying this phenomenon in greater depth.

A Balanced Policy

As noted, the best policy results are obtained at 100 percent reactive
family contact tracing, shown in figure 12.7, panel e. Figure 12.9 shows
the cumulative distribution of infection for the 60 percent preemptive
mass vaccination level in that panel (7e). We cite this level of preemptive
vaccination because it is obtainable at minimum risk, by revaccinating
those individuals successfully vaccinated in the past.11 This group is
highly unlikely to suffer any of the side effects emphasized above.

11U.S. Bureau of the Census, 2000 Summary File, www.census.gov/census2000/states/
us.html [accessed December 5, 2002].
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Figure 12.9. Cumulative distribution of outcomes for the case of 100 percent
family contact tracing and preemptive hospital vaccination and 60 percent pre-
emptive mass vaccination.

The vertical axis of figure 12.9 is the frequency of simulated outbreaks
(for n = 100) that result in fewer than the number of infections indicted
on the x-axis. So, for example, 100 percent of the simulation runs result
in fewer than seventy infections (twenty-one deaths).

Now, what one sees reported in the media is, in a sense, the easy part of
the policy problem. If there is a confirmed bioterror release of smallpox,
the government must, of course, provide vaccine. Politically, there is no
alternative. Hence the U.S. government is stockpiling 286 million doses
(Kaplan, Craft, and Wein 2002). But the deeper and politically tougher
question is what to do before any release to contain the epidemic and
ease the burden of further vaccination if necessary (and the attendant
risks of indiscriminate immunizations). In our two-town county model,
the following mix of preemptive and reactive policy measures achieves
these goals:

preemptive

1. Vaccination of 100 percent of hospital workers
2. Voluntary revaccination of healthy vaccinees (individuals successfully

vaccinated in the past)
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reactive

3. Isolation in hospital of confirmed cases
4. Vaccination of household members of confirmed cases

Referring to figure 12.9, under this package, 100 percent of the simu-
lated outbreaks result in fewer than seventy cases (twenty-one deaths), 75
percent of outbreaks yield fewer than forty-five cases (fourteen deaths),
and 50 percent of outbreaks yield fewer than thirty-five cases (eleven
deaths). This certainly qualifies as containment compared to the no-
intervention base case, in which the entire population of 800 individuals
becomes infected and roughly 240 die in virtually all runs.

In our model, this package of measures offers the public an excellent
chance that a bioterror smallpox attack will be quenched and limited
in its severity and sharply reduces the logistical burden and public health
risk of further vaccination if necessary. In particular, it minimizes the risks
of indiscriminate mass vaccination and, in contrast to complete trace
vaccination, is entirely feasible. Given a credible bioterrorist threat,12

this combination of measures can serve as the basis for a smallpox
containment strategy.

Research Conducted under the Auspices of the Smallpox
Modeling Working Group

Since the completion of the above research, the Brookings-Hopkins team
has joined the Smallpox Modeling Working Group of the Secretary’s
Advisory Council on Public Health Preparedness of the Department of
Health and Human Services. This working group was established and
is chaired by D. A. Henderson, who also chairs the advisory council.
One of the working group’s major undertakings was to collectively agree
on core model parameters, distributions, and behavioral assumptions.
The following major model extensions were then assigned and have since
been made.

• Expand the population from 800 to 6,000 and 50,000 agents
• Expand the range of bioterror attacks from the single initial infective to

10 initial infectives in the 6,000 agent case, and to 500 initial infectives
(for example, an aerosol release in a movie theater) in the 50,000 agent
case

12The credibility of such a threat at this time is a topic that lies outside the bounds of
this research.
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• Explore social structures beyond the original two-town setup, including
a ring of towns and a hub-and-spoke arrangement of towns

• Beyond ordinary smallpox, model modified (by background immunity)
and hemorrhagic smallpox

• Use full distributions for the incubation periods and infectiousness of
smallpox, rather than the step functions of the original model (arriving
at agreed assumptions for the natural history of the disease in humans
consumed a number of working group meetings)

• Use explicit assumptions about when smallpox cases would be recog-
nized in the hospital (interventions start once the first case is recognized)

• Vary the care-seeking behavior of individuals based upon the type of
smallpox they contract (for example, hemorrhagic cases seek care almost
immediately after the onset of symptoms, whereas modified cases have
some chance of not reporting to the hospital for three days after the
onset of symptoms)

• Model ten different intervention scenarios, from preemptive vaccination
of hospital workers only (various percentage levels) to surveillance and
containment to varying levels of post-attack voluntary mass vaccination,
and combinations of these.

All of these extensions and results are presented in the report
“Individual-based Computational Modeling of Smallpox Epidemic Con-
trol Strategies” (Burke et al. 2004). While the scenarios that were
assigned the working group for analysis differed from the one treated
above, none of the analyses in that report challenge the fundamental
soundness of the containment approach developed in the present mono-
graph.

Further Research

We plan to deepen our analysis of smallpox proper, extend our study of
interventions, and examine a number of further topics.

Expanding Scale

Regarding smallpox proper, further sensitivity analyses will be worth-
while. First among them, perhaps, is the question of scale-up. Do our
fundamental results change when we expand the model to populations
orders of magnitude larger? We plan to scale the model up to 1.7 million
individuals. Other worthwhile sensitivity analyses would further vary the
number of initial cases and the patterns and levels of commuting, for
example.
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Vaccinating Contacts Of Contacts

Current modeling efforts (including ours) assess trace vaccination efforts
assuming that these entail only the identification and vaccination of
contacts of confirmed infected individuals. They have not assessed the
effects of vaccinating contacts of contacts of confirmed infected individu-
als. The Centers for Disease Control’s Smallpox Response and Guidelines
and the worldwide smallpox eradication effort both cite the importance
of vaccinating contacts of contacts in containing smallpox outbreaks.13

Our modeling effort has built the capability to quantitatively assess the
impact of such an approach, and this will be the subject of further
inquiry.

Seasonality

Smallpox epidemic dynamics are known to vary with the seasons.
Spread efficiency increases in winter relative to summer. These seasonal
variations could affect the appropriate mix of intervention strategies.
Seasonality, then, is another promising area of further research.

Family Isolation

Beyond vaccination, isolation is another policy. One can imagine “trace
isolation,” in which the dendrite of a confirmed smallpox carrier’s
contacts is traced and isolated. But this is as intractable as trace
vaccination. One can also imagine broad isolation strategies, like closing
all schools and workplaces or banning cross-town traffic (essentially
quarantine of entire towns).

More discriminating than quarantine but less demanding than trace
isolation is the following strategy, which we term family isolation: if any
member of a household is diagnosed (presumably at the hospital) to have
smallpox, all other household members stay home. This is surprisingly
effective on its own. Indeed, as figure 12.10 suggests, with no vaccination
or other additional interventions, this strategy is roughly as effective as
random vaccination of half the population.

This makes the important methodological point that epidemics involve
two dynamics. The first, the course of the disease in the individual, is

13U.S. Centers for Disease Control, “Smallpox Response Plan and Guidelines” (version
3.0), www.bt.cdc.gov/agents/smallpox/response-plan/ [accessed December 5, 2002]; Fenner
et al. 1988.
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Figure 12.10. Typical time series for household isolation only.

biomedical. The second, the spatial contact process among individuals,
is social. Our family isolation policy operates only on the social contact
process, but would be a surprisingly powerful adjunct to the vaccination
strategies articulated earlier. Isolation is particularly relevant to SARS
(Severe Acute Respiratory Syndrome), for which no vaccine is available.
Further voluntary measures worthy of analysis are the use of masks,
gloves, and other individual protective options. Among topics beyond
smallpox, the threat of novel pathogens looms large.

Novel Pathogens: IL-4 Smallpox

In the wake of the recent Australian mousepox incident, there has
been concern that incorporation of the interleukin-4 gene into smallpox
would produce a more deadly pathogen that we have termed IL-4
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smallpox.14 Precisely how IL-4 smallpox would behave in human hosts is
uncertain, but it is known that “interleukin-4 mediates down regulation
of antiviral cytokine expression and cytotoxic T-lymphocyte responses
and exacerbates vaccinia virus infection in vivo” (Sharma et al. 1996). As
a consequence, it is plausible that the pathogenicity (unvaccinated fatality
rate) of IL-4 smallpox would substantially exceed that of unadulterated
smallpox, that the smallpox vaccine would be considerably less effective
against IL-4 smallpox than against smallpox, and that the transmis-
sibilities of IL-4 and unmodified smallpox would be comparable. We
have begun to explore how IL-4 smallpox would spread in our county-
level model on plausible, albeit uncertain, numerical assumptions—for
example, that IL-4 smallpox pathogenicity is twice that of smallpox,
that smallpox vaccine is 50 percent as effective against IL-4 smallpox
as against smallpox, and that IL-4 smallpox transmissibility equals that
of smallpox. On these assumptions, containment of IL-4 smallpox is far
more demanding than smallpox containment. Further research on IL-4
smallpox, and on the problem of novel pathogens in general, is planned.

It should be noted that the problem of engineered pathogens quickly
raises a host of policy issues regarding the governance of scientific
research in both academia and the private sector. This is another
important topic for research (see Steinbruner et al. 2002).

Appendix A: Technical Discussion

The model was written in Java, using the Ascape modeling framework.
In Ascape, models consist of a variable-sized population of individual
agents (objects) who coexist on a landscape of variable size and shape.
In the case of this model, the landscape chosen was a two-dimensional
grid resembling an overhead map. The use of an object-oriented class
to implement Ascape agents allows for a large degree of heterogeneity
among agents. Each agent object contains and updates a range of
information (such as the agent’s infection status, her location on the
grid, and so forth). The agent decides her own actions (for example,
go to work, go to the hospital, interact with another agent). Agents
can be coded to have variable actions, behaviors, and data simply by
creating subclasses of the basic agent type. The Ascape library of classes
also provides a wide range of methods to develop interagent (and agent-
landscape) interactions. In this case, the landscape was discretized into
spaces corresponding to our model’s major social units: homes, schools,

14For the mousepox incident, see Jackson et al. 2001.
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workplaces, hospital, and morgue. Each agent has memory of where she
lives, who her family members are, and where she works. The model
also keeps track of all those agents with whom she has interacted over a
variable length of time, which allows us to model interventions such as
contact tracing.

When a run of the model begins, all agents are at home, and one agent
(a commuter) has already been infected with smallpox. The model is
started on day 10 of that initial agent’s infection. The model proceeds
in rounds: each round consists of one iteration through the entire agent
population. The call order is randomized each round, and agents are
processed, or activated, serially (asynchronously). On each round, when
an agent is activated, she identifies her immediate neighbors (she has
up to eight so-called Moore neighbors, depending on her location on
the landscape) for interaction. Each interaction may, depending on a
random number draw, result in a contact. In turn, that contact results in a
transmission of the infection from the contacted agent to the active agent
with probability 0 if the contacted agent is not infectious, or a positive
probability (see table 12.A.1 below) that varies according to the progress
of the contacted agent’s disease. Both agents record the contact in their
memories, regardless of whether it resulted in a transmission (since, in
reality, neither would know if transmission had in fact occurred). In the
event the active agent contracts the disease, she turns green and her own
internal clock of disease progression begins. After twelve days, she will
turn yellow and begin infecting others.

This construction of agent interactions allows for enormous flexibility
in modeling. The number of rounds each agent spends at work or
school, the number of interactions each agent has per round, how
often an interaction results in a contact, how often a contact results
in transmission are all variable in our model and subject to sensitivity
analysis. For the runs presented in this paper, each full day consists of
twenty rounds, divided equally between daytime and nighttime. Thus a
child spends ten rounds at home (night) and ten rounds at school (day).
On each round, agent interactions proceed as discussed earlier. Note that
the agent’s neighbors are fixed at home (they are the same each day),
whereas they are variable at work (the agent lands at the same workplace,
but in a different random location at work each day).

We further make the number of contacts stochastic. Fewer contacts
are assumed to occur at the workplace or school than at the home or
hospital. This reflects the observation that transmission usually occurs as
the result of direct contact between individuals, which is more likely to
occur at home (Fenner 1988). The likelihood of an interaction resulting
in a contact at home is 1.0 and at work is 0.3. The model records an
agent’s contacts during the three days before she turns red.
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Table 12.A.1
Numerical Parameters

Chosen Possible
Parameter Value Range

Transmission rate per contact during regular
transmission period

0.2 0–1.0

Transmission rate during high-transmission period 0.4 0–1.0
Length of noncontagious period (days) 12 0–25
Length of early rash contagious period (days) 3.0 0–25
Start of high-transmission period (days) 16 12–25
End of high-transmission period (days) 19 12–25
Pathogenicity 0.3 0.2–0.6 (IL-4)
Percent initially vaccinated 0.0 0–100
Percent hospital workers initially vaccinated 0.0 0–100
Vaccine efficacy 1.0 0.5–1.0
Number of agents initially infected 1.0 1–800
Number of adults who work in hospital 10 0–50
Hospital size 10×10 10×10–30×30
Allow hospital visitors (Boolean) False True, false
Percent adults who commute 10 0–100
Family stays home when first member infected

(Boolean)
True False, true

Family contact tracing (percent) 100 0–100
Work contact tracing (percent) 20 0–100
Family contacts of contacts (percent) 0.0 0–100
Work contacts of contacts (percent) 0.0 0–100
Number of days of accumulated contacts to trace 3.0 0–15
Number of interactions per day per agent 10 10, 80
Rounds per day 10 1–50
Probability of contact per home interaction 1.0 0–100
Probability of contact per work or school

interaction
0.3 0–100

Probability of contact per hospital interaction 1.0 0–100
Contact tracing maximum delay (days) 2 0–10

To summarize, a day consists of ten rounds at home followed by ten
rounds at work or school. The model tracks each individual agent’s
disease progression on a daily basis.

Stochasticity plays an important role in the model. Our model employs
the pseudorandom number generator from the Java 2 platform. The
generator uses a 48-bit seed, which is modified using a linear congruential
formula (see Knuth 1998, sec. 3.2.1). By recording the random seed used
in each run, we can faithfully reproduce any run generated by the model.
All random events occur at the agent level; that is, the agent draws
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a random number from a uniform distribution and, depending on the
parameter value for the event in question, the agent’s state changes. The
following elements of the model depend on a random draw:

• Which agent is the index case
• The order in which agents are activated
• The agent’s workplace (home town, other town, hospital)
• The agent’s daily location in her workplace
• Whether or not an agent is traced and/or vaccinated
• Vaccine efficacy
• Whether or not a given interaction results in a contact
• Whether or not a given contact results in a transmission.

There are also various aspects of epidemics that involve delays and
lags. Although we have not fully explored these areas in our model, we
plan to introduce a stochastic delay in trace vaccination. The current
version assumes a fixed delay of two days between the time an agent
is diagnosed and when her contacts are vaccinated. In future work, this
delay will be drawn from a Poisson distributed clock.

Table 12.A.1 summarizes the model’s numerical parameters. For each
parameter, we list the range of possible (and plausible) values and the
value assigned in the runs presented. Calibration to historical data was
discussed in the text. Departures from these parameter settings are also
noted in the text.

Appendix B: Current Smallpox Policy

Until 1972, immunization was required for all individuals over the age
of one year in the United States. In 1972, however, the government
discontinued routine vaccination because the risk of serious adverse
effects outweighed the rather low risk of infection, due to high vaccine
coverage and minimal exposure to smallpox. In addition, practices
such as ring vaccination, which were extremely successful in the global
eradication effort, further encouraged the cessation of routine smallpox
vaccination.15

However, bioterrorism concerns have renewed interest in the creation
of a substantial smallpox vaccination policy in the United States. There-
fore, the Centers for Disease Control (CDC) has updated the response
plans used in the 1970s. The current interim Smallpox Response Plan

15The term ring vaccination is used variously to denote different forms of targeted
(as against mass) vaccination. As in the CDC’s usage, it normally involves, but need not
be limited to, trace vaccination.
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and Guidelines (available at: www.bt.cdc.gov/agent/smallpox/response-
plan/index.asp [accessed December 10, 2002]) employs many of the
methods used successfully to control outbreaks more than thirty years
ago. The main concept is to control any smallpox epidemic using ring
vaccination. The size of the ring of individuals may be modified according
to the scale of the outbreak, the level of resources available, and the
effectiveness of the method. Thus, health officials would first isolate
suspected and confirmed smallpox cases. Subsequently, they would trace
and vaccinate contacts of the isolated cases, as well as vaccinating the
household members of the contacts.

The CDC guidelines prioritize groups for immunization as follows:

1. Face-to-face close contacts (≤6.5 feet or 2 meters) or household contacts
with smallpox patients after the onset of the patient’s fever.

2. Persons exposed to the initial release of the virus (if the release was
discovered during the first generation of cases and vaccination may still
provide benefit).

3. Household members (without contraindications to vaccination) of con-
tacts with smallpox patients (to protect household contacts should
smallpox case contacts develop disease while under fever surveillance at
home).

4. Persons involved in the direct medical care, public health evaluation, or
transportation of confirmed or suspected smallpox patients.

5. Laboratory personnel involved in the collection and/or processing of
clinical specimens from suspected or confirmed smallpox patients.

6. Other persons who have a high likelihood of exposure to infectious
materials (for example, personnel responsible for hospital waste disposal
and disinfection).

7. Personnel involved in contact tracing and vaccination, quaran-
tine/isolation or enforcement, or law enforcement interviews of suspected
smallpox patients.

8. Persons permitted to enter any facilities designated for the evaluation,
treatment, or isolation of confirmed or suspected smallpox patients (only
essential personnel should be allowed to enter such facilities).

9. Persons present in a facility or conveyance with a smallpox case if fine-
particle aerosol transmission was likely during the time the case was
present (for example, a hemorrhagic smallpox case and/or a case with
active coughing).

Additional groups with indirect contact would be considered for
voluntary vaccination by the director of the CDC, as follows:

1. Public health personnel in the area involved in critical surveillance and
epidemiological data analysis and reporting
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2. Logistics, resource, and emergency management personnel
3. Law enforcement, fire, and other personnel involved in other nondirect

patient care response support activities, such as crowd control, security,
law enforcement, and firefighting and rescue operations.

The Smallpox Response Plan and Guidelines is a draft document;
the CDC acknowledges that it will require updates due to changes
in resources. Furthermore, the immunological landscape of the United
States has changed since the 1970s.
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GENERATING OPTIMAL ORGANIZATIONS

Someone once asked the intriguing question, “What is Beethoven’s
Ninth?” Surely, it is not merely the printed orchestral score of
Beethoven’s Ninth, since the Ninth Symphony is a beautiful piece of
music, while the score is a silent pile of paper with ink marks all
over it. By the same token, there are as many audible realizations of
that single printed score as there are conductors and orchestras (each
with their idiosyncratic tempi, dynamics, phrasings, and other expressive
particularities), open air amphitheaters, and intimate concert halls (each
with their individual acoustics). It seems to me that “Beethoven’s Ninth”
can only denote the complete set of possible realizations generable under
(encoded in) the score.1 If the cardinality of this set were one, we’d need
only one recorded performance of Beethoven’s Ninth. Yet we have new
ones each year. The score encodes a seemingly infinite generative capacity.

The agents you are about to meet in the adaptive organization model
have fixed behavioral rules and fixed numerical parameters. One can
think of this agent microspecification as a fixed genome analogous
to a printed score. The agents face dynamic environments to which
they must adapt in some way. Even with a fixed genome, different
environments produce radically different adaptive histories. In certain
environments, the agents endogenously generate hierarchies; in others,
they forgo hierarchy and engage in internal trade. While the fixed genome
is analogous to the printed symphonic score, the dynamic environment is
analogous to the pressures exerted by conductor, orchestra, concert hall,
and so on, each of which generates a different performance.

In this chapter, we are going to pose a question whose musical
analogue would be strange. It would be: What is the optimal score
for the Berlin Philharmonic to perform? We will introduce a notion of
fitness that will allow us to rank performances. We will fix a dynamic
environment (fix the orchestra, and so on). And, by combinatorial
optimization, we will determine the optimal genome (the optimal score)
in that environment (for that orchestra). And then we’ll “listen” to it
(will watch the optimal history of organizational adaptation as a movie)!

1So, in a sense, it remains, and ever will remain, a work in progress. In this sense, all
symphonies are unfinished!
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Verticality

The models presented thus far unfold on various spaces—two-
dimensional lattices, one-dimensional rings, environmental landscapes,
towns, social networks. But they are all “flat.” There is no hierarchical
aspect; no agent really has “authority” over any other. There are no
superiors or subordinates. The principal way in which the adaptive
organization model differs from the rest is precisely that agents generate
and dissolve hierarchies locally.

At the most abstract level, the organization’s problem is long-range
resource allocation, and it must discover when (very expensive but highly
efficient) “top down” global reallocation dominates (cheap but sluggish)
reallocation through a series of short-range tradelike transactions. In
the neoclassical picture, management structure is absent and inputs are
adjusted to maximize something (e.g., profit). Here, inputs (labor) are
fixed, and it is the management structure that is varied to optimize.

Variable Geometry Firms

For the particular environmental dynamic used in this study, the optimal
history of structural adaptation involves oscillations between “flat”
trading regimes and hierarchies, in perpetual motion up and down a
spatial market as a traveling wave. So the optimal organization does not
have a fixed structure. It is a variable-geometry firm.



July 6, 2006 Time: 04:35pm chapter13.tex

Chapter 13

GROWING ADAPTIVE ORGANIZATIONS: AN

AGENT-BASED COMPUTATIONAL APPROACH

JOSHUA M. EPSTEIN*

Introduction

What constitutes an adaptive organization? What would constitute
optimal structural adaptation in a dynamic environment? Can one
“grow” optimally adaptive organizations from the bottom up—that is,
devise rules of individual behavior that endogenously generate optimal
structural adaptations? There is, of course, a large literature on the origin
of firms, on the size distribution of firms in an economy, and on a host of
related topics.1 However, I am unaware of any explicit model in which
individual agents endogenously generate internal organizational struc-
tures that adapt optimally to dynamic environments. The present chapter
develops such a model, using the agent-based technique (Epstein and
Axtell 1996).2 It is important to note that I do not purport to model any
existing organization, or to “fit” the model to data of any sort. Rather,
the aim, using a highly idealized model, is to illuminate what sorts of
individual (micro) agent rules confer adaptiveness on the larger (macro)

* The author is a Senior Fellow in Economic Studies at The Brookings Institution, a
Member of the Brookings–Johns Hopkins Center on Social and Economic Dynamics, and
a Member of the External Faculty of The Santa Fe Institute.

The author particularly acknowledges software engineer Joshua Miller of the Bios Group
for implementing the model in Ascape and for computational analysis. He also thanks
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enterprise. There will of course be many simplifying assumptions, but
hopefully they will not entirely subvert that broad objective.

Conceptually, we posit that organizations, such as firms in an economy,
exist in economic environments (defined carefully below) that may
change over time; environments are dynamic. Over any period—over
any day, let us say—organizations have a structure. That is to say,
there is, in principle, a graph representing each agent’s information
(internal and external) and its span of authority (its set of resources and
permissible manipulations of them); and there is a specific deployment
of resources (e.g., labor and capital). Ceteris paribus, the state of the
economic environment in a given period, combined with the organi-
zation’s structure in that period, jointly determine the organization’s
performance in that period: this could mean its total profit, its market
share, or other measures. In general, changes in structure induce changes
in performance.

Now imagine stipulating a k-period environmental dynamic (we do
this concretely below). Then, for every “candidate” k-period history of
structural adaptation, there is a corresponding history of organizational
performance (e.g., total profit over the k periods). It is therefore perfectly
natural to pose the question: What is the optimal history of structural
adaptation in that dynamic environment?

Given a particular environmental dynamic, would an optimal history
of structural adaptation involve periods of extreme hierarchy, separated
by relatively “flat” internal trading regimes? This is the sort of general
question we wish to explore.

However, we take a generative approach. That is, we want a single
fixed set of operating rules and parameters at the individual agent level
that will generate, or “grow,” an entire optimal history of structural
adaptation “from the bottom up.” The autonomous agents, for example,
should “grow” hierarchies when they are needed and dissolve them when
they are obsolete. The aim is to characterize rigorously what would
constitute optimal adaptiveness under various assumptions. While there
is no empirical claim particularly, the results appear to call into question
the optimality of certain ubiquitous forms, notably, the pyramidal
hierarchy, which—at least in this model—turns out to be optimal only
in quite restricted cases.

Organization

The chapter proceeds in six parts. Part 1 gives the basic setup of the
model. Part 2 explores the spontaneous emergence and dissolution of
hierarchy, with internal trade proscribed. In part 3, we explore internal
trade alone as a means of reallocating resources within the organization.
Having explained the mechanics of hierarchy and trade, I introduce a
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particular dynamic environment. Against this environment, we examine
the effectiveness of pure trade and pure hierarchy as solutions.

Now, without introducing some objective function, no claims can be
made about optimality, or about the relative performance, or “fitness,”
of different modes of organization. Accordingly, in part 4, we introduce
a very general objective function for the organization. By setting a para-
meter (k), it specializes to profit maximization (k= 0), to market-share
maximization (k= 1), and to hybrids of the two (0 < k< 1). Then, in
part 5, for various choices of objective function (e.g., profit maximizing),
we sweep the entire parameter space of the model for the optimal
parameters. For those parameters, we then show the optimal history of
structural adaptation. Finally, in part 6 various extensions are proposed.

Part 1. Basic Model

I have used the term environment repeatedly and without definition. Of
course, an organization’s economic environment could include everything
from its technological opportunities to pollution regulations to the prime
interest rate. While my model can be generalized (see extensions), the
environment is represented simply as a dynamic pattern (a flux) of
“opportunities,” depicted as a flow of red dots moving left to right
toward the “market” of the enterprise. This “market” consists of 32
contiguous cells, depicted as a vertical array. The market is manned by
the enterprise’s labor force of (at most) 32 workers, depicted as solid blue
squares. Each of these workers is completely myopic, and controls just
the cell he occupies. If an incident red dot runs into a blue square, the
red is considered to be intercepted by the blue worker; that opportunity
(red dot) has been “taken” by the enterprise. For an enterprise to suffer
no red penetrations, workers (blue squares) would have to be positioned
to intercept every incident red dot (see figure 13.1).

An initial enterprise and an incoming red opportunity flux (the
environment) are shown in figure 13.1. An initial condition for the
enterprise always consists of some distribution of blue workers (level-0
managers) and an initial level-1 management layer (comprised of 16
managers). Each level-1 manager controls a two-cell market segment
(the cell positioned four spaces to the left and the cell one space north
of that). If, at any point, there are workers in cells controlled by a
manager, that manager is depicted as a solid dot. If there are no workers
under the manager’s control the manager is depicted as a hollow dot. So,
in figure 13.1, seven solid managers actually control labor; the hollow
rest are monitoring their sector of the market for penetrations. The
environment is essentially a block of red dots in the south of the market.
They are marching toward the enterprise’s space.
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Figure 13.1. Initial enterprise and environment.

Figure 13.2. Penetrators.

Workers cannot move themselves. The task of management is to
allocate them effectively. Clearly, if no reallocation of labor occurs, the
red dots will penetrate the blue enterprise’s front line. These opportuni-
ties are missed. When a red penetrates, the penetrator is colored yellow,
as shown in figure 13.2.

Spans of Control

Given certain objective functions for the enterprise, it may prove efficient
to generate a hierarchy (the mechanics of this are presented below).
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Figure 13.3. The maximum hierarchy.

Figure 13.3 depicts the maximal hierarchy. In a hierarchy of any height,
each level-n manager can shift workers about the 2n cells the manager
controls. As noted above, each level-1 manager controls a 2-cell market
segment. Each level-2 manager controls a 4-cell segment, each level-3 an
8-cell segment, and so on up to the level-5 CEO, who can shift labor
anywhere across the entire 32-cell market of the enterprise. This CEO
agent supersedes all subordinates, and so the CEO is the only solid agent.
The hollow agents beneath need not be interpreted as idle. Presumably,
they would transmit the CEO’s orders down the line until labor is
reallocated. The same point applies to hollow agents in local hierarchies
of any height below. In this exposition, the labor force is fixed.

Labor Allocation Rule

The labor allocation rule is syntactically identical for all managers,
though of course their spans of control are not identical. The rule,
however is

L: Within your span of control, identify all labor not currently inter-
cepting (call that List 1) and identify all sites subject to imminent (next
period) attack; call that List 2. Choose a random laborer from List 1
and move him to a random site from List 2. Repeat until no sites are
threatened or List 1 is exhausted, whichever occurs first.
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Figure 13.4. The essential problem.

Basically, the rule amounts to identifying everybody who’s leaning on his
rake, and throwing him at an outstanding problem. Now, the essential
problem arises as follows.

As illustrated in figure 13.4, labor is numerically adequate, but it is
misallocated. There is a gap in blue coverage at cell 3 (counting up from
the bottom), while there is an unopposed blue defender at cell 2. Clearly,
to block the penetration, the free defender should be shifted up one site.3

However, neither level-1 manager is empowered to do that, since each
controls only the two sites below him (shown by arrows). There are two
pure approaches to the problem:

1. Hierarchy. A level-2 manager (controlling all four sites) is created (as
shown) to shift the free resource up to its efficient location.

2. Internal Trade. The level-1 manager who is facing penetration
announces, or “posts,” his demand for labor to all other managers in the
same level. Those with an excess supply of labor may choose to respond
with an internal transfer.

Next I describe in detail the mechanics by which hierarchies endo-
genously emerge and dissolve, and then the mechanics of internal trade.

3Terms such as defender and penetrator suggest a military interpretation of the model
that is possible but not necessary, as discussed further below.



July 6, 2006 Time: 04:35pm chapter13.tex

GROWING ADAPTIVE ORGANIZATIONS 315

mechanics of hierarchy with trade proscribed

Recall that a level-n manager controls a market segment of 2n cells.
Over this segment, the manager allocates labor according to the labor
allocation rule (L) stated above. The manager has two penetration
thresholds, Tmin and Tmax. (To exercise the model, these are initially
set by the user. Later we compute their optimal values.) In this paper,
we will assume that these values differ by management level but are
common across a given level. Every manager has a finite memory (e.g.,
the last 10 periods), m. The manager computes the average penetrations
over this memory (i.e., computes the total number of penetrations of
his or her market segment over the last m periods and divides by m);
call that result P.

Upward Hierarchy Rule: If P ≥ Tmax, then (subject to upward inertia)
a manager of level n+ 1 is created. Otherwise, the downward hierarchy
rule applies (see below).

This formal mechanism admits at least three different interpretations:

1. In a military interpretation, it means a superior officer from a higher level
of authority is “called in” to allocate across threatened battle sectors.
Brigade commanders would “call in” division commanders for support.

2. In the economic version published as a 2003 Santa Fe Institute working
paper (Epstein 2003), a higher manager is procured from without (e.g.,
on the spot market for managerial talent).

3. In a different corporate interpretation, one could imagine that the n-level
manager who is reporting excess penetration is promoted internally4 to a
higher (n + 1 level) span of control, and a new subordinate is hired from
without to take the promoted manager’s old position at level n.

This last interpretation is more consistent with the observed pattern of
managers creating divisions below them rather than above. Normally
firms expand by adding subordinate units, not by adding superior ones.5

However, the mathematics are identical.6 This, of course, is quite
common in science. Both the classical gravitational and electrostatic
attractive forces are inverse square laws, for example. Rather than write
three versions of commentary for every run presented, the second of the
above interpretations will usually be adopted below. But that choice has

4Or a randomly-selected n-level manager is promoted, for instance.
5I am grateful to Joseph Harrington for informing me of this regularity.
6The cost accounting is identical between interpretations 2 and 3, which are of prime

concern to us here. Clearly, the military case differs in that regard. Salaries and other costs
are treated later in this chapter.
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more to do with expository efficiency than with a rigid commitment to
that interpretation. Indeed, there are clearly contexts in which others are
more plausible.

In the preceding statement of the rule, upward inertia equals the
number of successive iterations for which P ≥ Tmax, and captures the
reluctance with which managers call for superiors (in interpretations 1
and 2) or engage in literal self-promotion and the hiring of subordinates
(in interpretation 3). Assuming this inertia is not prohibitive, control
now passes to the higher-level manager, responsible for a (twice as large)
market segment of width 2n+1. Within this new span of control, the
new manager applies the labor allocation rule. As a result of these
reallocations of labor, the number of penetrations of this (bigger) segment
may be very low. This manager has her own Tmin and Tmax.

Downward Hierarchy Rule: If P < Tmin, then (subject to downward
inertia) the manager is deleted from the structure, and control reverts
to her subordinates. Otherwise, the upward hierarchy rule applies (see
above).

Here, downward inertia equals the number of iterations for which
P < Tmin, and captures the reluctance of managers to cede control (or
disband subunits as the case may be) when they are no longer needed.
For expository simplicity, we will assume throughout that the Tmax of
a subordinate equals the Tmin of a superior,7 and further, that there is a
single value of upward and downward inertia per management level.

That completes the hierarchy specification. Given certain initial labor
allocations and environmental dynamics, these simple rules are sufficient
to generate hierarchies, and to dissolve them, endogenously. Unlike the
standard neoclassical picture, in which management structure is absent
and inputs are varied to maximize profit, in this model inputs are fixed,
and it is the management structure that is varied to optimize. Before
demonstrating that, I present the alternative approach: internal trade.

mechanics of internal trade

Just as before, over the segment they control, managers are comput-
ing P(average penetrations over memory) and comparing it to Tmax.
Suppose that P ≥ Tmax. Rather than invoke the upward hierarchy rule,
the manager can “post,” to all other managers in the same level, the
manager’s excess demand for labor: P − Tmax. In turn, those managers
will, with some probability, transfer to the posting agent their excess
labor supply (technically, the minimum of that and the poster’s demand).

7This common value is denoted t in all the tables below.
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What is this excess supply? It is total labor under the manager’s control
minus labor currently intercepting reds, all net of the manager’s own
excess demand (the manager’s own P − Tmax). In summary:

Demand Rule: If P ≥ Tmax, then (with probability 1 minus demand-
inertia) post excess demand, P − Tmax.

Supply Rule: With probability 1 minus supply-inertia, transfer to the
posting agent min[the posting agent’s excess demand, your excess
supply].

With all of this in place, then, imagine that you are the demand-posting
agent. In random order, each other manager in your layer is queried. In
accordance with the supply rule, each allocates to you some amount of
labor (possibly zero). If, in the course of this process, your demand is
met, then you stop. If you exhaust all other managers in your layer and
still P ≥ Tmax, then you invoke the upward hierarchy rule. The fact that
trade is attempted first commits me implicitly to the view of hierarchy as
a kind of (internal) market failure.

Here, horizontal inertia—in demand and supply—would encompass
all transaction activities, negotiations, contracts, hoarding, and so on. In
a more elaborate version of the model, a literal internal labor market
could, of course, be introduced.8 But, for our purposes, we will optimize
on all values of vertical and horizontal inertia, and leave aside the
important question of how those values might be induced in practice—
via price or other mechanisms. As we shall see, nonzero inertia will
prove optimal given certain objective functions in some environments.
The entire set of parameters and the management layers to which they
apply are displayed in table 13.1. The numerical values employed in the
various runs presented as snapshots in the text (and as full movies on the
CD) are given in table 13.A.1 of the appendix.

The first four management layers possess penetration thresholds, and
upward and horizontal (demand and supply) inertias, while the top layer
does not. The lowest level of management has no downward inertia,
while the top manager does. The entire matrix of parameters can be
thought of as a kind of genome for the organization, shown as G at
the bottom of table 13.1.

gödel number

As a strictly mathematical matter, one can compress the entire genome
into a single integer by the expedient of Gödel numbering. Each element

8According to Coase (1937), however, “the distinguishing mark of the firm is the
supersession of the price mechanism.”
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Table 13.1
The Organization’s Genome

Relevant Management Layers

Hierarchy:
Penetration Threshold t 1 2 3 4 —
Upward Inertia u 1 2 3 4 —
Downward Inertia d — 2 3 4 5

Trade:
Demand Inertia D 1 2 3 4 —
Supply Inertia S 1 2 3 4 —

G={t1, t2, t3, t4, u1, u2, u3, u4, d2, d3, d4, d5, D1, D2, D3, D4, S1, S2, S3, S4}

of the genome is (or can be converted to) an integer gi . If L is the length of
the genome (here 20) then the product of the first L primes, each raised
to gi , yields a unique integer, G, given by

G =
L∏

i=1

pgi
i

This Gödel number encodes the entire adaptive repertoire of the orga-
nization, as we shall see. With this apparatus in place, then, let us put
the model through some basic paces, before introducing the objective
function required to discuss optimality in any sense.

Part 2. Hierarchical Solutions with Internal Trade
Clamped Off

To begin, we will ban all internal trade and study the emergence of
hierarchy only. As an environment for the first model runs, we posit a
heavy opportunity flux (or “attack”) in the south. The resources of the
organization (“the defense”), however, are deployed largely in the north.
This is depicted in frame 1 of run 1. This gross misallocation quickly
leads to the southern market segments being overrun, as in frame 2
of run 1. To generate the hierarchy, we set penetration thresholds and
upward inertia levels to very low levels. To maintain the hierarchy, we
set downward inertias to high levels. Heuristically, we can think of low
values as zeroes and high values as ones. In that case, the genome of
interest is shown in table 13.2. The actual numerical parameter values
used for all runs are given in the appendix (and could, of course, be
normalized to fall in the unit interval).
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Frame 1 Frame 2

Frame 3 Frame 4

Run 1. Emergence of permanent hierarchy.

Table 13.2
The Genome for Immediate and Permanent Hierarchy

Relevant Management Layers

1 2 3 4 5

Hierarchy:
Penetration Threshold t 0 0 0 0 —
Upward Inertia u 0 0 0 0 —
Downward Inertia d — # # # 1

Trade:
Demand Inertia D 1 1 1 1 —
Supply Inertia S 0 0 0 0 —

G={0, 0, 0, 0, 0, 0, 0, 0, #, #, #, 1, 1, 1, 1, 1, 0, 0, 0, 0}

Hierarchy emerges quickly as agents in the successive layers record
excess penetrations, promptly calling into play ever higher levels of
management, as in frame 3 of run 1. However, it is not until the very
top level of management (level 5) is called into being that an agent (the
CEO) has sufficient vision to notice the global north-south misallocation
and correct it, as shown in frame 4 of run 1. The entire adaptive history
is shown animated as movie 1 (of chapter 13) on the CD.
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This adaptation reminds one of a computer company that is focused
exclusively on mainframes (the northern market segment), while the
opportunity of PCs approaches (the red flux in the south). But it takes
a visionary CEO to “see” the strategic error and shift the resources of
the firm to the south, exploiting the opportunity.

Of course, having solved the problem, the hierarchy is no longer
needed; labor is in place. High-level vision is superfluous. But bureaucra-
cies have immense inertia and once constructed are hard to dissolve. This
phenomenon is generated by the model’s high level-5 value of downward
inertia.

In summary, one recipe for a large persistent hierarchy is as follows:
Start with a strategic misallocation of resources. Set penetration thres-
holds and upward inertias to low values. This grows the hierarchy. High
downward inertia then blocks its dissolution. Below, we introduce costs
and objective functions for the firm. And we will see that, given certain
objectives, the ability to grow a hierarchy is highly adaptive, while the
inability to dissolve it is not.

A more adaptive performance is recorded in run 2. Here, everything is
as before (the genome is exactly as in table 13.2), except that downward
inertias are zero in all management layers. In this case, hierarchy is again
spontaneously generated, and it then solves the strategic problem, exactly
as in run 1. But, having done so, it dissolves, leaving a “lean” structure
overseeing a well-allocated workforce. The corporate culture here is,
“When you need help, ask for it (low upward inertia). When you are no
longer needed, bow out (low downward inertia).” The upward trajectory
is as shown in frames 1–4 of run 1, but the hierarchy dissolves, leaving
the structure shown in figure 13.5.

Figure 13.5. Emergence and dissolution of hierarchy: final state.
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The full animation of run 2 is movie 2 of the CD. Again, it should
be emphasized that the agents are doing all of this from the bottom
up without central direction. Each fixed set of agent thresholds and
inertias generates an entire history of structural adaptation (and labor
reallocations) to a dynamic environment. In run 2, the history involves
the construction of hierarchy, a strategic reallocation of the organiza-
tion’s resources, and the dissolution of hierarchy, all “self-organized,” if
you will.

In the runs presented thus far, the agents generate the maximum
possible hierarchy (five levels), which then persists entirely (run 1) or
dissolves entirely (run 2). In a different environment, fixed settings
identical to those of run 1 (permanent hierarchy) generate a very different
history of structural adaptation.

In run 3 (see movie 3 for animation), the firm’s resources are initially
concentrated in the middle third of the market, while the opportunity
flux is advancing in the northern and the southern thirds.

Hierarchy arises, as before, to recognize and correct a strategic
misallocation. But rather than the single maximum five-level hierarchy,
the firm consists of two stable local hierarchies of medium height, one in
the north and one in the south.

observations on the pure hierarchy runs

The structural adaptations presented thus far unfold without central
direction, “from the bottom up,” as a result of the agent rules and
parameters in the genome. As just illustrated, any fixed genome will
generate different histories of structural adaptation in different dynamic
environments. In a sense, the genome “encodes” an entire repertoire of
adaptations. Thus far, there are no costs of hierarchy and no objective
functions, so no ranking of structures is possible. Before introducing costs
and objectives, we explore internal trade as the allocative mechanism,
with hierarchy proscribed.

Part 3. Internal Trade

A pure trade genome is given in table 13.3. The value of unity for level-1
upward inertia clamps out any hierarchy, while the level-1 horizontal
(demand and supply) inertia values are set to zero. The same run 1
environment and initial misallocation of labor that produced hierarchy
and central (top down) reallocation under genome 1 produces a trading
solution here. As shown in run 4, trade results in the same final correction
as in run 1. Importantly, however, long-range reallocation by internal
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Run 3. Local intermediate hierarchies.
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Table 13.3
The Genome for Pure Trade

Relevant Management Layers

1 2 3 4 5

Hierarchy:
Penetration Threshold t 0 0 0 0 —
Upward Inertia u 1 # # # —
Downward Inertia d — # # # #

Trade:
Demand Inertia D 0 # # # —
Supply Inertia S 0 # # # —

G={0, 0, 0, 0, 1, #, #, #, #, #, #, #, 0, #, #, #, 0, #, #, #}

trade is generally slower than under in-place hierarchy, since it requires a
sequence of low-level, or “local,” managerial responses, rather than the
single global reallocation possible under extreme hierarchy. (See movie 4
for animation.)

The run 3 split attack that resulted in two local hierarchies can
also be handled through trade, as demonstrated in run 5 (with set-
tings as in the previous run). Notice that global reallocations (i.e.,
allocations across the entire market front) occur here as well. Indeed,
stripped of all economic interpretations, this model concerns trade-
offs between centralized and decentralized approaches to long-range
coordination.

a dynamic environment

Thus far, the environments have been very straightforward; the flux of
incident dots has not changed direction over time. As a final preliminary
before introducing the objective function, we explore the performance
of pure trade and pure hierarchy in a more complex environmental
dynamic. Here the organization is confronted with diagonal patterns
of incoming opportunities whose slope alternates periodically; it is a
sawtooth moving left to right.9

Run 6 (see movie 6) demonstrates that trade succeeds in intercepting a
number of incoming reds, but the majority penetrate the market. Trade
lags behind this dynamic.

9This may be clearest in the fully animated version on the CD.
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Run 4. Attack handled through pure trade.
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Run 5. The run 3 split attack handled through pure trade.
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Run 6. Performance of pure trade: dynamic environment.
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By contrast, once the full hierarchy is erected, it is vastly more efficient
in blocking penetrations, as shown in run 7 (see movie 7).10 (The black
lines indicate top-down directives.)

general trade-offs

Now, even without introducing any mathematical objective function,
one can clearly see that there are trade-offs between the two pure
approaches. The benefit of hierarchy is that it prevents penetrations
(protecting market share). However, if salaries increase dramatically with
management level, this solution will be expensive. By contrast, pure
trade sacrifices market share (allows much penetration) while avoiding
the costs of multiple higher levels of management. Given a particular
environmental dynamic and cost structure for the firm, then, what levels
of penetration and hierarchy actually maximize profit, or market share,
or combinations of the two? Equivalently, given a particular objective
function, what is the optimal (fixed) genome? What history of structural
adaptation does it generate?

Part 4. Objective Functions

All numerical assumptions are provided in table 13.A.2 of the appendix.
Over an accounting period t (e.g., a day) define

R(t) = Revenue = The Value of Intercepts

= (The Value Per Intercept)(Total Number of Intercepts).

W(t) = The Wage Bill =
∑

i

(Number of Managers in Level i)(Wage at Level i).

Here, we assume that, for managers controlling labor (solid dots), wages
increase as the cube of the level. Specifically, the wage at level i = c(i+1)3,

10For fixed memory, trade is slower than hierarchy because long-range reallocation is
effected via a series of myopic applications of L (where spans are small) versus a single
global application of L, where the CEO’s span is global. So, for fixed memory, the relative
issue is a sequence of local L-applications versus a single global application. The absolute
gap between the two is a function of memory m. The larger is memory, the slower is trade,
because for higher m, the moving average over which P is computed is ever more stable,
so trade lags the sawtooth. By the time P exceeds the threshold, the environment has
moved on. If m is a tiny number, there are huge adjustments to every environmental blip.
In principle, one would optimize on m as well as the other parameters.
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Run 7. Performance of pure hierarchy: dynamic environment.
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where c is a multiplier. Managers not controlling labor (hollow dots) are
paid ci. Labor is paid unity.

T(t) = The Transaction Costs of Internal Trade

= (Per Trade Cost)(Number of Trades)

P(t) = Penetration Costs

= (The Cost Per Penetration)(Number of Penetrations).

Then, with 0 ≤ k ≤ 1, the general per period objective function F (t) is

F (t) = R(t) − W(t) − T(t) − kP(t). (1)

If k= 0, the firm is a profit-maximizer. It doesn’t care about penetra-
tions (i.e., market share). If k= 1, the firm is a market-share maximizer,
and accounts penetrations as costs. If k= 0.5, the firm cares about both
market share and profit. Since net returns depend on the genome G, we
think of F as parameterized by G, and will adopt the notation F (t; G)
to denote the return in period t for genome G. With the entire above
apparatus in hand, we can now address the core question.

the central question

Specify an environmental dynamic over some time horizon T. For
any objective function (k-value), each fixed genome G—each vector
of thresholds and inertias—will generate some history of structural
adaptation, and some corresponding stream of net returns F (t; G).
(Again, the G entering into this expression as a parameter could be the
Gödel number for the full vector of thresholds and inertias). The problem
then is to find that particular G that maximizes cumulative returns over
the horizon. In short, the problem is to determine11

G∗ = arg max
T∑

t=0

F (t; G). (2)

In a more evolutionary framing, the unit of selection is the genome.
Selection pressures are exerted by the specified environmental dynamic
over the time horizon T and the specified objective function F (t; ·). The
genome’s fitness is then given by

∑T
t=0 F (t; G). Then (2) asks for the

genome with highest fitness.12

11We are actually less interested in
∑T

t=0 F (t; G∗).
12The computational evidence suggests uniqueness, but is not conclusive.
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combinatorial optimization

Here we have a familiar, if nontrivial, problem in optimization. Our
genome is of length 20. Hence if there are four admissible values of each
parameter, the space of all genomes is of size 240. And the fitness land-
scape associated with it is rugged. There is a vast literature on the general
problem, with techniques including various forms of gradient ascent
(“hill climbing”), genetic programming, simulated annealing, and so on.
We will take a direct approach suitable for the heuristic problem at hand.
First, we will shrink the search space and then survey it by brute force.
Specifically, we will assume single enterprise-wide values for each of the
four inertia variables (up, down, horizontal supply, horizontal demand).
This cuts the space roughly by a square root and permits a sweep.

The procedure is as follows: For each of the roughly 220 genomes,
we record cumulative returns over the time horizon (500 periods). For
k= 0.0, k= 0.5, and k= 1.0, we return that genome (the vector of
parameter values) which maximizes the cumulative objective function∑T

t = 0 F (t; G). Then we apply those values and “watch” the optimal
history of structural adaptation. In all of what follows, the dynamic
environment is the sawtooth introduced above.

Part 5. Results

Based on earlier runs, we have expectations about the extreme cases of
profit maximization (k= 0) and market-share maximization (k= 1), so
they are presented first.

profit maximizing

For profit maximization, the optimal genome generates the flat pure
trade solution. The enterprise accepts substantial penetration (sacrifices
substantial market share) but avoids the costs of hierarchy. While
the optimal parameters (given in table 13.A.1 of the appendix) differ
numerically from those used in run 6, graphically this optimal history of
structural adaptation is virtually identical to run 6 and can be viewed as
movie 8 of the CD. Note again the way trade lags behind the environment
and the high level of yellow penetrators.

market-share maximizing

For market-share maximization, the optimal genome immediately gener-
ates the maximum hierarchy. Here, profit is sacrificed (costs are ignored)
to avoid penetrations. The optimal upward inertia is literally zero. Since
the upward hierarchy rule generates hierarchy when P ≥ 0, it generates
hierarchy before any reds are even in view. See movie 9 of the CD. In
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Figure 13.6. Market-share maximizing: immediate hierarchy.

this respect, it differs from run 7. Otherwise, it is exactly as in that
run. The first two frames, however, are of interest, and are shown in
figure 13.6.

In a sense, this explains the extreme hierarchies observed in military
organizations (and perhaps even their peacetime enormity).13 If the
objective is to dexterously allocate forces across a fluid battlefield, “top
down command” makes more sense than holding a tank auction. (The
same point applies to disaster relief, emergency room operations, etc.).14

13Obviously, this also has a great deal to do with political and industrial interests.
14Relatedly, see Weitzman 1974.
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These results are in the nature of sanity tests for the model. They are
the results we expect, and they were largely anticipated in the earlier
runs. What of the hybrid case of k= 0.5? Here, the enterprise cares about
both profit and market share. If profit maximization is flat (no hierarchy)
and market-share maximization is the maximum hierarchy, what would
one expect for the hybrid case? Intuition would suggest an intermediate
hierarchy.

hybrid objective

Quite to my surprise, the optimal genome for the k= 0.5 case generates
no fixed geometry at all. The optimal adaptive organization has a
variable geometry. This variable geometry firm oscillates between the
flat trade regime and a hierarchy of intermediate height. Spatially, the
oscillating structure “chases” the sawtooth environment wave up and
down the front over time. This “traveling wave” organization has
amplitude (maximum hierarchy) 4 and period 10. Run 8 shows this
optimal adaptive performance.

The second-best genome looks very much like the winner. But the
third-place genome differs in an interesting way. It, too, is an oscillator.
But it has lower frequency (30 periods) and higher amplitude (5),
building and then dissolving hierarchies of the maximum height possible,
as shown in run 9 (movie 11).

Time series of the first- and third-place organizations’ oscillations are
shown in figure 13.7. Unconstrained maximization of the hybrid (k= 0.5)
is different in principle from constrained profit maximization. This, too,
was studied and generates yet a third, different, oscillating solution.15

toward a generative definition of “design”

Now consider the question, “What is the winner’s ‘design’?” Surely,
it is not a particular structure, since—given the winner’s genome—the
structure changes in a dynamic environment. But it is not a particular
sequence of structures either, since a different dynamic environment will
yield a different adaptive structural history. Rather, the winner’s design
can only be the complete adaptive repertoire generable by (encoded
in) the enterprise’s genome. And the genome encodes a huge adaptive
repertoire, realized differently in different environments, just as different
selection pressures induce different realizations of a species’ fixed geno-
mic endowment.

15On dynamic organizational forms, see Nickerson and Zenger 2002; Sastry 1997.
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Run 8. Optimal adaptive oscillations.

Part 6. Extensions and Future Research

As an initial demonstration of the approach and of its potential for
producing counterintuitive results, perhaps the foregoing exposition is
sufficient. But it leaves a great many issues unaddressed. Among the
more obvious ones are robustness, mechanism design, imperfect decision-
making, multiple firms, and empirical calibration.

robustness

How sensitive are the optimization results to variations in assumptions
about manager compensation, transaction costs, and other numerical
parameters? Implicitly, the cost of collapsing a hierarchy is zero, when
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Frame 2

Frame 1

Frame 3

Run 9. Third place oscillating firms.

clearly there are some associated costs. Are there cost levels that would
fundamentally alter the relationship between trade and hierarchy?

How sensitive are the optimization results to variations in assumptions
about the environmental dynamic? We optimized given a single dynamic
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Figure 13.7. Oscillation time series compared.
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environment, the sawtooth. But organizations often face different
dynamic environments. One could confront organizations with a range
of environmental dynamics (e.g., spike, square wave, and sawtooth) and
ask for the genome that maximizes the sum or average of returns over
those.

the pyramid puzzle

In this general connection, the preceding analysis suggests that hierarchy
is effective for solving long-range reallocation problems that can sud-
denly spike in volatile environments. But, why is hierarchy ubiquitous in
stable settings? Behavioral psychology suggests that humans often (a)
place asymmetric weight on losses (as against gains) and (b) confuse
probabilities with expected values (overrating risks). One conjecture that
might explain the ubiquity of pyramids is that we overrate the loss from
unanticipated shocks, and then overrate their probability, thus main-
taining a huge overcapacity (hierarchy) to cope (top-down) with rare
environmental spikes. In any event, one extension would be to rigorously
characterize the circumstances (environment, objective function) under
which permanent hierarchy does emerge as optimal. This would be a
type of inverse problem.

mechanism design

Having determined (by brute computational force), the optimal propen-
sities to hoard and transfer labor, the economists issue becomes, What
mechanism would induce the optimal behavior? What incentive structure
would induce rational actors to perform optimally? This brings in a
huge literature on mechanism design, markets, and games. Modeling
approaches doubtless abound. One thought is to explore a variation
on classical wage determination. Rather than pay agents their marginal
revenue product (MRP), suppose they were paid some convex combina-
tion of all the MRPs in their management layer. Rational agents would
then have a vested interest in the productivity (intercepts) of others,
mitigating the inefficiency of hoarding.

imperfect decision-making

One reason hierarchy allocates effectively in this model is that CEOs
are assumed (like everyone else) to follow the labor allocation rule L
to perfection, putting unoccupied labor precisely where it is needed. If
one were to assume stubborn hidebound CEOs, “sticking to their guns”
despite misallocation, hierarchy might fare poorly indeed. Adding noise
to the information available at each layer—possibly having it increase
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Firm j Firm j+1

Figure 13.8. Two competing firms. Opportunities missed by firm j (yellow dots)
are opportunities (red dots) to firm j + 1.

with each layer16—might also enrich the tale substantially. It might
also prove to be necessary if there were an empirical exercise. Another
obvious extension would be to allow CEOs to add labor.

multiple firms

In the formulation above, firms face an environment, but they do not
face other firms. Most firms would probably regard other firms as part of
their environment. I introduce multiple firms as follows. Simply imagine
firms in a “ring.” Opportunities not intercepted by firm j pass through
and become opportunities for firm j + 1, as illustrated for two firms in
figure 13.8. The order in which firms play could be randomized each
cycle. New opportunities can be fed in continuously or not.

An illustrative two-firm dynamic case where there are no new opportu-
nities (after 50 cycles) is recorded in run 10 (movie 12). The competitors
exhibit different adaptive histories. The right firm remains flat through-
out, while the left firm erects the maximum hierarchy (frame 3) and
later dissolves it (frame 5), by which point the two firms have essentially
divided the market.17

16I thank Ross Hammond for this thought.
17Only one horizontal (the fourth from the top) contains blue squares from each firm.
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Frame 2

Frame 1

Frame 3

Run 10. Two firms. (continued on next page)

A different experiment would be to “peg” one firm to some strategy,
and sweep the parameter space for strategies that will defeat it. Friedman
(1953) famously argued that the assumption of profit-maximization was
warranted on the evolutionary grounds that firms deviating from it
would ultimately be selected out. To explore this, one could lock one firm
onto profit maximization (our k= 0 case) and see whether its competitor
(the parameter sweep) could “discover” the strategy of operating at a
loss in order to monopolize market share in the short term, driving the
first firm out of business, and then “relaxing” into a more profitable
strategy having killed off the competition. Of course, it would be natural
to coevolve strategies in the general case.
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Frame 5

Frame 4

Final frame of movie – steady state

Run 10. (continued)

empirical calibration

As noted at the outset, I have made no particular pretense to descriptive
realism, and do not purport to have modeled any existing organization
(much less a system of competitors), or to “fit” the model to data of any
sort. Rather, the aim, using a highly idealized model, has been to illumi-
nate what sorts of individual (micro) agent rules confer adaptiveness on
the larger (macro) enterprise. It was an attempt to characterize optimal
adaptability in dynamic environments in an idealized fashion. Now, if
the variable-geometry firm previously described doesn’t look like any
existing firm, that could mean simply that existing firms are not adapting
optimally, or that the environments they face or objective functions they
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use are different from the ones I posited. In any event, one obvious
direction for future research would be to attempt an empirical calibration
of the model to some data on observed organizational adaptation in
observed dynamic environments.

Summary

We developed an agent-based model in which hierarchies and internal
trading regimes emerge endogenously. And we generated a variety of
structural adaptations in a range of contrived dynamic environments. We
introduced a rather general objective function for the enterprise and for
a variety of special cases (profit maximizing, market-share maximizing,
and hybrid), we determined the optimal genome for a particular dynamic
test environment. Applying that genome, we then generated, and depicted
graphically, the optimal history of structural adaptation to the test envi-
ronment. This winning history was, to me, quite unexpected, involving
oscillating “flat” trading regimes and hierarchies of intermediate height
in perpetual motion up and down the spatial market as a traveling wave:
a variable geometry firm. A number of extensions and directions for
future research were discussed.

Appendix: Numerical Assumptions and Parameter Definitions

Table 13.A.1
Numerical Assumptions

Run T1 T2 T3 T4 T5 Up Down Supply Demand Formation

1 0.7 1.4 2.0 4.0 10 20 1000 0 0 2 (south)
2 0.7 1.4 2.0 4.0 10 20 10 0 0 2
3 0.7 1.4 2.0 4.0 10 20 1000 0 0 3 (split)
4 0.7 MAX MAX MAX MAX 20 10 1 1 3
5 0.7 MAX MAX MAX MAX 20 10 1 1 1 (sawtooth)
6 0.7 MAX MAX MAX MAX 20 10 1 1 1
7 0.7 1.4 2.0 4.0 5.0 20 100 0 0 1
8 0.5 1.0 3.0 4.0 5.0 8.0 0 1 1 1
9 0.0 1.0 1.5 4.0 0.0 8.0 8 0.5 0.5 1

10 0.5 1.0 1.5 2.0 4.0 0.0 4 1 1 1
11 0.0 1.0 3.0 4.0 2.0 0.0 8 1 1 1
12 0.7 1.4 2.0 4.0 10 10 10 1 1 1

Note: The time horizon T = 500 in all runs. T1–T5 refer to Thresholds 1–5. Up/Down
refer to up and down Inertias (vertical). Supply/Demand refer to probability of supplying/
demanding labor = 1 − inertia (horizontal). Formation is attack formation. MAX is some
large number (i.e. 20) chosen to preclude triggering.
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Table 13.A.2
Parameter Definitions

Parameter Value Explanation

Attack formation 1, 2, or 3a Determines the environment
(the approach the attackers take)

Cost per penetration 100 Cost to profit function of a
penetration

Value per Intercept 200 Revenue per intercept
Cost per trade 5 Cost to profit function of

trading labor
Memory 10 The number of periods over

which average penetration
and intercepts is calculated

k varies k-constant in profit function
1–demand inertia varies Probability a manager will ask

others of its rank for labor
1–supply inertia varies Probability a manager will

giver others of its rank labor
Prob create attacker 0.7 Probability an attacker is created
Management salary 10 Multiplier used to determine salary

multiplier, c
Salary for hollow c·rank Salary controlling no labor

manager
Salary for solid c·(rank + 1)3 Salary controlling labor

manager
Salary for labor 1 Wage to labor
Threshold rank 1 varies Threshold of managers of rank 1
Threshold rank 2 varies Threshold of managers of rank 2
Threshold rank 3 varies Threshold of managers of rank 3
Threshold rank 4 varies Threshold of managers of rank 4
Threshold rank 5 varies Threshold of managers of rank 5
Downward inertia varies Number of periods a manager’s

P must be <Tmin

Upward inertia varies Number of periods a manager’s
P must be ≥Tmax

Time horizon, T 500 The number of iterations in the
optimizations

Further elements of the Ascape source code not referred to in the text that
may be of interest to programmers.

(continued)
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Table 13.2 (continued)

Parameter Value Explanation

Max Active Rank 1 Highest ranking manager who is
active

Attack Formation 0 Probability of switching directions
Switch Probability of certain attacks

Attacker Speed 1 Number of spaces attackers move
per iteration

Nearness Line of Sight TRUE Reserved
Prob Create Front 15 Probability a front-line defender

Line Defender is created at initialization
Radius 1 Reserved
Random Edge Ratio 0 Reserved
Size (5, 2, 31, 3) Reserved
aFormation 1 is the sawtooth, 2 is opportunity flux only in the south, and 3 is the split
attack.
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No one who is still growing intellectually ever feels that he has said all
he can in a book. I suppose, therefore, that I should take consolation in
the sense of incompleteness I feel in arbitrarily closing the discussion at
this point; it is a sign of life.

In a nutshell, I have tried to advance an argument for generative social
science and to demonstrate its principal scientific instrument—the agent-
based model—in a wide range of applications. If that argument is not
now persuasive (and for some it will not be), its repetition at this juncture
will not make it so.

What might make it so is further, and better, work. While many
of the chapters suggest model extensions and specific areas for further
research, I feel that (at least) four overarching areas are undeveloped in
this book (and to varying degrees, in the literature as a whole). They are:
formalization, networks, psychology, and scaling.

Formalization

As I argued strenuously in the first two chapters, every realization of an
agent-based model is a strict deduction, a theorem. As an epistemological
matter, it is important to insist that the activity is therefore deductive
in nature. At the same time, I observed that we typically quantify over
relatively small sets, and thus, these computational theorems are seldom
very general. Call me old-fashioned, but I would like to see more work
developing an explicit formalism in which to represent agent models.
This is not to deny the practical adequacy of statistical approaches or the
Russellian beauty of agent models, both of which are very real. But there
is unexplored territory, particularly in the area of recursive functions and
related fields. This is terra incognita to most social scientists, and it is
mathematically craggy terrain. But there may just “be gold in them thar
hills,” particularly in establishing further results on Incompleteness and
Computational Complexity in social science.

Endogenous Networks: The Mind of Society1

Another underdeveloped area in this book is social networks—how they
happen and why they matter. Above, explicit networks are really used

1The notion of social networks and markets as distributed computational devices is
discussed in the opening Generative chapter.
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only in the Retirement model, and implicitly in the Smallpox model. How
does social network structure affect contagion dynamics—of diseases, of
violence, of norms, of technologies, of prices? Much analytical work on
such topics treats peer effects in fixed exogenous networks. Some kid
contracts a bad habit (smoking, to pick a topic we are working on at our
Center2) from peers in his network. But, the kid may in fact take up the
bad habit in order to gain entry into the network. He gains utility from
membership. The network is itself endogenous and dynamic, its structure
an “emergent property,” if I may be so bold. Agent-based models are well
suited to explore this important phenomenon.

Individual Psychology: The Society of Mind3

Of course, to psychologists and novelists, the ultimate “emergent phe-
nomenon” is the individual, the agent itself. Another underdeveloped
area in this book (if not in the literature as a whole) is individual
psychology and learning. As just noted, this is not unrelated to network
formation, as individuals may derive utility from network membership,
and as the burgeoning literature on happiness shows, may derive
disutility from it as well (through invidious comparison to particular
reference groups).4 More generally, the agents in this book are, by
design, extremely simple, indeed psychologically impoverished. That is
defensible on a variety of methodological grounds, which have been
discussed. That said, individuals of any depth and interest are themselves
societies—resultants of competing drives, some social, some innate. Want
a challenge? Grow Raskolnikov. That would be something.

Synthesis

Taking the last two points together, one can imagine agent models with
psychologically richer agents coevolving in and generating endogenous
social networks. I suspect that such models, while perhaps challenging to
analyze, might be worth the effort.

Moore’s Law Is Double-Edged

Another question, understudied in this book, is how agent models scale
up. With the exception of the Anasazi and perhaps Smallpox models,

2The Brookings-Johns Hopkins Center on Social and Economic Dynamics.
3Marvin Minsky’s colorful phase. See The Society of Mind (New York: Simon and

Schuster, 1985).
4See Carol Graham and Stefano Pettinato, Happiness and Hardship: Opportunity and

Insecurity in New Market Economies (Washington, DC: Brookings Institution Press, 2002).
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these are all “Toy” models. I’m not sure it’s very interesting, but I know
it’s very important to understand how model behavior changes when
scale (e.g., the sheer number of agents) is dramatically increased. The
spectacular growth in computing power will facilitate this. It will also
provide strong temptation, when designing models, to put a lot in. But
that’s not the trick. The trick is to get a lot out, while putting in as little
as possible.

Hence, Einstein affirms “the grand aim of all science, which is to
cover the greatest number of empirical facts by logical deduction from
the smallest possible number of hypotheses or axioms.”5 As Einstein
also knew, prevailing approaches are not abandoned simply because
anomalies and criticisms mount. Scientists need a viable alternative.
Hopefully, this book helps to provide one.

5Albert Einstein, Ideas and Opinions (New York: Bonanza Books, 1954), 274. I thank
Samuel David Epstein for bringing this passage to my attention.
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