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Abstract - Three simple general purpose networks are tested for 
pattern classijcation on an optical character recognition prob- 
lem. The feed-forward (multi-layer perceprron) network, the 
liopjield network and a comperirive learning network are com- 
pared. The input patterns are obtained by optically scanning 
images of printed digits and uppercase letters. The resulring data 
is used as input for rhe networks with two-state input nodes; for 
others, features are extracted by template matching and pixel 
counting. The classifrcarion capabilities of the networks are com- 
pared with a nearest neighbour algorithm applied to the same 
feature vectors. The feed-forward network reaches the same 
recognition rates as the nearest neighbour algorithm, even when 
only a small percentage of the possible connections is used. The 
Hopfield network performs less well, and overloading of the net- 
work remains a problem. Recognition rates with the competitive 
learning network, if input patterns are clustered well, are again 
as high as the nearest neighbour algorithm. 

1. Introduction 
Since the rebirth of neural networks, pattern classification has 
proved itself a secured application (e.g. [l, 2,3]; see also [4]). 
Such networks are often dedicated and incorporate some existing 
clustering or classification algorithm; in some cases, they form 
part of hybrid systems. Advantages of neural networks are adap- 
tability, robustness, and ease of implementation (especially on 
parallel processing equipment). 

In this paper three general purpose networks are investigated 
and compared on their classification capabilities. These networks 
are: 

l the feed-forward network which incorporates a hyperplane 
separating technique. The coel’ficients describing the hyper- 
planes can be found using the perceptron convergence pro- 
cedure [5] or a similar technique for linear devices, or the 
back propagation rule [6,7,8] for higher order devices; 

l the Hopfieid network [9] which incorporates an associative 
memory. Setting up the associations establishes an area of 
influence around each stored pattern, such that iteration from 
a test pattern which lies in this area of influence will result in 
the prototype pattern being returned; 

l competitive learning which implements the idea of unsuper- 
vised pattern classification. A competitive learning network 
is used to find clusters in the input data No external teacher 
is involved. 
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2. The optical character recognition problem 
Pattern recognition systems consist of the following three sub- 
problems [lo]: 

2.1 Image measurement 
Images ate obtained by optically scanning a page with discon- 
nected printed characters. The characters. in point size 10 Times 
Roman font, are scanned with a resolution of 300 x 300 dots per 
inch and subsequently reduced by a factor four (2 times 2), 
resulting in an approximate size of 14X I4 pixels per uppercase 
letter or 15 x 10 per digit (see figure 1). 

Figure 1. Ten of the scanned digits &r the reduction phaw. 

2.2 Feature extraction 
To filter out irrelevant data, feature extraction is performed using 
a set of novel features. Template matching is applied in the fol- 
lowing form. Every image, fitted in a box in which the pixels on 
the edge are all “off,” is divided in four equally sized quadrants. 
In each quadrant, twelve 2 x 2 masks are fitted on every possible 
position, and for each mask the number of perfect matches is 
counted. The area of the figure is also measured in each qua- 
drant’. The resulting 13 features form 52 features for the entire 
image, 

The templates used, shown in figure 2, are prototypes for 
horizontal, vertical, and diagonal line sections. 

01 10 00 11 00 10 11 01 00 01 10 11 
01 10 11 00 01 00 10 11 10 00 11 01 
1 2 3 4 5 6 7 8 9 10 II 12 

Figure 2. The templates usedforfeahwe extraction. 

The templates or structuring elements can be interpreted as fol- 
lows: the first two templates match vertical lines (‘I’), the second 
pair horizontal lines (‘-‘). the next quadruple matches diagonal 
lines with positive gradient (‘/), and the last four match diagonal 
lines with negative gradient (Z’). This feature set, based on 
mathematical morphology principles [ 111, enables successful 
character recognition using a variety of classifiers. Although 

‘To prevent the. areas of the image having too large an ini7uen.x. cm tbc 
classification step, their values are halved. 
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these features do not allow scaling or rotation invariance, the sys- 
tem incorporates translation invariance. 

2.3 Classl#mtion 
For identification and classification of the feature vectors, 
optimum decision procedures must be determined. Each vector 
determined in step 2.2 must be assigned to a class or rejected. 
When complete knowledge about the patterns is available, deci- 
sion functions can be constructed on basis of this information. 
Generally, however, only partial or no knowledge is available. 
For this case adaptive systems are needed. This paper describes 
the use of general purpose neural networks for adaptive pattern 
classification. 

3. Description of the algorithms 

3.1 Nearest Neighbour 
The performances of the various neural network algorithms that 
are used are compared to the performance of the K-nearest- 
neighbour (K-NM rule [IO] under the same conditions. Since the 
prototype classes are usually small, typically containing several 
tens of characters, K is set to 1, such that each test pattern is 
assigned to the class of the nearest training element. 

3.2 Feed-forward network 
The general topology of what we call a K-layer’ feed-forward 
network is depicted in figure 3. 

output layer 
M units 

layer K-l 

layer 1 

input layer 
N “units” 

Figwe 3. The general topology of a K-layer feed-forward network. There are N in- 
put unite and M output unite. Note that the input layer ie not counted. 

The weights and biases of each unit j in layer 1 describe a hyper- 
plane in N-dimensional space. This hyperplane divides the input 
patterns in two classes, indicated by the activation value cj* It is 
calculated as 

N-l 

Uj = f( x WjiXi + biUSj) 

i=o 

where Xi is the activation value of input i, wji the weight from 
input unit i to unit j, and bicsj is a constant that is ad&d to the 
total input of j. Finally, fis the activation function, bounding the 
activation value to the range [0, 11. 

In a feed-forward network, a unit in layer 2 represents a con- 
vex region in hyperspace, enclosed by the hyperplanes 

*Siuce the nettram in the input layer da not compute their values but are sim- 
ply clamp&, the input layer is not counted. E.g., a network without hidden 
units is called a I-layer network. 

determined by the units of layer 1. When three layers are used, 
any arbitrary shape in N-dimensional space can be enclosed. 

The weights and biases of the units are determined as fol- 
lows. At the input nodes, a pattern is clamped The activities of 
the units in successive layers are computed, ending with the out- 
put units. Next, the output activities are compared with the 
desired outputs d = (d, , - * * ,dM). The difference dj-aj is used 
to compute the amount by which the weights must be changed: 

Aw, = Y6jUi 

where ai is the activity of node i in the layer directly below the 
output layer, y is a constant called the gain term, and 

Next, 6 is calculated for the hidden units directly below the out- 
put units by combining the 6’s from the output units: 

Sj = f;.‘(Xj+biUSj) x8 W k k Y 

and equation (1) is applied to these units as well. This process is 
repeated up to the input units. This learning rule is called the 
generalized delta-rule or back propagation rule. Biases, which 
can be implemented as a weight from a dummy unit that is 
always on, can be learned using the same rule. The above formu- 
las result from interpreting the difference (or error) between the 
current output and desired output as a function of weights and 
biases, and performing minimization of this function [ 121. 

Most feed-forward experiments described in this paper con- 
cern one- or two-layer feed-forward networks. Learning parame- 
ters y = 0.2 and v = 0.9 are used; NETtalk [ 131 was trained using 
the same parameters. The above-mentioned learning rule is 
enhanced by using a momentum term as proposed in [ 141: 

AWji(t+l) = Y 8jUi + VAWji(t) 

which speeds up the gradient descent search considerably. The 
activation function used is a sigmoid function: 

f(x) = 1 l+e-u.?+w 
with first derivative 

For most experiments, h = 1 is chosen. Furthermore, sparsely 
connected networks are investigated, both networks in which a 
random part of the connections is kept and those which are con- 
nected to fit the problem posed. Also, network immunity against 
hardware deterioration is tested. 

3.3 HopBeld nehvork 
The Hopfield network consists of a set of fully connected two- 
state neurons (figure 4) [9]. 

Figure 4. The general topology of a Hop&Id network. 

Since the neurons in the basic Hopfield network have binary 
values (viz. +l and -1, which ma% be interpreted as the neuron 
being “on” or “off,” respectively ), an alternative feature set is 

‘In his original paper, Hopfield used the values 1 and 0, but using +l and -1 
for activation values presenta some advantages [15]. 
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used for training and testing, consisting of the concatenation of 
the raster-scan bits from the window of the binary representations 
of the characters. In particular, 15 x 10 bit binary images of 
digits (figure 1) and 14x 14 bit images of uppercase letters are 
used. 

In the ‘basic model, all neurons are connected to each other. 
The connection weights between neuron i and j are arranged in a 
~IMI%X W = (Wij>. Each neuron randomly and asynchronously 
updates its activation value ai according to the rule 

ai(t+l) = S&P [&ijajCf)] 

i 

In other words, if the total input of a neuron is positive, the neu- 
ron should come on or stay on; if it is negative, the neuron should 
go off or remain off. The formula assumes a threshold of the 
neurons at 0, but any other value may be chosen. 

Using this update rule, the network will always evolve to a 
stable state, i.e. reach a state in which for all units equation (2) 
holds true. This can be proved by showing that under the update 
rule, the computational energy 

E = - f x:C, wijaiaj 
itj 

(3) 

is monotonically decreasing and bounded from below. A pattern 
is called stable if the network, when the pattern is clamped, is in 
a stable state. 

The memory vectors can be stored with the Hebb rule [16]: 

M-l 

x xfxf if i#j 
P-0 

Wij = ’ 
0 if i=j 

where M is the number of patterns to be stored, and Xi the i” ele- 
ment of pattern x. This rule thus adds one to the weight of a con- 
nection if two COMead neurons have the same activation value, 
otherwise subtracts one. 

It is observed that frequently, when multiple vectors are 
stored, many of these vectors fail to be fixed points. To improve 
upon the stability of the patterns, the rule proposed by Bruce et 
al. [ 171 is applied. 

Another problem is that, besides the stored states, many 
spurious patterns are stable. Unlearning [ 181 is used to reduce 
the influence of spurious stable states by repeatedly applying the 
Hebb rule in reverse to stable states reached from random initial 
states, but with a very low (un-> learning factor. 

3.4 Competitive learning 
Competitive learning is an unsupervised neural network algo- 
rithm that can be used to find clusters in input patterns. The gen- 
eral model, as presented in 1191, consists of an N-unit input layer 
and an M-unit output layer, with M equal to the number of 
required output classes. All input units are connected to all out- 
put units, with associated weights initialized to random values. 
Weights and input vectors must be kept normalized. 

In the learning stage, when a pattern is clamped, all output 
units determine their net inputs by calculating the dot or inner 
products of the input vector and their weight vectors. The output 
unit with the highest net input “wins” the competition, meaning 
that its weight vector is the most similar to the input vector. This 
weight vector is then rotated in the direction of the input vector, 

by adding a fraction y of the difference between input vector and 
weight vector to it [20]: 

Wj(t+l) = 
Wj(tHY [J(t) - Wjtr>l 

IlWj(t)r, [X(t) - Wj(t)]ll 
(4) 

in which y is called the learning rate. To prevent that some out- 
put units never win the competition, the weight vectors of the los- 
ing units are also adapted using equation (4). but now with a 
leaky learning rate K instead of 1: where Key 

Kohonen [21], who presents an unsupervised learning net- 
work as an explanation of the existence of ordered maps in the 
brain, orders the output units such that not only the weight vec- 
tors to a winning unit am affected, but those to its neighbours as 
well (figure 5). 

Figure 5. A typbal Kohoncn network, Here, the output knits are ordered in a two- 
dimensional nrmy. The neighbows of (I winning wit are adap&d with a learning 
factor inversety r&&d to their distances to the winning unit. 

4. Results 
All recognition rates reported apply to recognition of sets dif- 
ferent from the training sets. Since small test sets are used, typi- 
cally containing only several tens of characters, the percentages 
reported must be regarded as being indicative only. 

4.1 Nearest neighbour 
Earlier work 1221 shows that recognition rates using a nearest 
neighbour classifier are 98% for the uppercase letters and 100% 
for the digits. As a comparison, when using a feature vector 
composed from the concatenation of the raster-scan bits from the 
window of the binary image (such as used for the Hopfield net- 
work experiments), rates of 85% and 90% are achieved, respec- 
tively. Further confidence in the proposed feature set is 
expressed by the mean relative distance to tbe nearest bad choice, 
I.e., 

errorratio = 
distance to nearest pattern class 

distance to second nearest pattern class 

provided the nearest pattern class is the correct one. This error 
ratio is 0.56 for uppercase letters and 0.47 for digits, whereas it is 
0.87 and 0.77 for the binary feature vector. 

4.2 Feed-forward 
When a feed-forward network is used for classifying patterns that 
differ from the test set, recognition rates can be as high as those 
obtained with nearest neighbour4. There are, however, some 
parameters that have to be considered. 

4.2.1 Number of output units 

When M pattern classes have to be distinguished, the two most 
obvious choices for output patterns are M-bit binary patterns or 

%erc we consider M input pattern rejected when the diff- between ttx 
highest and second highest output activation values does not exceed 0.2. 
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[log ~1 -bit binary encoded patterns. Training a network with 
the latter proceeds faster because one training cycle takes less 
time, and less cycles are needed due to the smaller number of 
constraints that have to be satisfied. For the same reason, how- 
ever, recognition of a different test set is considerably less good, 
generally not exceeding 70%. Therefore the experiments 
reported all have one output neuron assigned to one pattern class. 

4.2.2 Number of hidden units 

When the input patterns are linearly separable no hidden units are 
needed. Relative to the number of input patterns, the dimen- 
sionality is very high and it is very unlikely that the patterns are 
not linearly separable. Thus a l-layer feed-forward network gen- 
erally achieves the same recognition rates as nearest neighbour 
classifier. However, introducing hidden units presents the advan- 
tage of reduced susceptibility to deteriorating hardware. This is 
shown in section 4.2.4. 

When a hidden layer is present, recognition rates depend on 
the number of hidden units present. As a rule of thumb, the 
greater the number of units, the better the recognition. This is 
due to the better distribution of “knowledge.” Using too many 
hidden units, however, may increase the complexity of the error 
surface such that the training patterns cannot be separated - the 
s stem 
ry f 

ets stuck in local minima; also, there is lower 
P und of 

log M hidden units when separating M pattern classes . 

4.2.3 Training sparsely connected networks 

Since such a vast number of connections exist, it is highly prob- 
able that not all connections are equally essential. Simulations 
show that recognition is not seriously affected when connections 
are cut before training. 

When using no hidden units, a missing connection means 
missing information for some output unit. Due to the great 
number of inputs many connections still can be cut, but a network 
with hidden units is less sensitive, especially when the hidden and 
output layers are kept fully connected. Figure 6 depicts the 
decrease in recognition rates when connections are randomly cut 
for this latter case. When the connections between more than 
two successive layers are cut, a minimum of around 70% of the 
connections must be kept. Besides random cutting, it is also pos- 
sible to assign specific hidden units to specific portions of the 
input. For example, a network with eight hidden units, which are 
pairwise fully connected to each of the four quadrants, performs 
just as well as a fully connected eight-hidden unit network: 98% 
recognition of the digits. Using one hidden unit per quadrant 
does not suffice; also, using five hidden units with one assigned to 
each input pattern “feature” (one for each direction and one for 
the area) gives no spectacular results. 

4.2.4 Network immunity against degrading hardware 

Neural networks are often presumed to have a certain immunity 
against “hardware faults.” Starting from a fully connected net- 
work, connections or units are destroyed after the teaching phase 
has been successfully completed. 

As in the previous section, a network with hidden units gives 
better results when the hidden and output layers are constrained 
to be fully connected. Figure 7 shows the results. As before, the 
more hidden units are used (i.e. the more connections are 
present), the greater the immunity of tbe network. A network 
without hidden units performs less well than a network in which 

%or all practical purposes. Although activation values can have any value 
in the. range (0, I], the form of the sigmoid function dictates that they be ei- 
thcso.oor 1.0. 

% 
rmgnition 

Figure 6. Recognition rate drop reiated lo connectivity. The solid cwve is for a 
network with ten hidden tits. the dmhed for II mhvork with seven hid&n units. 
Note that the hidden and output layers are kept 10046 connected. Since there ore 
much fewer output units than input units, there are much fewer connections behveen 
layer on?? and two tha?l between the input layer and layer one. 

% 
recognition 40 

1 
\ 20 

01 
la, s-3 80 lo 60 So 

% -ecud 

Figure 7. Recognition rota @er damaging weights for a nehvork with siz hidden 
wits. The dashed curve &pica the cave in which onIy connections between input 
md hi&en tits we cut; for rhe solid cwve. all connections wem cuttable. Note 
thol lhe hori.?ontal SC& ir a 50-100 mu? and not o-m? 

the hidden and output layers remain connected, and graceful 
degradation is not attained. 

The number of hidden units that are allowed to fail depends 
on the number of hidden units used. The optimality of a solution 
found by the network can be illustrated by running the network 
on binary valued input patterns. When only rlog ~1 hidden 
units, which tend to have activation values of 0.0 or 1.0 with 
binary input patterns, are used, all units are necessary to distin- 
$ish y,n M Fput qatters. Now ,suppose. there are 

log M +6 hidden umts aviulable. These hidden umts are used 
optimally when the Hamming distances between their activation 
values for patterns pi and pi for each i, j such that i+j are equal to 
each other and have a maximal value 26+ 1. in that case, 6 hid- 
den units, no matter which, may fail. 

We observe that the networks often operate near this optimal 
case. As an example, we trained a network with ten hidden units 
on the binary images of the ten digits. The network found hidden 
unit activations with a Hamming distance 3 between every pair of 
hidden unit activations, which is not optimal but allows an arbi- 
trary hidden unit to be removed6. 

%te Hamming distance between two bii words is &fined as the numba 
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4.2.5 Interpretation of the weights 

Networks without hidden units 

In a sense, the weights (and biases) found by the network reflect 
tbe input patterns. when no hidden units are used, each of the M 
outputs learns to react to the patterns that belong to the class 
associated with that output. That this is so can be seen by look- 
ing at the Hinton diagrams’ for the weights. As an example, 
figure 8 depicts Hinton diagrams for a one-layer feed-forward 
network trained on binary patters similar to those of figure 1. 

. ;. 
II ’ 
In ! 
. . 
II 
l - 
ID 
mm 
I. 
.I 

. 
I 

. . 
1. 

Figure 8. Hinton diagrams for a one-layer feed-fonwrd network. 

As can be seen from these Hinton diagrams, the network reacts 
on the dtyerences between input patterns. 

Networks with hidden units 

By examining the Hinton diagrams for feed-forward networks 
trained on the 52 feature sets, it can be easily seen that the simi- 
larities between the structuring elements are recognized by the 

of bits in which they differ (231. Provided the Hamming distance between 
every pair of ccdewords is at least 2d+l, up to d errws in a codeword cm be 
axnrezted. Inowcase,aHitmmin g distpllce of 3 allows one hidden unit to 
flip its activation value without problems oeauting. An optimal separation 
distance which CM be found for et least ten codewords in ten bits is 5: 

11111ooooo 1001001100 
11m11010 0100100110 
011cloo1101 1010000011 
0011010I 10 010101om1 

ooo1101011 0010111ooo 
loo01 10101 1111111111 

We kindly thank clr. Evert Watt& Department of Mathematics and Comput- 
er Scimce, Vrije Universiteit, Amsterdam for hnding this code. 
‘Hin~ort diagrams @se set up as follows. Each large shadowed rectartgle 
represents the weights to a specific hidden or output unit; each small square 
in this rectangle is B weight from B tit in the previous layer to this unit. A 
white square denotes a positive. weight, a black squan a negative one. The 

size of the 4tme indicates the size of the weight. The bias is depicted in B 
small shadowed rectmgle above the large one.. 

network. For example, the weights that react on matchings of 
templates 1 and 2 in figure 2 are usually nearly equal; both tem- 
plate 1 and 2 are vertical line detectors. Consequently, to show 
the Hinton diagrams for the networks trained on the 52 feature 
set, weights which code for the same feature are added together. 
The resulting diagrams are ordered as shown in figure 9. 

Figure 9. Meaning of the weights in Hinton diagrams for 52 feature set input net- 
works. Every TOW representr a quadrant in the image. ad every element in this 
row tk inrerpremtion of tk iqntr stimniu ‘A’ standt for arm. ‘LL’ for the lower 
left quadrant, and so on. 

Figure 10 shows Hinton diagrams for a two-layer network with 
ten hidden units, trained on the uppercase letter patterns. 

. 

Figure 10. Hinton diclgramr for a feed-forward network with one her of ten hid- 
&n units, trained on zqqwrcpce letter pattern% Tk weights shown are those from 
tk input to tk hidden units. 

It is worthwhile examining some specific diagrams. For exam- 
ple, hidden unit 1 has a large negative weight for ‘\’ in the lower 
right quadrant. It has a positive bias, so its quiescent state is 
“on” and goes “off” when an A, B, K, Q, R, S, W, or X is 
clamped. Hidden unit 2 acts as a vertical line detector in all qua- 
drants (since small templates ate used, templates 1 and 2 react to 
60” lines and templates 3 and 4 on 30” lines as well). Hidden 
unit 9 mainly reacts on area difference between the upper and 
lower half of the character. It goes “off” for a C. F, P, T, V, W. 
X, and Y, most of which have a darker upper half. 

The higher order structure which is thus found by the hidden 
units can be used for further analysis of the input data. 

4.3 Hop&&f networks 
When patterns are stored in the Hopfield network, it is imperative 
that all these patterns be stable to recall them. Tests have shown 
that using the Hebb rule for storing random patterns, about 15% 
of the storage capacity of the network can be used before recall 
error is severe 191. Keeping in mind that the complement of a 
stable state is also stable, only half of this 15% can be used effec- 
tively. 

The binary patterns, described above, on which the Hopfield 
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network is tested hem, are much more correlated than random 
patterns. They are not evenly distributed in the input space. In 
fact, instead of 15% only 10% of the storage capacity of the net- 
work can he used. To solve this problem, the algorithmic 
enhancements described below are used [ 171: 

Algorithm 1: 
(1) Given a starting weight matrix Wijv define a correction Ei 

for each pattern to be stored such that 

0 if ai is stable 

Ei = 
1 if ai is not stable. 

(2) NOW modify Wij by Awij = aiaj(Ei+Ej) if i#j. 

(3) Repeat this whole procedure until the patterns are stable. 
It is claimed that the algorithm will find a solution in finitely 
many steps, provided it exists. 

4.3.1 Accessibility of the stored patterns 
When all the patterns are stored and stable, it is desirable to let 
those patterns (and their inverses) to be the only stable states of 
the system. Every stored pattern can be seen as a “dip” in 
energy space (equation (3)). and is surrounded by a basin of 
influence. In an ideal Hopfield network, all stored states have the 
same energy, and their basins of influence fill up the whole 
energy space. The accessibiliry 1181 of the stored patterns 
expresses the fraction of times a nominally assigned stable state 
is reached from a random state. 

Simulations show that when the Hebb rule plus the stabiliza- 
tion procedure for storing ten digits is used, an accessibility of 
around 60% is reached; for the uppercase letters, this is 50%. To 
improve upon the accessibility of the patterns, unlearning is 
applied. Thus the very low energy minima are ‘*lifted,” result- 
ing in a more even distribution [24]. Also, the distribution among 
the states that are reached is better. 

When unlearning is applied too often, assigned stable states 
are destroyed and the performance of the network deteriorates. 
In this particular case, best results are obtained by unlearning 
some 100 times with a 0.05 factor. 

4.3.2 Adapted learning rule 
In the configuration of the network described so far, all neurons 
are essentially indistinguishable from each other in that the spa- 
tial information present in the input patterns is not used. How- 
ever, that information can be incorporated in the learning rule. 
The proposed learning rule sets the weights proportional to the 
distance 6(i, j) between neurons i and j: 

M-l 

S(i,j) x xfxy if i#j 
P=o 

Wij = ’ (5) 

0 if i=j 

c 

For reasons of simplicity, the Manhattan distance function 
S(i, j) = I i-j I is used. 

Since the input patterns used here consist of large clusters of 
“on” or “off’ pixels, the proposed rule increases the influence 
of such clusters on the stability of all patterns. When such clus- 
ters are shared by all or most of the patterns, the synaptic 

strengths from and to these clusters are vety Iarge, increasing the 
stability of all stored patterns. In this case, the network in which 
the digit patterns are stored with rule (5) reaches an accessibility 
of 90% instead of 60%, and recognition rates rise accordingly. 
However, overloading the network has the opposite effect, and 
the original Hebb rule is preferred. 

4.3.3 Recognition rates 
In the original configuration, recognition rates are 40% for the 
uppercase letters and 75% for the digits. Unlearning improves 
this to 80% and 90%, respectively, which is not as good as 
nearest neighbour classification on the same input vectors. When 
the adapted Hebb rule is used, 55% of the uppercase letters and 
95% of the digits is correctly classified. 

4.4 Competilive learning 
To monitor the progress in teaching competitive learning net- 
work, au expression for the error must be found. Most straight- 
forward is the sum squared error [ 121 

Error = (w - x)’ 

The competitive learning algorithm is employed as follows. 
Initially, both the learning rate y and leaky learning rate K are set 

to 0.5. This has the effect of rotating the weight vectors in the 
direction of the pattern vectors (see figure 11). 

Figure II. Two-dimensional representation of input pat&m vectors (solid lines) 
md weight vectors (dotted lines). AN weights and inputs are positive. As mimicked 
in the figure. the input pattem all lie comparatively close to each other, where@ 
the weight vectors ore evenly distributed. When only the winning unit would learn 
with this type of input. ON the other units would remain inactive and never change. 
Leaky learning is needed. 

When no further progress is made, y is increased by a small 
amount while K is decreased by the same amount. This pro- 
cedure is repeated until ~1.0 and tc=O.O. Figure 12 depicts how 
clustering proceeds. It must be stressed that the input data con- 
sists of clusters of only a few patterns. When larger clusters have 
to be formed, a finer tuning of the learning parameters is neces- 
W* 

Perfect separation is always obtained with one set of digits or 
uppercase letters. However, the Kohonen neighbourhood train- 
ing method sometimes maps two different input patterns on one 
output unit. Since the network is, in fact, a clustering device, 
multiple sets of input patterns can be taught. Often clustering 
works well, especially with the digit input patterns. 

Since the patterns are literally stored in the weights, recogni- 
tion rates are precisely those obtained with nearest neighbour 
classification, provided that the input patterns are perfectly 
separated. 

4.4.1 Reduced connectivity 
Training a competitive learning network with fewer connections 
gives results similar to those obtained with the feed-forward 
experiments. However, there is a greater susceptibility to failing 
connections. Figure 13 depicts recognition rates. 
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Figure 12. Reduction of lhe stun squared error when training a competitive learn- 
ing net with 26 characters (upper tine), 10 digits (middte line) and 10 digits with 
neighbourhood training (tower line). In the former two experiments. when the 
curve remains frcu y and K are adapted resulting in Q sudden drop in the error curve 
as can be clearly seen. In the latter, such (L mechanism is not needed. 

% c-ted 

Figure I3. Recognition rates Mter damaging weights cf a competitive teaming net- 
work. 

5. Conclusions 
Optical character recognition (OCR) appears to be a good appli- 
cation for neural network classification. The advantages of using 
neural networks for OCR include 

(a) automatic training and retraining; 

@) graceful degradation and robust performance; 
(c) potential for parallelization; and 
(d) potentially less storage. 

We consider points (a) and (b) to be the major fortes of neural 
networks for this as well as other applications. The advantages 
of alternative approaches, in particular K-nearest-neighbour, 
include 

(a) improved performance; 
(b) simple implementation and training; and 
(c) known design methodology. 

The feed-forward network has the additional advantage that it is 
relatively immune against failing units and connections. The best 
recognition rates are realized with a one-layer feed-forward net- 
work with one output unit reserved for each input class. Similar 
rates are obtained with a (much cheaper) network having less 

than 10 hidden units. In this configuration. the hidden units 
gather higher-level information about the input patterns, which 
could be used in a more advanced system. 

Before the Hopfield network can be used as a pattern recog- 
nicer. problems of instability of stored patterns and stability of a 
large number of spurious pat&rns must be overcome. The 
Hopfield in its basic configuration network is much better suited 
for storage of random patterns than of patterns which are all 
much alike, such as optical images of printed characters. The 
network, being used as an associative memory, is capable of 
reaching acceptable recognition results when it is not overloaded 
and unlearning is applied. 

The competitive learning algorithm could well be used to 
cluster large amounts of input data. Our tests were simple in the 
sense that each cluster typically contained just a few patterns. 
Further refinements of the basic competitive learning scheme will 
probably show it to be a viable clustering method in its own right 
or possibly a useful part of a larger neural network. 
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