
A comparative study of neural network algorithms applied to optical
character recognition

P. Patrick van &r Smagt

Department of Computer Science and Mathematics
Universiteit van Amsterdam, Amsterdam, The Netherlands’

email: smagt@fwi.uva.ni
‘Research carried out af the au&r’s ptious address:

Department of Computer Science and Mathematics, Vrije Uttiversiteit. Amsterdam, The Ne&Amds, anail: smag@kzs.vu.nl.

Abstract - Three simple general purpose networks are tested for
pattern classijcation on an optical character recognition prob-
lem. The feed-forward (multi-layer perceprron) network, the
liopjield network and a comperirive learning network are com-
pared. The input patterns are obtained by optically scanning
images of printed digits and uppercase letters. The resulring data
is used as input for rhe networks with two-state input nodes; for
others, features are extracted by template matching and pixel
counting. The classifrcarion capabilities of the networks are com-
pared with a nearest neighbour algorithm applied to the same
feature vectors. The feed-forward network reaches the same
recognition rates as the nearest neighbour algorithm, even when
only a small percentage of the possible connections is used. The
Hopfield network performs less well, and overloading of the net-
work remains a problem. Recognition rates with the competitive
learning network, if input patterns are clustered well, are again
as high as the nearest neighbour algorithm.

1. Introduction
Since the rebirth of neural networks, pattern classification has
proved itself a secured application (e.g. [l, 2,3]; see also [4]).
Such networks are often dedicated and incorporate some existing
clustering or classification algorithm; in some cases, they form
part of hybrid systems. Advantages of neural networks are adap-
tability, robustness, and ease of implementation (especially on
parallel processing equipment).

In this paper three general purpose networks are investigated
and compared on their classification capabilities. These networks
are:

l the feed-forward network which incorporates a hyperplane
separating technique. The coel’ficients describing the hyper-
planes can be found using the perceptron convergence pro-
cedure [5] or a similar technique for linear devices, or the
back propagation rule [6,7,8] for higher order devices;

l the Hopfieid network [9] which incorporates an associative
memory. Setting up the associations establishes an area of
influence around each stored pattern, such that iteration from
a test pattern which lies in this area of influence will result in
the prototype pattern being returned;

l competitive learning which implements the idea of unsuper-
vised pattern classification. A competitive learning network
is used to find clusters in the input data No external teacher
is involved.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specifE permission.

2. The optical character recognition problem
Pattern recognition systems consist of the following three sub-
problems [lo]:

2.1 Image measurement
Images ate obtained by optically scanning a page with discon-
nected printed characters. The characters. in point size 10 Times
Roman font, are scanned with a resolution of 300 x 300 dots per
inch and subsequently reduced by a factor four (2 times 2),
resulting in an approximate size of 14X I4 pixels per uppercase
letter or 15 x 10 per digit (see figure 1).

Figure 1. Ten of the scanned digits &r the reduction phaw.

2.2 Feature extraction
To filter out irrelevant data, feature extraction is performed using
a set of novel features. Template matching is applied in the fol-
lowing form. Every image, fitted in a box in which the pixels on
the edge are all “off,” is divided in four equally sized quadrants.
In each quadrant, twelve 2 x 2 masks are fitted on every possible
position, and for each mask the number of perfect matches is
counted. The area of the figure is also measured in each qua-
drant’. The resulting 13 features form 52 features for the entire
image,

The templates used, shown in figure 2, are prototypes for
horizontal, vertical, and diagonal line sections.

01 10 00 11 00 10 11 01 00 01 10 11
01 10 11 00 01 00 10 11 10 00 11 01
1 2 3 4 5 6 7 8 9 10 II 12

Figure 2. The templates usedforfeahwe extraction.

The templates or structuring elements can be interpreted as fol-
lows: the first two templates match vertical lines (‘I’), the second
pair horizontal lines (‘-‘). the next quadruple matches diagonal
lines with positive gradient (‘/), and the last four match diagonal
lines with negative gradient (Z’). This feature set, based on
mathematical morphology principles [111, enables successful
character recognition using a variety of classifiers. Although

‘To prevent the. areas of the image having too large an ini7uen.x. cm tbc
classification step, their values are halved.

0 1990 ACM 089791-372-8/90/0007/1037 $1.50

these features do not allow scaling or rotation invariance, the sys-
tem incorporates translation invariance.

2.3 Classl#mtion
For identification and classification of the feature vectors,
optimum decision procedures must be determined. Each vector
determined in step 2.2 must be assigned to a class or rejected.
When complete knowledge about the patterns is available, deci-
sion functions can be constructed on basis of this information.
Generally, however, only partial or no knowledge is available.
For this case adaptive systems are needed. This paper describes
the use of general purpose neural networks for adaptive pattern
classification.

3. Description of the algorithms

3.1 Nearest Neighbour
The performances of the various neural network algorithms that
are used are compared to the performance of the K-nearest-
neighbour (K-NM rule [IO] under the same conditions. Since the
prototype classes are usually small, typically containing several
tens of characters, K is set to 1, such that each test pattern is
assigned to the class of the nearest training element.

3.2 Feed-forward network
The general topology of what we call a K-layer’ feed-forward
network is depicted in figure 3.

output layer
M units

layer K-l

layer 1

input layer
N “units”

Figwe 3. The general topology of a K-layer feed-forward network. There are N in-
put unite and M output unite. Note that the input layer ie not counted.

The weights and biases of each unit j in layer 1 describe a hyper-
plane in N-dimensional space. This hyperplane divides the input
patterns in two classes, indicated by the activation value cj* It is
calculated as

N-l

Uj = f(x WjiXi + biUSj)

i=o

where Xi is the activation value of input i, wji the weight from
input unit i to unit j, and bicsj is a constant that is ad&d to the
total input of j. Finally, fis the activation function, bounding the
activation value to the range [0, 11.

In a feed-forward network, a unit in layer 2 represents a con-
vex region in hyperspace, enclosed by the hyperplanes

*Siuce the nettram in the input layer da not compute their values but are sim-
ply clamp&, the input layer is not counted. E.g., a network without hidden
units is called a I-layer network.

determined by the units of layer 1. When three layers are used,
any arbitrary shape in N-dimensional space can be enclosed.

The weights and biases of the units are determined as fol-
lows. At the input nodes, a pattern is clamped The activities of
the units in successive layers are computed, ending with the out-
put units. Next, the output activities are compared with the
desired outputs d = (d, , - * * ,dM). The difference dj-aj is used
to compute the amount by which the weights must be changed:

Aw, = Y6jUi

where ai is the activity of node i in the layer directly below the
output layer, y is a constant called the gain term, and

Next, 6 is calculated for the hidden units directly below the out-
put units by combining the 6’s from the output units:

Sj = f;.‘(Xj+biUSj) x8 W k k Y

and equation (1) is applied to these units as well. This process is
repeated up to the input units. This learning rule is called the
generalized delta-rule or back propagation rule. Biases, which
can be implemented as a weight from a dummy unit that is
always on, can be learned using the same rule. The above formu-
las result from interpreting the difference (or error) between the
current output and desired output as a function of weights and
biases, and performing minimization of this function [121.

Most feed-forward experiments described in this paper con-
cern one- or two-layer feed-forward networks. Learning parame-
ters y = 0.2 and v = 0.9 are used; NETtalk [131 was trained using
the same parameters. The above-mentioned learning rule is
enhanced by using a momentum term as proposed in [141:

AWji(t+l) = Y 8jUi + VAWji(t)

which speeds up the gradient descent search considerably. The
activation function used is a sigmoid function:

f(x) = 1 l+e-u.?+w
with first derivative

For most experiments, h = 1 is chosen. Furthermore, sparsely
connected networks are investigated, both networks in which a
random part of the connections is kept and those which are con-
nected to fit the problem posed. Also, network immunity against
hardware deterioration is tested.

3.3 HopBeld nehvork
The Hopfield network consists of a set of fully connected two-
state neurons (figure 4) [9].

Figure 4. The general topology of a Hop&Id network.

Since the neurons in the basic Hopfield network have binary
values (viz. +l and -1, which ma% be interpreted as the neuron
being “on” or “off,” respectively), an alternative feature set is

‘In his original paper, Hopfield used the values 1 and 0, but using +l and -1
for activation values presenta some advantages [15].

1038

used for training and testing, consisting of the concatenation of
the raster-scan bits from the window of the binary representations
of the characters. In particular, 15 x 10 bit binary images of
digits (figure 1) and 14x 14 bit images of uppercase letters are
used.

In the ‘basic model, all neurons are connected to each other.
The connection weights between neuron i and j are arranged in a
~IMI%X W = (Wij>. Each neuron randomly and asynchronously
updates its activation value ai according to the rule

ai(t+l) = S&P [&ijajCf)]

i

In other words, if the total input of a neuron is positive, the neu-
ron should come on or stay on; if it is negative, the neuron should
go off or remain off. The formula assumes a threshold of the
neurons at 0, but any other value may be chosen.

Using this update rule, the network will always evolve to a
stable state, i.e. reach a state in which for all units equation (2)
holds true. This can be proved by showing that under the update
rule, the computational energy

E = - f x:C, wijaiaj
itj

(3)

is monotonically decreasing and bounded from below. A pattern
is called stable if the network, when the pattern is clamped, is in
a stable state.

The memory vectors can be stored with the Hebb rule [16]:

M-l

x xfxf if i#j
P-0

Wij = ’
0 if i=j

where M is the number of patterns to be stored, and Xi the i” ele-
ment of pattern x. This rule thus adds one to the weight of a con-
nection if two COMead neurons have the same activation value,
otherwise subtracts one.

It is observed that frequently, when multiple vectors are
stored, many of these vectors fail to be fixed points. To improve
upon the stability of the patterns, the rule proposed by Bruce et
al. [171 is applied.

Another problem is that, besides the stored states, many
spurious patterns are stable. Unlearning [181 is used to reduce
the influence of spurious stable states by repeatedly applying the
Hebb rule in reverse to stable states reached from random initial
states, but with a very low (un-> learning factor.

3.4 Competitive learning
Competitive learning is an unsupervised neural network algo-
rithm that can be used to find clusters in input patterns. The gen-
eral model, as presented in 1191, consists of an N-unit input layer
and an M-unit output layer, with M equal to the number of
required output classes. All input units are connected to all out-
put units, with associated weights initialized to random values.
Weights and input vectors must be kept normalized.

In the learning stage, when a pattern is clamped, all output
units determine their net inputs by calculating the dot or inner
products of the input vector and their weight vectors. The output
unit with the highest net input “wins” the competition, meaning
that its weight vector is the most similar to the input vector. This
weight vector is then rotated in the direction of the input vector,

by adding a fraction y of the difference between input vector and
weight vector to it [20]:

Wj(t+l) =
Wj(tHY [J(t) - Wjtr>l

IlWj(t)r, [X(t) - Wj(t)]ll
(4)

in which y is called the learning rate. To prevent that some out-
put units never win the competition, the weight vectors of the los-
ing units are also adapted using equation (4). but now with a
leaky learning rate K instead of 1: where Key

Kohonen [21], who presents an unsupervised learning net-
work as an explanation of the existence of ordered maps in the
brain, orders the output units such that not only the weight vec-
tors to a winning unit am affected, but those to its neighbours as
well (figure 5).

Figure 5. A typbal Kohoncn network, Here, the output knits are ordered in a two-
dimensional nrmy. The neighbows of (I winning wit are adap&d with a learning
factor inversety r&&d to their distances to the winning unit.

4. Results
All recognition rates reported apply to recognition of sets dif-
ferent from the training sets. Since small test sets are used, typi-
cally containing only several tens of characters, the percentages
reported must be regarded as being indicative only.

4.1 Nearest neighbour
Earlier work 1221 shows that recognition rates using a nearest
neighbour classifier are 98% for the uppercase letters and 100%
for the digits. As a comparison, when using a feature vector
composed from the concatenation of the raster-scan bits from the
window of the binary image (such as used for the Hopfield net-
work experiments), rates of 85% and 90% are achieved, respec-
tively. Further confidence in the proposed feature set is
expressed by the mean relative distance to tbe nearest bad choice,
I.e.,

errorratio =
distance to nearest pattern class

distance to second nearest pattern class

provided the nearest pattern class is the correct one. This error
ratio is 0.56 for uppercase letters and 0.47 for digits, whereas it is
0.87 and 0.77 for the binary feature vector.

4.2 Feed-forward
When a feed-forward network is used for classifying patterns that
differ from the test set, recognition rates can be as high as those
obtained with nearest neighbour4. There are, however, some
parameters that have to be considered.

4.2.1 Number of output units

When M pattern classes have to be distinguished, the two most
obvious choices for output patterns are M-bit binary patterns or

%erc we consider M input pattern rejected when the diff- between ttx
highest and second highest output activation values does not exceed 0.2.

1039

[log ~1 -bit binary encoded patterns. Training a network with
the latter proceeds faster because one training cycle takes less
time, and less cycles are needed due to the smaller number of
constraints that have to be satisfied. For the same reason, how-
ever, recognition of a different test set is considerably less good,
generally not exceeding 70%. Therefore the experiments
reported all have one output neuron assigned to one pattern class.

4.2.2 Number of hidden units

When the input patterns are linearly separable no hidden units are
needed. Relative to the number of input patterns, the dimen-
sionality is very high and it is very unlikely that the patterns are
not linearly separable. Thus a l-layer feed-forward network gen-
erally achieves the same recognition rates as nearest neighbour
classifier. However, introducing hidden units presents the advan-
tage of reduced susceptibility to deteriorating hardware. This is
shown in section 4.2.4.

When a hidden layer is present, recognition rates depend on
the number of hidden units present. As a rule of thumb, the
greater the number of units, the better the recognition. This is
due to the better distribution of “knowledge.” Using too many
hidden units, however, may increase the complexity of the error
surface such that the training patterns cannot be separated - the
s stem
ry f

ets stuck in local minima; also, there is lower
P und of

log M hidden units when separating M pattern classes .

4.2.3 Training sparsely connected networks

Since such a vast number of connections exist, it is highly prob-
able that not all connections are equally essential. Simulations
show that recognition is not seriously affected when connections
are cut before training.

When using no hidden units, a missing connection means
missing information for some output unit. Due to the great
number of inputs many connections still can be cut, but a network
with hidden units is less sensitive, especially when the hidden and
output layers are kept fully connected. Figure 6 depicts the
decrease in recognition rates when connections are randomly cut
for this latter case. When the connections between more than
two successive layers are cut, a minimum of around 70% of the
connections must be kept. Besides random cutting, it is also pos-
sible to assign specific hidden units to specific portions of the
input. For example, a network with eight hidden units, which are
pairwise fully connected to each of the four quadrants, performs
just as well as a fully connected eight-hidden unit network: 98%
recognition of the digits. Using one hidden unit per quadrant
does not suffice; also, using five hidden units with one assigned to
each input pattern “feature” (one for each direction and one for
the area) gives no spectacular results.

4.2.4 Network immunity against degrading hardware

Neural networks are often presumed to have a certain immunity
against “hardware faults.” Starting from a fully connected net-
work, connections or units are destroyed after the teaching phase
has been successfully completed.

As in the previous section, a network with hidden units gives
better results when the hidden and output layers are constrained
to be fully connected. Figure 7 shows the results. As before, the
more hidden units are used (i.e. the more connections are
present), the greater the immunity of tbe network. A network
without hidden units performs less well than a network in which

%or all practical purposes. Although activation values can have any value
in the. range (0, I], the form of the sigmoid function dictates that they be ei-
thcso.oor 1.0.

%
rmgnition

Figure 6. Recognition rate drop reiated lo connectivity. The solid cwve is for a
network with ten hidden tits. the dmhed for II mhvork with seven hid&n units.
Note that the hidden and output layers are kept 10046 connected. Since there ore
much fewer output units than input units, there are much fewer connections behveen
layer on?? and two tha?l between the input layer and layer one.

%
recognition 40

1
\ 20

01
la, s-3 80 lo 60 So

% -ecud

Figure 7. Recognition rota @er damaging weights for a nehvork with siz hidden
wits. The dashed curve &pica the cave in which onIy connections between input
md hi&en tits we cut; for rhe solid cwve. all connections wem cuttable. Note
thol lhe hori.?ontal SC& ir a 50-100 mu? and not o-m?

the hidden and output layers remain connected, and graceful
degradation is not attained.

The number of hidden units that are allowed to fail depends
on the number of hidden units used. The optimality of a solution
found by the network can be illustrated by running the network
on binary valued input patterns. When only rlog ~1 hidden
units, which tend to have activation values of 0.0 or 1.0 with
binary input patterns, are used, all units are necessary to distin-
$ish y,n M Fput qatters. Now ,suppose. there are

log M +6 hidden umts aviulable. These hidden umts are used
optimally when the Hamming distances between their activation
values for patterns pi and pi for each i, j such that i+j are equal to
each other and have a maximal value 26+ 1. in that case, 6 hid-
den units, no matter which, may fail.

We observe that the networks often operate near this optimal
case. As an example, we trained a network with ten hidden units
on the binary images of the ten digits. The network found hidden
unit activations with a Hamming distance 3 between every pair of
hidden unit activations, which is not optimal but allows an arbi-
trary hidden unit to be removed6.

%te Hamming distance between two bii words is &fined as the numba

1040

4.2.5 Interpretation of the weights

Networks without hidden units

In a sense, the weights (and biases) found by the network reflect
tbe input patterns. when no hidden units are used, each of the M
outputs learns to react to the patterns that belong to the class
associated with that output. That this is so can be seen by look-
ing at the Hinton diagrams’ for the weights. As an example,
figure 8 depicts Hinton diagrams for a one-layer feed-forward
network trained on binary patters similar to those of figure 1.

. ;.
II ’
In !
. .
II
l -
ID
mm
I.
.I

.
I

. .
1.

Figure 8. Hinton diagrams for a one-layer feed-fonwrd network.

As can be seen from these Hinton diagrams, the network reacts
on the dtyerences between input patterns.

Networks with hidden units

By examining the Hinton diagrams for feed-forward networks
trained on the 52 feature sets, it can be easily seen that the simi-
larities between the structuring elements are recognized by the

of bits in which they differ (231. Provided the Hamming distance between
every pair of ccdewords is at least 2d+l, up to d errws in a codeword cm be
axnrezted. Inowcase,aHitmmin g distpllce of 3 allows one hidden unit to
flip its activation value without problems oeauting. An optimal separation
distance which CM be found for et least ten codewords in ten bits is 5:

11111ooooo 1001001100
11m11010 0100100110
011cloo1101 1010000011
0011010I 10 010101om1

ooo1101011 0010111ooo
loo01 10101 1111111111

We kindly thank clr. Evert Watt& Department of Mathematics and Comput-
er Scimce, Vrije Universiteit, Amsterdam for hnding this code.
‘Hin~ort diagrams @se set up as follows. Each large shadowed rectartgle
represents the weights to a specific hidden or output unit; each small square
in this rectangle is B weight from B tit in the previous layer to this unit. A
white square denotes a positive. weight, a black squan a negative one. The

size of the 4tme indicates the size of the weight. The bias is depicted in B
small shadowed rectmgle above the large one..

network. For example, the weights that react on matchings of
templates 1 and 2 in figure 2 are usually nearly equal; both tem-
plate 1 and 2 are vertical line detectors. Consequently, to show
the Hinton diagrams for the networks trained on the 52 feature
set, weights which code for the same feature are added together.
The resulting diagrams are ordered as shown in figure 9.

Figure 9. Meaning of the weights in Hinton diagrams for 52 feature set input net-
works. Every TOW representr a quadrant in the image. ad every element in this
row tk inrerpremtion of tk iqntr stimniu ‘A’ standt for arm. ‘LL’ for the lower
left quadrant, and so on.

Figure 10 shows Hinton diagrams for a two-layer network with
ten hidden units, trained on the uppercase letter patterns.

.

Figure 10. Hinton diclgramr for a feed-forward network with one her of ten hid-
&n units, trained on zqqwrcpce letter pattern% Tk weights shown are those from
tk input to tk hidden units.

It is worthwhile examining some specific diagrams. For exam-
ple, hidden unit 1 has a large negative weight for ‘\’ in the lower
right quadrant. It has a positive bias, so its quiescent state is
“on” and goes “off” when an A, B, K, Q, R, S, W, or X is
clamped. Hidden unit 2 acts as a vertical line detector in all qua-
drants (since small templates ate used, templates 1 and 2 react to
60” lines and templates 3 and 4 on 30” lines as well). Hidden
unit 9 mainly reacts on area difference between the upper and
lower half of the character. It goes “off” for a C. F, P, T, V, W.
X, and Y, most of which have a darker upper half.

The higher order structure which is thus found by the hidden
units can be used for further analysis of the input data.

4.3 Hop&&f networks
When patterns are stored in the Hopfield network, it is imperative
that all these patterns be stable to recall them. Tests have shown
that using the Hebb rule for storing random patterns, about 15%
of the storage capacity of the network can be used before recall
error is severe 191. Keeping in mind that the complement of a
stable state is also stable, only half of this 15% can be used effec-
tively.

The binary patterns, described above, on which the Hopfield

1041

network is tested hem, are much more correlated than random
patterns. They are not evenly distributed in the input space. In
fact, instead of 15% only 10% of the storage capacity of the net-
work can he used. To solve this problem, the algorithmic
enhancements described below are used [171:

Algorithm 1:
(1) Given a starting weight matrix Wijv define a correction Ei

for each pattern to be stored such that

0 if ai is stable

Ei =
1 if ai is not stable.

(2) NOW modify Wij by Awij = aiaj(Ei+Ej) if i#j.

(3) Repeat this whole procedure until the patterns are stable.
It is claimed that the algorithm will find a solution in finitely
many steps, provided it exists.

4.3.1 Accessibility of the stored patterns
When all the patterns are stored and stable, it is desirable to let
those patterns (and their inverses) to be the only stable states of
the system. Every stored pattern can be seen as a “dip” in
energy space (equation (3)). and is surrounded by a basin of
influence. In an ideal Hopfield network, all stored states have the
same energy, and their basins of influence fill up the whole
energy space. The accessibiliry 1181 of the stored patterns
expresses the fraction of times a nominally assigned stable state
is reached from a random state.

Simulations show that when the Hebb rule plus the stabiliza-
tion procedure for storing ten digits is used, an accessibility of
around 60% is reached; for the uppercase letters, this is 50%. To
improve upon the accessibility of the patterns, unlearning is
applied. Thus the very low energy minima are ‘*lifted,” result-
ing in a more even distribution [24]. Also, the distribution among
the states that are reached is better.

When unlearning is applied too often, assigned stable states
are destroyed and the performance of the network deteriorates.
In this particular case, best results are obtained by unlearning
some 100 times with a 0.05 factor.

4.3.2 Adapted learning rule
In the configuration of the network described so far, all neurons
are essentially indistinguishable from each other in that the spa-
tial information present in the input patterns is not used. How-
ever, that information can be incorporated in the learning rule.
The proposed learning rule sets the weights proportional to the
distance 6(i, j) between neurons i and j:

M-l

S(i,j) x xfxy if i#j
P=o

Wij = ’ (5)

0 if i=j

c

For reasons of simplicity, the Manhattan distance function
S(i, j) = I i-j I is used.

Since the input patterns used here consist of large clusters of
“on” or “off’ pixels, the proposed rule increases the influence
of such clusters on the stability of all patterns. When such clus-
ters are shared by all or most of the patterns, the synaptic

strengths from and to these clusters are vety Iarge, increasing the
stability of all stored patterns. In this case, the network in which
the digit patterns are stored with rule (5) reaches an accessibility
of 90% instead of 60%, and recognition rates rise accordingly.
However, overloading the network has the opposite effect, and
the original Hebb rule is preferred.

4.3.3 Recognition rates
In the original configuration, recognition rates are 40% for the
uppercase letters and 75% for the digits. Unlearning improves
this to 80% and 90%, respectively, which is not as good as
nearest neighbour classification on the same input vectors. When
the adapted Hebb rule is used, 55% of the uppercase letters and
95% of the digits is correctly classified.

4.4 Competilive learning
To monitor the progress in teaching competitive learning net-
work, au expression for the error must be found. Most straight-
forward is the sum squared error [121

Error = (w - x)’

The competitive learning algorithm is employed as follows.
Initially, both the learning rate y and leaky learning rate K are set

to 0.5. This has the effect of rotating the weight vectors in the
direction of the pattern vectors (see figure 11).

Figure II. Two-dimensional representation of input pat&m vectors (solid lines)
md weight vectors (dotted lines). AN weights and inputs are positive. As mimicked
in the figure. the input pattem all lie comparatively close to each other, where@
the weight vectors ore evenly distributed. When only the winning unit would learn
with this type of input. ON the other units would remain inactive and never change.
Leaky learning is needed.

When no further progress is made, y is increased by a small
amount while K is decreased by the same amount. This pro-
cedure is repeated until ~1.0 and tc=O.O. Figure 12 depicts how
clustering proceeds. It must be stressed that the input data con-
sists of clusters of only a few patterns. When larger clusters have
to be formed, a finer tuning of the learning parameters is neces-
W*

Perfect separation is always obtained with one set of digits or
uppercase letters. However, the Kohonen neighbourhood train-
ing method sometimes maps two different input patterns on one
output unit. Since the network is, in fact, a clustering device,
multiple sets of input patterns can be taught. Often clustering
works well, especially with the digit input patterns.

Since the patterns are literally stored in the weights, recogni-
tion rates are precisely those obtained with nearest neighbour
classification, provided that the input patterns are perfectly
separated.

4.4.1 Reduced connectivity
Training a competitive learning network with fewer connections
gives results similar to those obtained with the feed-forward
experiments. However, there is a greater susceptibility to failing
connections. Figure 13 depicts recognition rates.

1042

iteration

Figure 12. Reduction of lhe stun squared error when training a competitive learn-
ing net with 26 characters (upper tine), 10 digits (middte line) and 10 digits with
neighbourhood training (tower line). In the former two experiments. when the
curve remains frcu y and K are adapted resulting in Q sudden drop in the error curve
as can be clearly seen. In the latter, such (L mechanism is not needed.

% c-ted

Figure I3. Recognition rates Mter damaging weights cf a competitive teaming net-
work.

5. Conclusions
Optical character recognition (OCR) appears to be a good appli-
cation for neural network classification. The advantages of using
neural networks for OCR include

(a) automatic training and retraining;

@) graceful degradation and robust performance;
(c) potential for parallelization; and
(d) potentially less storage.

We consider points (a) and (b) to be the major fortes of neural
networks for this as well as other applications. The advantages
of alternative approaches, in particular K-nearest-neighbour,
include

(a) improved performance;
(b) simple implementation and training; and
(c) known design methodology.

The feed-forward network has the additional advantage that it is
relatively immune against failing units and connections. The best
recognition rates are realized with a one-layer feed-forward net-
work with one output unit reserved for each input class. Similar
rates are obtained with a (much cheaper) network having less

than 10 hidden units. In this configuration. the hidden units
gather higher-level information about the input patterns, which
could be used in a more advanced system.

Before the Hopfield network can be used as a pattern recog-
nicer. problems of instability of stored patterns and stability of a
large number of spurious pat&rns must be overcome. The
Hopfield in its basic configuration network is much better suited
for storage of random patterns than of patterns which are all
much alike, such as optical images of printed characters. The
network, being used as an associative memory, is capable of
reaching acceptable recognition results when it is not overloaded
and unlearning is applied.

The competitive learning algorithm could well be used to
cluster large amounts of input data. Our tests were simple in the
sense that each cluster typically contained just a few patterns.
Further refinements of the basic competitive learning scheme will
probably show it to be a viable clustering method in its own right
or possibly a useful part of a larger neural network.

Acknowledgements
The research work on which this paper is based formed part of
the master’s thesis by Jim E. Stada and the author. I am therefore
greatly indebted to Jim for his cooperation, co-writing earlier
papers, and for extensively researching the Hopfield and com-
petitive learning networks. Also, I would like to thank Robert A.
Hummel for acting as our thesis supervisor, for many stimulating
discussions, and for proofreading this and other documents.
Finally, I am indebted to Floor van der Ham for literature refer-
ences and hints and helps.

References

[II

m

131

141

IS1

[61

171

PI

[9]

D. MEHR AND S. RI-, “Neural net application to opti-
cal character recognition,” in IEEE First International
Conference on Neural Networks, ed. M. Caudill, 21-24 June
1987.
K. FUKUSHTMA. “Neocognitron: a hierarchical neural net-
work capable of visual pattern recognition,” Neural Net-
works, vol. 1, pp. 119-130, 1988.
M. FISCHLER. R. L. MATTSON, 0. FIRSCHEIN, AND L. D.
HEALY, “An approach to general pattern recognition,” IRE
Transactions on Information Theory, vol. IT-8, no. 5, 3-7
September 1962.
W. H. HIGHLEYMAN, “Linear decision functions, with appli-
cation to pattern recognition,” Proceedings of the IRE, pp.
1501-1514, 1962.
F. ROSENBLA’IT, Principles of neurodynamics, Spartan
Books, New York, 1959.
Y. LE CUN, “Une procedure d’apprentissage pour reseau a
seuil assymetrique,” Proceedings of Cognitivu, vol. 85, pp.
599-604, 1985.
D. B. PARKER, “Learning-logic,” ‘IX-47, Massachusetts
Institute of Technology, Center for Computational Research
in Economics and Management Science, Cambridge, MA,
1985.
D. E. RUMELHART. G. E. HINTON. AND R. J. WILLIAMS,
“Learning representations by back-propagating errors,”
Nature , vol. 323, pp. 533-536, 1986.
J. J. HOPFIELD, “Neural networks and physical systems with
emergent collective computational abilities,” Proceedings of
the National Academy of Sciences, vol. 79, pp. 2554-2558,
1982.

[lo] J. T. TOU AND R C. GONZALEZ, Pattern recognition

1043

principles, Addison-Wesley Publishing Company, Inc., 1974.
[111 J. TERRA, Image analysis and mathematical nwrpho~agy.

Academic Press, Inc., 1982.
[12] G. E. HINTON, “Connectionist learning procedures,”

CMU-CS-87- 115 (version 2). Computer Science Department,
Carnegie Mellon University, Pittsburgh, PA, USA, 1987.

[13] T. J. SEINOWSIU AND C. R. ROSENBERG, “NETtalk: a paral-
lel network that learns to read aloud,” JHU/EECS-86/01,
The John Hopkins University Electrical Engineering and
Computer Science Department, 1986.

[14] J. L. MCCLELLAND AND D. E. RUMELHART, Explorations in
parallel distributed processing: Computational models of
cognition andperception, The MIT Press, 1988.

[15] P. P. VAN DER SMAOT AND J. E. STADA, A view on neural
networks, 1989. Manuscript

[161 D. 0. HEBB. The organization of behaviour, Wiley, New
York, 1949.

[17] A. D. BRUCE, A. CANNING, 8. FORREST, E. GARDNER, AND
D. J. WALLACE, “Learning and memory properties in fully
connected networks,” in AlP Conference Proceedings 151,
Neural Networks for Computing, Snowbird Utah, AIP, ed. J.
S. Denker, 1986.

[181 J. J. HOPFIELD, D. I. FEINSTEIN, AND R. G. PALMER,
“ ‘Unlearning’ has a stabilizing effect in collective
memories,” Nature, vol. 304. pp. 159-159, 1983.

[19] D. E. RUMELHART AND D. ZIPSER, “Feature discovery by
competitive learning,” Cognitive Science, vol. 9, pp. 75-112,
1985.

(201 T. KOHONEN, Self-organization and associative memory,
Springer-Verlag. Berlin, 1984.

[Zl] T. KOHONEN, “Self-organized formation of topologically
correct feature maps,” Biological Cybernetics, vol. 43, pp.
59-69, 1982.

[22] P. P. VAN DER SMAGT AND J. E. STADA. Aspects ofprinted
character recognition, 1989. Manuscript

[23] T. M. THOMPSON, “From error-correcting codes through
sphere packings to simple groups,” in Nwnber twenty-one
from The Cams Mathematical Monographs, The Mathemati-
cal Association of America, 1983.

[24] R. J. SASIELA, “Forgetting as a way to improve neural-net
behaviour,” in AIP Conference Proceedings 1.51, Neural
Networks for Computing, Snowbird Utah, AIP, ed. J. S.
Denker. 1986.

1044

