
A Turing Machine in Conway's Game Life 30/08/01 Page 1 of 8

A Turing Machine In Conway's Game Life.

Paul Rendell

I have constructed a Turing Machine in Conway’s Game Life (figure 1). In this paper I describes the machine’s parts,
how it works and the principle choices made during the construction.

Figure 1The Complete Turing Machine

The Game of life was invented by John H Conway. It is a cellular Automa, a class of simulation, where an infinite
universe is divided into cells. Each cell has a state and the states change according to strict rules. All the changes occur
simultaneously to create time measured in generations. For Conway’s Game of Life the cells have 2 states (live and
dead) and the rules are based on the number of touching cells which are live. If a cell is live and has 2 or 3 live
neighbours then it will stay alive otherwise it will die. If a cell is dead and has exactly 3 live neighbours it will change
to live (be born).

A Turing Machine in Conway's Game Life 30/08/01 Page 2 of 8

I have looked at variations on the rules to see what happens and found that some sets cause patterns to disappear
quickly and others cause patterns to expand and fill the universe. The Game of Life rules seem to be close to the
boundary between. Most simple patterns are stable or will shrink to stable patterns quickly but a few expand.

A pattern called a glider was quickly found. This pattern repeats itself every 4 generation but offset diagonally by one
cell. A family of 3 patterns which move orthogonally by two cells in 4 generations was found by Conway. These are
called the Light Weight Space Ship (LWSS) Medium Weight Space Ship (MWSS) and Heavy Weight Space Ship
(HWSS). The term space ship is now the generic name for moving patterns.

The pattern which really opened things up was is the glider gun, found by Bill Gosper. It generates gliders every 30
generations. Now guns have been found which produce gliders at most periods above 14 [2]. There are now more than
700 basic patterns, which have now been named and are described in Stephen Silver's Lexicon [4].

A Turing Machine is a mathematical device invented by Alan Turing. He wanted the simplest possible theoretical
computer to use in mathematical statements. He used his Turing Machine to prove a number of important things about
computing, most famously, the halting problem. It is often possible to determine if a particular computer program with
a particular set of input data will run forever or halt. Turing proved that there is no mathematical procedure for doing
this in a finite time for every possible program and its data.

A Turing Machine has a potentially infinite tape to hold the input data and to store the results. The machine has a
read/write head which moves along the tape and reads one symbol and replaces it by another. The actions of a
particular Turing Machine are determined by a program in the form of a Finite State Machine. For all combinations of
state and symbol that could be read from the tape the Finite State Machine description gives:
♦ the new state
♦ the symbol to write to the tape
♦ the direction to move (left right or Stop)

Turing found that it was possible to create a Universal Turing Machine. This machine requires for its input a
description of a particular Turing Machine and the data that that machine would use. The universal machine then
simulates the particular machine. I have designed my Turing Machine so that it can be extended to allow a Universal
Turing Machine to be implemented. I have however built a smaller and quicker version.

It was proved a long time ago that a Turing Machine could be constructed in Life. This proof is based on the fact that
simple logic can be performed and therefore constructs using this logic can be built. The universe is theoretically
infinite so these constructs can be infinite in size to support the infinite tape of a true Turing Machine. I have now
constructed such a machine.

My interest in Conway's Game Life took off when I wrote a Game of Life program for my Amstrad CPC 64 a Z80
machine with 64k of memory. I used the program to develop my understanding of Z80 machine code. The resulting
program had a closed universe of 64*124 cells and the ability to merge patterns for very rapid manual searches. I used

this to find most of the logic patterns required for the Turing Machine. My
starting point for patterns was Martin Gardener's articles in Scientific American
[6]. The most significant pattern I made was the memory cell which took quite a
lot of effort to fit into this small universe.

Figure 2 is the version of the cell adapted for the Turing Machine. It is
addressed by the MWSS going across the top and the LWSS coming up the
side. The Pentadecathlon in the top right tidies up the collision to leave a glider
which opens an 8 glider hole in the gate to the cell. The gate is the glider gun
across the top firing down to the right and blocking the output of the cell. The
heart of the cell is the fanout pattern in the centre. This pattern uses two queen
bees to reflect glider streams. They are arranged back to back so that the queen
bee reflecting the output of the glider gun on the left stabilises the one reflecting
the input signal. In the process the input signal is duplicated. For the memory
cell 3 standard queen bee reflectors are used to loop one output back to the input
so that the pattern in the loop repeats forever. Figure 2 Memory Cell

In 1999 I got a PC and looked on the internet to see what other people had done. I was astounded by the fantastic
patterns which had been found and the size of universe which could be explored by the freeware programs like Johan
Bontes Life32 [3]. Amongst the patterns were some simple patterns that I had missed like a Period 30 LWSS and
MWSS gun. With these I knew that I had all the parts needed to build an array of my memory cells which could be

A Turing Machine in Conway's Game Life 30/08/01 Page 3 of 8

addressed like a computer memory and return the contents of the addressed cell. Using the value to do something and
obtaining a new address to fetch a new values etc. is the next step to building some computing device, a potentially
continuous loop of activity driven entirely by the data in the cells. The simplest such device is a Turing Machine. The
idea became more compelling the more I realised how simple it could be. It would not need lots of registers or complex
operation codes just a tape.

Having decided that I would attempt to build a Turing Machine I started with the must uncertain element, the Tape. I
chose to build the tape from two stacks so that to move the Tape past the read/write head would require one stack to
perform a pop and the other to perform a push. With this arrangement there is no representation for the piece of tape
with the current symbol on it. The machine replaces this symbol by pushing a symbol onto one of the stacks at the start
of the cycle.

Figure 3 Stack Cell

I chose a design which traps the symbol gliders between two opposing glider streams. The method I found of delaying
the symbol gliders during the push operation was to use pentadecathlons to create a convoluted path to the next cell.
The same arrangement is required for the pop path to maintain the alignment. Figure 3 shows two cells and the delay
mechanism. This shows the pattern during development. The logic to duplicate the streams of gliders keeping the
symbols in one cell is not complete and has not been applied to the outer walls. In figure 3 the lower cell is about to let
its symbol out through a gap 4 gliders wide and the hole to let the first glider into the top cell can be seen on control
signal on the left.

In order to ensure that the design can be extended to include a Universal Turing Machine I needed an example of one. I
found 2 in Marvin Minskys Computation Finite and Infinite Machines [5]. The smallest requires 4 symbols and 7 states
and the larger, more straight forward design, uses 8 symbols and 23 states. The small machine requires a lot of tape and
therefore it is quite probable that an example pattern using this machine would be much larger and much slower to run
than the same example using the large machine. I examined the large machine and found a few tricks to reduce it to 8
symbols and 16 states. This allowed me to fix the meaning of the contents of the memory cells as follows:
♦ 4 gliders for the next state
♦ 3 gliders for the symbol to write
♦ 1 glider for the direction (left or Right)

When all 8 gliders are missing the Turing Machine will stop.

The design for the Finite State Machine was to use two period 30 MWSS guns. One modulated by the next state to
select the row and one modulated by the symbol read from the tape to select the column. The pattern at the foot of each
column and the end of each row had to recognise an address and generate an MWSS or LWSS which then go through
the matrix and hit each other by the selected cell.

A Turing Machine in Conway's Game Life 30/08/01 Page 4 of 8

Figure 4 shows the version for selecting a row. The gliders from the
glider gun to the left are destroyed by the MWSS of the address stream
but survive if an MWSS is missing. The resulting pattern is compared
with the contents of the
memory cell at the top.
The comparison is made
by a head on collision, the
results of which are
sensed by the output of
another glider gun. Its
gliders are destroyed by a
mismatch. When not
destroyed these gliders
form the reset leg of a set
reset latch in the centre of
the pattern. The set leg is
the inverted output of a

P240 gun. The latch output is sensed at the end of the address cycle by
another P240 gun on the right. If the glider from this gun is not destroyed
by the output of the latch it triggers the pattern at the bottom to generate
an MWSS.

Figure 5 Column Selection

Figure 4 Row Selection

The only difference required for the column address is to replace the final MWSS generator by a LWSS generator as
shown in figure 5.

The latch design exploits the two collision modes of two P30 glider streams meeting at 90 º and out of phase. Gaps in
one stream switch the mode so that the head of its gliders interact with the tails of the other streams gliders. Gaps in the
other glider streams switch the mode back. In this version both modes are stabilised with a pentadecathlon. One mode
produces the output gliders.

I wanted a design for the finite state machine which allowed
additional rows and columns to be added easily. I chose to use
a 240 generation frame to match the cycle time of the memory
cells. I added an address present mark to the row and column
addresses so that the comparitor for row and column 0 could
distinguish this address from a frame with no address in.

Figure 6 shows
the method
chosen to collect
the output from
the selected
memory cell.
This detects the
MWSS
generated by the
row address
comparitor and
uses this to make

an 8 glider hole in the glider stream blocking a P30 LWSS gun.
This releases 8 LWSSes which collect the data from the
selected memory cell somewhere down the row.

Figure 6 Row Data collectors

Figure 7 shows the variation of this design used to pick up the
remaining LWSSes at the end of the selected row and transfer
the data to the stack. This is triggered directly from the MWSS
of the column address and incorporates a P240 gun to detect the
address present mark. Figure 7 Column Data Collection

A Turing Machine in Conway's Game Life 30/08/01 Page 5 of 8

The junction between the Finite State Machine and the stacks represented quite a challenge. From the Finite
State Machine comes the data which must be split into information to feed the stacks and the next state. The
next state must be returned to the Finite State Machine at the time that a symbol is popped from one of the
stacks.

 I chose to maintain the 240 generation frame and use another
latch to detect the presence of some data. This had the
important consequence that it provided a method of stopping
the machine with no extra components. The result is the Signal
Detector shown in figure 8. The heart of the detector is a set
reset latch. This is a variant of the one used in figure 4, it uses a
queen bee reflector to provide the output. One mode of the
latch prevents the queen bee reflecting a glider. A Negative
feedback loop, containing a fanout, forms the reset leg of the
latch. The inverting reaction had to be stabilised with a
pentadecathlon to get the loop to exactly 240 generation long.
This left the tuneable leg of the fanout for blocking the output

of the P240 gun which checks the state of
the latch at the end of each frame.

Figure 9 shows the next stage. The original
data from the Finite State Machine and the
output of the Signal Detector are passed to

each stack with
another copy of
the data starting
a long loop back
to the Finite
State Machine.
This last is
modified at the
bottom of the
pattern by using
the signal
detector output to create the address present mark for the Finite State Machine
row address. Part of the way through the loop, the pattern in figure 10 tidies up
the next state address by deleting 3 gliders. This is done using a P240 gun to
create a hole 3 gliders wide, inverting the result
and deleting the 3 leading gliders in each frame.
This leave the address present mark followed by

the next state.

Figure 8 Signal Detector

Figure 9 Signal Distributor

Figure 10 Next State
Delay

Figure 11 Stack Control
Conversion

The other outputs from figure 9 go to each stack. Both stacks get a signal detected
glider and the data from the memory cell. The next step is to change this into 3 signals.
A push control, a pop control and the data to push. The bottom stack version of this is
shown in figure 11. The data comes down from the top and is inverted. A P240 gun
samples the direction mark in the frame. If a glider was present in this position in the
data, the inverted signal has a hole which the sampling glider passes through. This

A Turing Machine in Conway's Game Life 30/08/01 Page 6 of 8

then goes through a fanout with one output becoming the pop control and the other deleting the signal detected glider.
If the operation is a push then the signal detected glider is not deleted and performs the push operation.

Figure 12 Left Stack Control

Figure 12 shows the version for the top stack. This layout is a little different so that the signal detected glider becomes
the pop control this time. From this point on the two stacks are symmetrical except for the slight difference in the

layout of the path the data takes to reach the gate
allowing it onto the stack.

Figure 12 shows the creation of the control signals
for the left hand side of the stack. Holes in the
control signals open stack cells for the symbol to
leave during a pop and enter during a push. The
push control just needs to go through a fanout so
that one copy goes to the right hand stack control
and the other copy makes a 4 glider hole in this
stack control. The pop operation needs 3 copies.
One goes to the other stack control (figure 13), one
goes to the gate which allows data onto the stack
(figure 14), and the other goes to the pattern in the
centre bottom which makes the 3 holes required
for the symbol gliders to enter the stack cell. This
pattern is actually a bit bigger than could be made
with two fanouts but I like the look of it. Three
P120 guns are synchronised so that each puts one
hole in the stack control but the output of all are
blocked by another glider stream. The pop control
makes a 3 glider hole in this to let them though.

Figure 13 shows the right stack control. The push
control glider makes a 4 glider hole in the control
signal to let the symbol gliders out and the pop
control glider activates the pattern for making the
entry holes. This pattern differs from the one for
the left stack control as the blocking gliders go the
other way. Figure 13 Right Stack Control

A Turing Machine in Conway's Game Life 30/08/01 Page 7 of 8

The gate which
allows the
symbol onto the
stack is feed the
symbol gliders
in every cycle.
This comes
through a bit of
a delay loop
sown in the
bottom right of
figure 14. A
glider from the
stack control
logic arrives
during a push
operation and
makes a 3 glider
hole in a
blocking glider
stream to allow
the symbol
gliders through
only in the pop
cycle. These
gliders make a
hole in another
blocking glider
stream. This

time the stream is blocking the output of three P120 guns which are aligned and synchronised to inject the symbol
gliders into the stack. The normal stack controls will have ensured that the stack wall has holes to allow the symbol
gliders in.

Figure 14 Stack Symbol Input Gate

A bit of a trick is used to get the symbol
gliders out of the stack during a push
operation. Figure 15 shows the pattern. A
P120 gun at the bottom right is normally
blocked by the stack wall. This has two
functions. Firstly the hole it makes
together with the holes made by any
symbol gliders make a 4 glider pattern
which is ideal for the addressing the Finite
State Machine. This extra hole has
becomes the address present mark.
Secondly during a pop operation the 4
holes which are required to let the 3
gliders out also let the P120 gun output
though. It then passes in front of the stack
where is makes a hole 4 gliders wide in a
blocking glider stream. The pattern of
gliders let through is the stack output. The
gliders in the stack cell are destroyed by 3
copies of a pattern known as a blocker.

The output of both stacks are combined
though an inverting reaction and feed
back to the Finite State Machine.

Figure 15 Stack Output

A Turing Machine in Conway's Game Life 30/08/01 Page 8 of 8

The program I chose for the Turing Machine is one that duplicates a pattern of 1's. With 2 1's on the tape to the right of
the reading position it takes 16 cycles to
stop with 4 1's on the tape. This takes
over one hour on my computer. The
Finite State Machine for this program is
shown in figure 16. The symbol which
causes a state transition is shown at the
base of each arrow and the next state and
direction half way along it. For example,
if the machine reads a 1 in state zero it
will change to state 1, write a 2 and
move the reading head to the right.

Figure 16 The Turing Machine Program

The start transition has been
implemented by a P240 gun placed
behind a blocking glider stream. This is
synchronized so that when the blocking
glider is deleted it inserts the instruction
in the path taken by gliders from the
stack.

The Turing Machine takes 11040 generations for one cycle. About 6300 generations are spent in the stack part and
4740 in the Finite State Machine part. Adding a row or column adds 528 generations to each cycle which unfortunately
needs adjusting to be a multiple of 240 generations. The Finite State Machine big enough for the large Universal Turing
Machine will require 16 rows and 8 columns. That is an extra 18 frames of 240 generations making 15360 generations
in total.

This Universal Turing Machine will only simulate a Turing Machine with two symbols and a tape with one only one
potentially infinite end. The other part of the Universal Turing Machine tape holds the description of the Turing
Machine it is simulating. A few simple transformations convert the machine in figure 16 into an acceptable equivalent
machine. The description of this machine would take up more than 1000 squares of the Universal Turing Machines
tape. The size of the stacks would be the most important contribution to the size of any example Universal Turing
Machine pattern.

The patterns presented here can by found on my web site [1] many of them are animated by a Java Applet written by
Paul Callahan [7]. The patterns can be downloaded and run on many freeware programs. I use life32 written by Johan
Bontes [3]. The pictures themselves where generated by a life program called MCELL [8].

I am now working on building a Turing Tape generator. This will generate Stack cells faster than the machine can use
them. This project presents a very different set of problems. The technique used for the Turing Machine was to build
each part and then gradually add parts together. For the Turing Tape generator I need more help from automated tools
to place the components. The generator will need a large number of similar parts but finding an order in which they are
can be assembled without unwanted collisions in the process will be difficult.

Bibliography
1. Paul Rendell Conway's Game Life Turing Machine www.rendell.uk.co/gol
2. Dieter Leithner and

Peter Rott
Dieter and Peter’s Gun Collection "http://www.mindspring.com/%7Ealanh/guns.zip" and
"http://www.mindspring.com/%7Ealanh/guns2.zip"

3. Johan Bontes Life32 PC Program for Conway's Game Life "http://psoup.math.wisc.edu/Life32.html"
4. Stephen Silver Stephen Silver’s Life Lexicon "http://www.argentum.freeserve.co.uk/lex_home.htm"
5. Marvin L. Minsky Computation: Finite and Infinite Machines. Prentice-Hall, Inc., 1967.
6. Martin Gardner Mathematical Games articles in Scientific American:

♦ On Cellular automata, self-reproduction, and the game "life". February 1971
♦ The fantastic combinations of John Conway's new solitaire game "life". October 1970

7. Paul Callahan Java Applet was written by Paul Callahan
8. Mirek Wojtowicz Mirek's Cellebration (MCELL)"http://www.mirwoj.opus.chelm.pl"

End of Paper

	Bibliography

