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Abstract

We discuss the formalization, in the Matita Theorem Prover, of a
few, basic results on Turing Machines, up to the existence of a
(certified) Universal Machine.

The work is a first step towards the creation of a formal repository
in Complexity Theory, and a piece of a long term work of logical
revisitation of the foundations of Complexity.
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Aim of the talk

Provide evidence that formalizing and checking (elements of)
Computablity/Complexity Theory is an effort that

I can be done

I is worth to be done

I will eventually be done
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About Matita

Matita [7] (pencil) is an implementation of the Calculus of
(Co-)Inductive Constructions alternative to Coq.

Distinctive features

I light

I completely functional

I native open terms [9]

I bidirectional type inference [8]

I small step execution of structured tactics (tinycals) [18]

I well documented

A good environment for learning the practice of formal
development and the internals of interactive provers.
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Some Matita developments

I Number theory: Properties of Möbius µ, Euler ϕ and
Chebyshev Θ functions; Bertrand’s postulate [5]

I Constructive analysis: Lebesgue’s dominated convergence
theorem [16]

I Formal topology: elements of pointless topology [17]

I Programming languages metatheory: solution to the
POPLmark challenge [6]

I Compilers verification: EU Project CerCo (Certified
Complexity) for the verification of a formally certified
complexity preserving compiler for the C programming
language [2].
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Formalization

Formal encoding in a format suitable for automatic verification.

Major achievement in different areas of Computer Science:

I hardware verification

I formal languages and compilers

I protocols and security

I metatheory of programming languages

I . . .

Very little work in Computability and Complexity Theory
(Norrish [12]).
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Turing Machines
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(Too) many variants

I deterministic/ non deterministic

I number of tapes/pushdowns stores

I alphabet

I on-line/off-line (strong on-line)

I memory models: tape/pushdown/stack (oblivious tapes)

Ming Li [11]

It is essential to understand the precise relationship among those
computing models, e.g., with or without nondeterminism and/or
some more tapes (or pushdown stores).
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Some results (deterministic case)

Upper bounds:

I 1 tape simulation of k tapes in O(t2) (Hartmanis & Stearns [10])

I 2 tape simulation of k tapes in O(tlogt) (Hennie & Stearns [20])

Lower bounds:

I 2 tapes are better than 1 (Rabin [15])

I k tapes are better than k − 1 (Aanderaa [1], Paul, Seiferas & Simon [14])

I simulating k tapes by k − 1 takes Ω(nlog 1/kn) time for strong on-line
machines (Paul [13])

I simulating one queue or two pushdown stores by one tape takes Ω(n1.618)
time (Vitanyi [22])

I . . .

Andrea Asperti & Wilmer Ricciotti University of Bologna - Department of Computer Science 12



Motivations

Small variations in the memory model have sensible implications on
complexity.

A mechanical check would be welcome.
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Motivations internal to ITP

New domains present new problems and induce innovative
techniques:

I Higher order languages& Type systems
→ binding problems and (re)naming of variables
→ nominal techniques

I Semantics of programming languages
→ local memory modifications
→ separation logics

I Computability & Complexity Theory
→ ???
→ ???
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Main motivation

We are interested in formalizing Turing Machines . . .

precisely because we are not really interested in them.

We need to find the right level of abstraction, for reasoning about
complexity in a machine independent way.

Interactive provers can really help in this study.
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Turing Machines

b b b bb

q

00 0 1 1

We shall work with single tape Turing Machines.
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The machine

� �
record TM (sig:FinSet): Type :=
{ states : FinSet;

trans : states × (option sig ) →
states × (option ( sig × move));

start : states ;
halt : states → bool}.� �

Since trans works on finite sets, its graph is a finite set too, and
we have library functions to pass between the two representations.
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Computations

� �
record config ( sig , states :FinSet ): Type :=
{cstate : states ; ctape: tape sig }.

definition step :=λsig.λM:TM sig.λc:config sig ( states sig M).
let current char :=current ? (ctape ?? c) in
let 〈news,mv〉 :=trans sig M 〈cstate ?? c, current char 〉 in
mk config ?? news (tape move sig (ctape ?? c) mv).

let rec loop (A:Type) n (f :A→A) p a on n :=
match n with
[ O ⇒ None ?
| S m ⇒ if p a then (Some ? a) else loop A m f p (f a) ].

definition loopM :=λsig,M,i,inc .
loop ? i (step sig M) (λc.halt sig M (cstate ?? c)) inc .� �
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Semantics

We express semantics in terms of relations between tapes (not
configurations!) realized by the machine:� �
definition initc :=λsig.λM:TM sig.λt.

mk config sig ( states sig M) (start sig M) t.

definition Realize :=λsig.λM:TM sig.λR:relation (tape sig ).
∀t.∃i .∃outc.

loopM sig M i ( initc sig M t) = Some ? outc ∧R t (ctape ?? outc).� �
notation: M |= R

Remark We work with tapes for compositionality reasons: Turing
machine may work with a common notion tape but have different
internal states.
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Variants (w.r.t. termination)

Realizability implies termination; we may define a weaker notion� �
definition WRealize :=λsig.λM:TM sig.λR:relation (tape sig ).
∀t, i ,outc.

loopM sig M i ( initc sig M t) = Some ? outc →R t (ctape ?? outc).� �
notation: M||= R

Weak realizability + termination implies realizablity.
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Variants (w.r.t. final state)

Conditional realizability:� �
definition accRealize sig (M:TM sig) (q:states sig M) Rtrue Rfalse.
∀t.∃i .∃outc.

loopM sig M i ( initc sig M t) = Some ? outc ∧
( cstate ?? outc = q →Rtrue t (ctape ?? outc)) ∧
( cstate ?? outc 6= q →Rfalse t (ctape ?? outc )).� �

notation: M |=q [Rtrue,Rfalse]
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Sequential composition� �
definition seq trans :=λsig. λM1,M2 : TM sig.
λp. let 〈s ,a〉 :=p in

match s with
[ inl s1 ⇒

if halt sig M1 s1 then 〈inr . . . (start sig M2), None ?〉
else let 〈news1,m〉 :=trans sig M1 〈s1,a〉 in 〈 inl . . . news1,m〉

| inr s2 ⇒
let 〈news2,m〉 :=trans sig M2 〈s2,a〉 in 〈 inr . . . news2,m〉

].

definition seq :=λsig. λM1,M2 : TM sig.
mk TM sig

(FinSum (states sig M1) (states sig M2))
( seq trans sig M1 M2)
( inl . . . (start sig M1))
(λs.match s with [ inl ⇒ false | inr s2 ⇒ halt sig M2 s2]).� �
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Semantics of Sequential composition

if M1 |= R1 and M2 |= R2 then

M1 ·M2 |= R1 ◦ R2

The proof is less trivial than expected: M1 and M2 work with their
own internal states, and we should “lift” their computation to the
states of the sequential machine.
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If then else

� �
definition if trans :=λsig. λM1,M2,M3:TM sig. λq:states sig M1.λp.
let 〈s ,a〉 :=p in

match s with
[ inl s1 ⇒

if halt sig M1 s1 then
if s1==q then 〈inr . . . (inl . . . (start sig M2)), None ?〉
else 〈 inr . . . (inr . . . (start sig M3)), None ?〉

else let 〈news1,m〉 :=trans sig M1 〈s1,a〉 in
〈 inl . . . news1,m〉

| inr s ’ ⇒
match s’ with
[ inl s2 ⇒ let 〈news2,m〉 :=trans sig M2 〈s2,a〉 in
〈 inr . . . (inl . . . news2),m〉

| inr s3 ⇒ let 〈news3,m〉 :=trans sig M3 〈s3,a〉 in
〈 inr . . . (inr . . . news3),m〉 ] ].� �
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Semantics of if then else

if M1 |=acc [Rtrue,Rfalse], M2 |= R2 and M3 |= R3

then

ifTM sig M1 M2 M3 acc |= (Rtrue ◦ R2) ∪ (Rfalse ◦ R3)
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While

� �
definition while trans :=λsig. λM : TM sig. λq:states sig M. λp.

let 〈s ,a〉 :=p in
if s == q then 〈start ? M, None ?〉
else trans ? M p.

definition whileTM :=λsig. λM : TM sig. λq: states ? M.
mk TM sig

( states ? M)
( while trans sig M q)
( start sig M)
(λs. halt sig M s ∧¬ s==q).� �
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Semantics of while

if M |=q [Rtrue,Rfalse]

then

whileTM sig M q ||= Rtrue∗ ◦ Rfalse

where ||= denotes weak realizability.

We can reduce the termination of whileTM to the well
foundedness of Rtrue−1.
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Basic Machines

write c write the character c on the tape at the current head
position

move r move the head one step to the right

move l move the head one step to the left

test char f perform a boolean test f on the current character
and enter state tc true or tc false according to the
result of the test

swap r swap the current character with its right neighbour

swap l swap the current character with its left neighbour
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Normal Machines

A normal Turing machine is an ordinary machine where:

1. the tape alphabet is {0, 1};
2. the finite states are supposed to be an initial interval of the

natural numbers.

By convention, we assume the starting state is 0.� �
record normalTM : Type :=
{ no states : nat;

pos no states : (0 < no states );
ntrans : ( initN no states )×Option bool

→ (initN no states )×Option (bool×Move);
nhalt : initN no states → bool}.� �
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The universal machine

I Every TM can be transformed into a Normal Machine with a
linear slow-down

I The Universal Machine simulates Normal Machines but is not
itself a Normal Machine; it works on a richer alphabet
comprising a few separators; moreover, each character can be
“marked” with a boolean, for copying purposes.
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The structure of the tape

The efficient way to simulate a machine with a single tape is to
keep the program (as well as the current state) close to the head.

The tape has the following structure (q is a string of booleans!)

α#〈q, c〉#tuples#β

where αcβ is (morally) the tape of the emulated machine.

An emulation step consists in

I search among the tuples one matching 〈q, c〉;
I update the state-character pair

I execute the tape move
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Library functions

We need a good library of functions for copying and comparing
strings. Both rely on the use of (pairs of) marks to identify source
and target positions:

mark mark the current cell

clear mark clear the mark (if any) from the current cell

adv mark r shift the mark one position to the right

adv mark l shift the mark one position to the left

adv both marks shift the marks at the right and left of the head
one position to the right

match and advance f if the current character satisfies the boolean
test f then advance both marks and otherwise
remove them

adv to mark r move the head to the next mark on the right

adv to mark l move the head to the next mark on the left
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The main theorem

Every relation over tapes can be reflected into a corresponding
relation on the low-level tape used by the Universal Machine.� �
theorem sem universal2: ∀M:normalTM. ∀R.

M ||= R → universalTM ||= (low R M (start ? M) R).� �
Moreover, if M terminate, then the simulation terminates too.� �
theorem terminate UTM: ∀M:normalTM.∀t.

M ↓ t → universalTM ↓ ( low config M (mk config ?? ( start ? M) t)).� �
Proofs are long but not particularly complex.
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Size and cost

name dimension content
mono.ma 475 lines mono-tape Turing machines
if machine.ma 335 lines conditional composition
while machine 166 lines while composition
basic machines.ma 282 lines basic atomic machines
move char.ma 310 lines character copying
alphabet.ma 110 lines alphabet of the universal machine
marks.ma 901 lines operations exploiting marks
copy.ma 579 lines string copy
normalTM.ma 319 lines normal Turing machines
tuples.ma 276 lines encoding of tuples
match machines.ma 727 lines machines implementing matching
move tape.ma 778 lines machines for moving the simulated tape
uni step.ma 585 lines emulation of a high-level step
universal.ma 394 lines the universal machine
total 6237 lines
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The cost of interpreting

Let us say that an interpeter is fair [3] if it simulates a program
preserving (the order of) its complexity.

Is the previous interpreter fair?

Not so clear: booleans on the simulated tape are part of larger
alphabet, and require a richer encoding. Sticking to a boolean
alphabet, this means that each boolean must be “padded” into a
small string of booleans.

This transformation may require a quadratic time on a single tape
machine:

1 1 1 10 0

0 10111
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Rephrasing the problem

Is it possible to define a notion of pairing on single tape turing
machines (in a categorical sense), in such a way that the diagonal
function has linear complexity?

In general, is there a truly finitistic computational model admitting
a fair interpereter?
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