The intensional content of Rice’s Theorem

Andrea Asperti

Department of Computer Science, University of Bologna
Mura Anteo Zamboni 7, 40127, Bologna, ITALY
asperti@cs.unibo.it
Content

1. Rice’s Theorem

2. Blum’s Abstract Complexity

3. Similarity and Complexity Cliques

4. Rice-Shapiro’s Theorem
 - Monotonicity
 - compactness

5. Corollaries

6. Kleene’s Fixed Point Theorem

7. Conclusions
 - Main results
 - Future works and applications
Content

1. Rice’s Theorem
2. Blum’s Abstract Complexity
3. Similarity and Complexity Cliques
4. Rice-Shapiro’s Theorem
 - Monotonicity
 - compactness
5. Corollaries
6. Kleene’s Fixed Point Theorem
7. Conclusions
 - Main results
 - Future works and applications
Content

1. Rice’s Theorem
2. Blum’s Abstract Complexity
3. Similarity and Complexity Cliques
4. Rice-Shapiro’s Theorem
 - Monotonicity
 - Compactness
5. Corollaries
6. Kleene’s Fixed Point Theorem
7. Conclusions
 - Main results
 - Future works and applications
The intensional content of Rice’s Theorem

Content

1. Rice’s Theorem
2. Blum’s Abstract Complexity
3. Similarity and Complexity Cliques
4. Rice-Shapiro’s Theorem
 - Monotonicity
 - compactness
5. Corollaries
6. Kleene’s Fixed Point Theorem
7. Conclusions
 - Main results
 - Future works and applications
The intensional content of Rice’s Theorem

Content

1. Rice’s Theorem
2. Blum’s Abstract Complexity
3. Similarity and Complexity Cliques
4. Rice-Shapiro’s Theorem
 - Monotonicity
 - compactness
5. Corollaries
6. Kleene’s Fixed Point Theorem
7. Conclusions
 - Main results
 - Future works and applications
1. Rice’s Theorem
2. Blum’s Abstract Complexity
3. Similarity and Complexity Cliques
4. Rice-Shapiro’s Theorem
 - Monotonicity
 - compactness
5. Corollaries
6. Kleene’s Fixed Point Theorem
7. Conclusions
 - Main results
 - Future works and applications
Content

1. Rice’s Theorem
2. Blum’s Abstract Complexity
3. Similarity and Complexity Cliques
4. Rice-Shapiro’s Theorem
 - Monotonicity
 - Compactness
5. Corollaries
6. Kleene’s Fixed Point Theorem
7. Conclusions
 - Main results
 - Future works and applications
Outline

1. Rice’s Theorem
2. Blum’s Abstract Complexity
3. Similarity and Complexity Cliques
4. Rice-Shapiro’s Theorem
 - Monotonicity
 - Compactness
5. Corollaries
6. Kleene’s Fixed Point Theorem
7. Conclusions
 - Main results
 - Future works and applications
Rice’s Theorem

Rice 1953

An extensional property of programs is decidable if and only if it is trivial.

extensional = closed w.r.t. extensional equivalence
∀x, φ_m(x) ↑
Let $K = \text{dom}(\phi_k)$, and define

$$\phi_{h(x)}(y) = \phi_k(x); \phi_a(y)$$

Clearly, if ϕ_m is the everywhere divergent function,

$$\phi_{h(x)} \approx \begin{cases}
\phi_a & \text{if } x \in K \\
\phi_m & \text{if } x \notin K
\end{cases}$$

Does h preserve any other property, in addition to extensional equivalence? **Yes, complexity!**

Next: investigates the complexity assumptions needed to formalize such result.
the function \(h \)

Let \(K = \text{dom}(\phi_k) \), and define

\[
\phi_{h(x)}(y) = \phi_k(x); \phi_a(y)
\]

Clearly, if \(\phi_m \) is the everywhere divergent function,

\[
\phi_{h(x)} \approx \begin{cases}
\phi_a & \text{if } x \in K \\
\phi_m & \text{if } x \notin K
\end{cases}
\]

Does \(h \) preserve any other property, in addition to extensional equivalence? \textbf{Yes, complexity!}

Next: investigates the complexity assumptions needed to formalize such result.
Let $k = dom(\phi_k)$, and define

$$\phi_{h(x)}(y) = \phi_k(x); \phi_a(y)$$

Clearly, if ϕ_m is the everywhere divergent function,

$$\phi_{h(x)} \approx \begin{cases} \phi_a & \text{if } x \in K \\ \phi_m & \text{if } x \notin K \end{cases}$$

Does h preserve any other property, in addition to extensional equivalence? Yes, complexity!

Next: investigates the complexity assumptions needed to formalize such result.
the function h

Let $K = \text{dom}(\phi_k)$, and define

$$\phi_h(x)(y) = \phi_k(x); \phi_a(y)$$

Clearly, if ϕ_m is the everywhere divergent function,

$$\phi_h(x) \approx \begin{cases} \phi_a & \text{if } x \in K \\ \phi_m & \text{if } x \notin K \end{cases}$$

Does h preserve any other property, in addition to extensional equivalence? **Yes, complexity!**

Next: investigates the complexity assumptions needed to formalize such result.
The intensional content of Rice’s Theorem

Let $K = \text{dom}(\phi_k)$, and define

$$\phi_{h(x)}(y) = \phi_k(x); \phi_a(y)$$

Clearly, if ϕ_m is the everywhere divergent function,

$$\phi_{h(x)} \approx \begin{cases} \phi_a & \text{if } x \in K \\ \phi_m & \text{if } x \notin K \end{cases}$$

Does h preserve any other property, in addition to extensional equivalence? **Yes, complexity!**

Next: investigates the complexity assumptions needed to formalize such result.
Outline

1. Rice’s Theorem
2. Blum’s Abstract Complexity
3. Similarity and Complexity Cliques
4. Rice-Shapiro’s Theorem
 - Monotonicity
 - Compactness
5. Corollaries
6. Kleene’s Fixed Point Theorem
7. Conclusions
 - Main results
 - Future works and applications
A pair $\langle \phi, \Phi \rangle$ is a *computational complexity measure* if ϕ is a principal effective enumeration of partial recursive functions and Φ satisfies Blum’s axioms (Blum 1967):

1. $\phi_i(\vec{n}) \downarrow \iff \Phi_i(\vec{n}) \downarrow$
2. the predicate $\Phi_i(\vec{n}) = m$ is decidable
Outline

1. Rice’s Theorem
2. Blum’s Abstract Complexity
3. Similarity and Complexity Cliques
4. Rice-Shapiro’s Theorem
 - Monotonicity
 - compactness
5. Corollaries
6. Kleene’s Fixed Point Theorem
7. Conclusions
 - Main results
 - Future works and applications
Big O notation

Big O remind:

1. $f \in O(g)$ if and only if there exist n and c such that for any $m \geq n$, if $g(m) \downarrow$ then $f(m) \leq cg(m)$;

2. $f \in \Theta(g)$ if and only if $f \in O(g)$ and $g \in O(f)$.
Definition Two programs \(i \) and \(j \) are similar (write \(i \approx j \)) if and only if

\[
\phi_j \cong \phi_i \land \Phi_j \in \Theta(\Phi_i)
\]

Similarity is an equivalence relation.

Definition Let \(\langle \phi, \Phi \rangle \) be an abstract complexity measure. A set \(P \) of natural numbers is a Complexity Clique, if and only if for all \(i \) and \(j \)

\[
i \in P \land j \approx i \rightarrow j \in P
\]
Examples of Complexity Cliques

1. \emptyset and ω;
2. for any index i, $[i] \approx$;
3. for any index i, $\{j | \Phi_j \in O(\Phi_i)\}$.
4. all programs with polynomial (exponential, . . .) complexity.

Warning: not every Complexity Class is a Complexity Cliques.

Complexity Cliques are closed w.r.t to union, intersection, and complementation.
Definition A pair $\langle \phi, \Phi \rangle$ has the s-m-n property if for all m and n there exists a recursive function s^n_m such that, for any i and all x_1, \ldots, x_m

$$(a) \quad \phi_{s^n_m(i,x_1,\ldots,x_m)} \equiv \lambda y_1, \ldots, y_n. \phi_i(x_1, \ldots, x_m, y_1, \ldots, y_n)$$

$$(b) \quad \phi_{s^n_m(i,x_1,\ldots,x_m)} \in \Theta(\lambda y_1, \ldots, y_n. \phi_i(x_1, \ldots, x_m, y_1, \ldots, y_n))$$
Complexity Assumptions: s-m-n

Definition A pair $\langle \phi, \Phi \rangle$ has the *s-m-n property* if for all m and n there exists a recursive function s_m^n such that, for any i and all x_1, \ldots, x_m

(a) $\phi_{s_m^n(i,x_1,\ldots,x_m)} \equiv \lambda y_1, \ldots, y_n. \phi_i(x_1, \ldots, x_m, y_1, \ldots, y_n)$

(b) $\Phi_{s_m^n(i,x_1,\ldots,x_m)} \in \Theta(\lambda y_1, \ldots, y_n. \Phi_i(x_1, \ldots, x_m, y_1, \ldots, y_n))$
Definition A pair $\langle \phi, \Phi \rangle$ has the composition property if there exists a total computable function h such that

(a) $\phi_{h(i,j)} \equiv \phi_i \circ \phi_j$
(b) $\Phi_{h(i,j)} \in \Theta(\max\{\Phi_i \circ \phi_j, \Phi_j\})$

we only ask that there exists a way of composing functions with the above complexity.
Definition A pair $\langle \phi, \Phi \rangle$ has the composition property if there exists a total computable function h such that

(a) $\phi_{h(i,j)} \equiv \phi_i \circ \phi_j$

(b) $\Phi_{h(i,j)} \in \Theta(\max\{\Phi_i \circ \phi_j, \Phi_j\})$

we only ask that there exists a way of composing functions with the above complexity.
Definition A pair \(\langle \phi, \Phi \rangle \) has the composition property if there exists a total computable function \(h \) such that

\[
\begin{align*}
(a) \quad & \phi_h(i,j) \equiv \phi_i \circ \phi_j \\
(b) \quad & \Phi_h(i,j) \in \Theta(\max\{\Phi_i \circ \phi_j, \Phi_j\})
\end{align*}
\]

we only ask that there exists a way of composing functions with the above complexity.
Generalized Rice’s Theorem

Asperti 2008

Under the s-m-n and the composition assumptions, a Complexity Clique P is recursive if and only if it is trivial, i.e. $P = \emptyset \lor P = \omega$.
Outline

1. Rice’s Theorem
2. Blum’s Abstract Complexity
3. Similarity and Complexity Cliques
4. Rice-Shapiro’s Theorem
 - Monotonicity
 - compactness
5. Corollaries
6. Kleene’s Fixed Point Theorem
7. Conclusions
 - Main results
 - Future works and applications
Rice-Shapiro’s Theorem

Shapiro 1956

If P is a r.e extensional property of programs then

\[i \in P \iff \exists u \in P \phi_u \text{ is finite} \land \phi_u \leq \phi_i \]

\iff monotonicity

\Rightarrow compactness
Rice-Shapiro’s Yin Yang (monotonicity)

\[\phi_u \leq \phi_i \]
\[\phi_u \text{ is finite} \]

\[x \notin K \iff h(x) \in P \]
The intensional content of Rice's Theorem

Rice-Shapiro's Theorem

Monotonicity

the function h

\[
\phi_i(x)|\phi_j(x) = \begin{cases}
\phi_i(x) & \text{if } \Phi_i(x) \leq \Phi_j(x) \\
\phi_j(x) & \text{otherwise}
\end{cases}
\]

Let $K = \text{dom} (\phi_k)$. Then

\[
\phi_{h(x)}(y) = \phi_u(y)|\phi_k(x); \phi_i(y)
\]

Clearly,

\[
\phi_{h(x)} \approx \begin{cases}
\phi_u & \text{if } x \notin K \\
\phi_i & \text{if } x \in K
\end{cases}
\]
the function h

$$\phi_i(x)|\phi_j(x) = \begin{cases}
\phi_i(x) & \text{if } \Phi_i(x) \leq \Phi_j(x) \\
\phi_j(x) & \text{otherwise}
\end{cases}$$

Let $K = \text{dom}(\phi_k)$. Then

$$\phi_h(x)(y) = \phi_u(y)|\phi_k(x); \phi_i(y)$$

Clearly,

$$\phi_h(x) \approx \begin{cases}
\phi_u & \text{if } x \notin K \\
\phi_i & \text{if } x \in K
\end{cases}$$
the function h

\[\phi_i(x) | \phi_j(x) = \begin{cases}
\phi_i(x) & \text{if } \Phi_i(x) \leq \Phi_j(x) \\
\phi_j(x) & \text{otherwise}
\end{cases} \]

Let $K = \text{dom}(\phi_k)$. Then

\[\phi_h(x)(y) = \phi_u(y) | \phi_k(x); \phi_i(y) \]

Clearly,

\[\phi_h(x) \approx \begin{cases}
\phi_u & \text{if } x \notin K \\
\phi_i & \text{if } x \in K
\end{cases} \]
parallel computation property

Definition (Landweber and Robertson, 1972)
A pair $\langle \phi, \Phi \rangle$ has the *parallel computation* property if there exists a total computable function h such that

\[(a) \quad \phi_{h(i,j)}(x) = \begin{cases}
\phi_i(x) & \text{if } \Phi_i(x) \leq \Phi_j(x) \\
\phi_j(x) & \text{otherwise}
\end{cases}\]

\[(b) \quad \Phi_{h(i,j)} \in \Theta(\lambda x.\min\{\Phi_i(x), \Phi_j(x)\})\]

Assuming the parallel computation property we may generalize monotonicity to r.e. Complexity Cliques.
parallel computation property

Definition (Landweber and Robertson, 1972)

A pair $\langle \phi, \Phi \rangle$ has the *parallel computation* property if there exists a total computable function h such that

(a) $\phi_{h(i,j)}(x) = \begin{cases}
\phi_i(x) & \text{if } \Phi_i(x) \leq \Phi_j(x) \\
\phi_j(x) & \text{otherwise}
\end{cases}$

(b) $\Phi_{h(i,j)} \in \Theta(\lambda x. \min\{\Phi_i(x), \Phi_j(x)\})$

Assuming the parallel computation property we may generalize monotonicity to r.e. Complexity Cliques.
Rice-Shapiro’s Yin Yang (compactness)

For some u

$\phi_u \leq \phi_i$

ϕ_u is finite

$x \in K \iff h(x) \in P$

$x \notin K \iff h(x) \in \overline{P}$
Let $K = \text{dom}(\phi_k)$.

$$
\phi_h(x)(y) = \text{match } FST(\phi_k(x))|SND(\phi_i(y)) \text{ with }
|FST \Rightarrow \uparrow
|SND(a) \Rightarrow a
$$

If $\Phi_i \not\in O(1)$, and $\phi_k(x) \downarrow$, $\Phi_i(y) > \Phi_k(x)$ almost everywhere. Hence

$$
\phi_h(x) \simeq \begin{cases}
\phi_i & \text{if } x \not\in K \\
\text{some finite subfunction of } \phi_i & \text{if } x \in K
\end{cases}
$$
Definition A pair $\langle \phi, \Phi \rangle$ has the \textit{generalized parallel computation} property if there exists a total computable function p such that for all i, i', j, j'

\[
\phi_{p(i, i', j, j')}(x) = \begin{cases}
\phi_{i'}(\phi_i(x)) & \text{if } \Phi_i(x) \leq \Phi_j(x) \\
\phi_{j'}(\phi_j(x)) & \text{otherwise}
\end{cases}
\]

\[
\Phi_{p(i, i', j, j')} \in \Theta \left(\lambda x. \begin{cases}
\Phi_{h(i', i)}(x) & \text{if } \Phi_i(x) \leq \Phi_j(x) \\
\Phi_{h(j', j)}(x) & \text{otherwise}
\end{cases} \right)
\]

Assuming the parallel computation property we may prove that for any r.e. Complexity Cliques P, if $i \in P$ and $\Phi_i \not\in O(1)$ then there exists $u \in P$ such that ϕ_u is finite and $\phi_u < \phi_i$.
Definition A pair $\langle \phi, \Phi \rangle$ has the generalized parallel computation property if there exists a total computable function p such that for all i, i', j, j'

\[
\begin{align*}
(a) & \quad \phi_p(i, i', j, j')(x) = \\
& \quad \begin{cases}
\phi_{i'}(\phi_i(x)) & \text{if } \Phi_i(x) \leq \Phi_j(x) \\
\phi_{j'}(\phi_j(x)) & \text{otherwise}
\end{cases} \\
(b) & \quad \Phi_p(i, i', j, j') \in \Theta \left(\lambda x. \begin{cases}
\Phi_{h(i', i)}(x) & \text{if } \Phi_i(x) \leq \Phi_j(x) \\
\Phi_{h(j', j)}(x) & \text{otherwise}
\end{cases} \right)
\end{align*}
\]

Assuming the parallel computation property we may prove that for any r.e. Complexity Cliques P, if $i \in P$ and $\Phi_i \not\in O(1)$ then there exists $u \in P$ such that ϕ_u is finite and $\phi_u < \phi_i$.
Outline

1. Rice’s Theorem
2. Blum’s Abstract Complexity
3. Similarity and Complexity Cliques
4. Rice-Shapiro’s Theorem
 - Monotonicity
 - compactness
5. Corollaries
6. Kleene’s Fixed Point Theorem
7. Conclusions
 - Main results
 - Future works and applications
Corollary Let P be a r.e. Complexity Clique. If $i \in P$ and $\Phi_i \not\in O(1)$ then for every j such that $\phi_j \cong \phi_i$ we have $j \in P$.

Proof By compactness, there exists a finite sub-function $\phi_r \leq \phi_i$ such that $r \in P$, and by monotonicity, any j such that $\phi_r \leq \phi_j$, independently from its complexity Φ_j, must belong to P.

Corollary No Complexity Clique of total functions and containing (indices of) programs with non constant complexity can be r.e.

Proof By compactness.
Corollaries

Corollary Let P be a r.e. Complexity Clique. If $i \in P$ and $\Phi_i \not\in O(1)$ then for every j such that $\phi_j \cong \phi_i$ we have $j \in P$.

Proof By compactness, there exists a finite sub-function $\phi_r \leq \phi_i$ such that $r \in P$, and by monotonicity, any j such that $\phi_r \leq \phi_j$, *independently from its complexity* Φ_j, must belong to P.

Corollary No Complexity Clique of total functions and containing (indices of) programs with non constant complexity can be r.e.

Proof By compactness.
Corollaries

Corollary Let P be a r.e. Complexity Clique. If $i \in P$ and $\Phi_i \not\in O(1)$ then for every j such that $\phi_j \cong \phi_i$ we have $j \in P$.

Proof By compactness, there exists a finite sub-function $\phi_r \leq \phi_i$ such that $r \in P$, and by monotonicity, any j such that $\phi_r \leq \phi_j$, *independently from its complexity* Φ_j, must belong to P.

Corollary No Complexity Clique of total functions and containing (indices of) programs with non constant complexity can be r.e.

Proof By compactness.
Corollaries

Corollary Let P be a r.e. Complexity Clique. If $i \in P$ and $\Phi_i \not\in O(1)$ then for every j such that $\phi_j \cong \phi_i$ we have $j \in P$.

Proof By compactness, there exists a finite sub-function $\phi_r \leq \phi_i$ such that $r \in P$, and by monotonicity, any j such that $\phi_r \leq \phi_j$, independently from its complexity Φ_j, must belong to P.

Corollary No Complexity Clique of total functions and containing (indices of) programs with non constant complexity can be r.e.

Proof By compactness.
Outline

1. Rice’s Theorem
2. Blum’s Abstract Complexity
3. Similarity and Complexity Cliques
4. Rice-Shapiro’s Theorem
 - Monotonicity
 - compactness
5. Corollaries
6. Kleene’s Fixed Point Theorem
7. Conclusions
 - Main results
 - Future works and applications
Kleene’s Fixed Point Theorem

For any total recursive function f, there exists a such that

$$\phi_a \simeq \phi_f(a)$$

Can we always choose a such that $\Phi_a \in \Theta(\Phi_f(a))$?
Kleene’s Fixed Point Theorem

For any total recursive function f, there exists a such that

$$\phi_a \equiv \phi_{f(a)}$$

Can we always choose a such that $\Phi_a \in \Theta(\Phi_{f(a)})$?
Complexity Theoretic version of Kleene’s Theorem

Theorem Let \(\langle \phi, \Phi \rangle \) be an abstract complexity measure with the s-m-n property, and let \(u \) be an index for the universal function. Then for any total recursive function \(\phi_i \) there exists an index \(m \) such that, for any \(x \),

\[
\begin{align*}
(1) \quad & \phi_m \simeq \phi_i(m) \\
(2) \quad & \Phi_m \in \Theta(\lambda y. \Phi_u(\phi_i(m), y))
\end{align*}
\]

But what about the complexity of the interpreter \(u \)?
The intensional content of Rice's Theorem

Kleene's Fixed Point Theorem

Complexity Theoretic version of Kleene's Theorem

Theorem Let $\langle \phi, \Phi \rangle$ be an abstract complexity measure with the s-m-n property, and let u be an index for the universal function. Then for any total recursive function ϕ_i there exists an index m such that, for any x,

1. $\phi_m \equiv \phi_{\phi_i(m)}$
2. $\Phi_m \in \Theta(\lambda y. \Phi_u(\phi_i(m), y))$

But what about the complexity of the interpreter u?
Fair Interpreters

Definition We say that a universal function ϕ_u is *fair* if for any x

$$\lambda y. \Phi_u(x, y) \in \Theta(\Phi_x)$$

Corollary Let $\langle \phi, \Phi \rangle$ be an abstract complexity measure with the s-m-n property. If it admits a fair universal function u then for any total recursive function ϕ_i there exists an index m such that, for any x,

1. $\phi_m \cong \phi_{\phi_i}(m)$
2. $\Phi_m \in \Theta(\Phi_{\phi_i}(m))$
Outline

1 Rice’s Theorem
2 Blum’s Abstract Complexity
3 Similarity and Complexity Cliques
4 Rice-Shapiro’s Theorem
 ■ Monotonicity
 ■ compactness
5 Corollaries
6 Kleene’s Fixed Point Theorem
7 Conclusions
 ■ Main results
 ■ Future works and applications
Complexity Cliques generalize estensional sets

Complexity Cliques in Δ^0_1 are trivial

Complexity Cliques in Σ^0_1 and Π^0_1 have trivial complexities.
Complexity Cliques vs. Complexity Classes

Complexity-theoretic revisitation of Recursion Theory

Complexity-theoretic aspects of the metatheory of programming languages

Old Quest for a Machine Independent Theory of Complexity