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Abstract

The proofs of major results of Computability Theory like Rice,
Rice-Shapiro or Kleene’s fixed point theorem hide more informa-
tion of what is usually expressed in their respective statements. We
make this information explicit, allowing to state stronger, complex-
ity theoretic-versions of all these theorems. In particular, we replace
the notion of extensional set of indices of programs, by a set of in-
dices of programs having not only the same extensional behavior
but also similar complexity (Complexity Clique). We prove, under
very weak complexity assumptions, that any recursive Complexity
Clique is trivial, and any r.e. Complexity Clique is an extensional
set (and thus satisfies Rice-Shapiro conditions). This allows, for in-
stance, to use Rice’s argument to prove that the property of having
polynomial complexity is not decidable, and to use Rice-Shapiro to
conclude that it is not even semi-decidable. We conclude the paper
with a discussion of “complexity-theoretic” versions of Kleene’s
Fixed Point Theorem.

Categories and Subject Descriptors F.4.1 [Computability The-
oryl; F.1.3 [Machine-independent complexity]

General Terms Theory

Keywords Recursion Theory, computability

1. Introduction

Recursive properties of extensional sets, i.e. index sets for par-
tial recursive functions, have been extensively studied since the
early days of Recursion Theory (Rice 1953; Dekker and Myhill
1958). Among intensional properties of programs, a major role is
played by complexity. The theoretical research on effective proper-
ties of recursive functions under complexity assumptions focused,
since the very beginning, on complexity classes, that is classes
of recursive functions computable (almost everywhere) within a
given bound of complexity ¢. Studies on complexity classes, mostly
developed in the abstract framework promoted by Blum (Blum
1967), extensively investigated their order structure under set theo-
retic inclusion (Borodin 1972; McCreight and Meyer 1969), their
recursive presentability and the computational quality of such a pre-
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sentation (Lewis 1970; Young 1969; Landweber and Robertson
1972). It is important to understand that a complexity class is a set
of functions, and not of indices; regarded as a set of indices, it is
thus extensional by definition. If we are really interested in decid-
ability properties of program complexity, complexity classes do not
look like as an adequate instrument to perform the investigation.

The notion we propose here is that of complexity clique. A com-
plexity clique (Section 2) is a set of indices for recursive functions
closed w.r.t. indices of functions with same extension and similar
complexity (defined in the only sensible way, namely up to con-
stants). A complexity clique is not extensional, in general. On the
other side, any extensional set is a complexity clique (the trivial
“complexity” clique with arbitrary complexity).

Set-theoretic (Section 3) and, especially, recursive properties
of complexity cliques are investigated. In particular, we general-
ize both Rice’s Theorem (Section 4) and Rice-Shapiro’s Theorem
(Section 5), concluding with a discussion of Kleene’s second fixed
point Theorem from a complexity perspective (Section 6). Remark-
ably, all proofs remain essentially the same of their classical coun-
terparts: in other words, all those proofs seem to hide more infor-
mation of what is expressed in their classical statements, and the
notion of Complexity Clique is precisely what is required to make
this hidden information explicit (providing our original motivation
for their introduction).

Following an old tradition, we try to stick to the appealing gen-
erality of Blum’s axiomatic approach; however, axiomatization is
not the focus of the paper, and we shall introduce new axioms with
some liberality, as far as they are satisfied by standard complex-
ity measures; in particular, we shall introduce additional axioms
bounding the complexity of (linear) composition, of the s-m-n func-
tion, and finally of the universal machine.

Our generalization of Rice’s Theorem and other enumeration
techniques is also different from (and in some sense complemen-
tary to) the approach in (Kozen 1980): while Kozen investigates
extensional properties in a sub-recursive setting, we are essentially
concerned with decidability of complexity questions in a general
recursive setting.

2. Similarity and Complexity Cliques

We shall work with n-ary partial recursive functions over natural
numbers. If f is such a partial function, dom(f) and cod(f) re-
spectively denote the domain and range of f. We write f(n) | if
n € dom(f). We use L for the everywhere divergent function,
that is dom(L) = (. Given two function f and g, we write f & g
when fand g have the same graph, i.e. dom(f) = dom(g) and for
any n € dom(f), f(n) = g(n). We say a function is finite if it has
a finite graph (i.e. dom(f) is a finite set). Partial functions are or-



dered w.r.t the set-theoretic inclusion of their graphs: f < g if and
only if graph(f) C graph(g). w is the set of all natural numbers.

DEFINITION 1. Let f and g be partial functions on natural num-
bers:

1. we say f € O(g) if and only if there exist n and c such that for
anym > n, ifg(m) | then f(m) < cg(m);
2. f€0O(g)ifandonly if f € O(g) and g € O(f).

Note that if f € ©O(g) the domains of f and g may only differ
for a finite number of points. Let us also remark that, f € ©(g) if
and only if g € ©(f); in particular, f € O(g) is an equivalence
relation.

DEFINITION 2. (Blum 1967) A pair (¢, ®) is a computational
complexity measure if ¢ is a principal effective enumeration of
partial recursive functions and © satisfies Blum’s axioms:

(a)  ¢i(i1) L @i(70) |

(b)  the predicate ®;(77) = m is decidable

We say two programs are similar when they compute the same
function and have the same complexity, up to constants:

DEFINITION 3. Two programs i and j are similar (write i = j) if
and only if

®; 2 i NDj € O(Dy)
THEOREM 4. Similarity is an equivalence relation.

Proof. Obvious, since similarity is defined as intersection of two
equivalence relations.

We shall write [i]~ for the equivalence class of ¢ w.r.t. the similarity
relation ~.

DEFINITION 5. Let (¢, ®) be an abstract complexity measure. A
set P of natural numbers is a Complexity Clique, if and only if for
all v and j

teEPNj=i—j€EP
EXAMPLE 6. The following are examples of Complexity Cliques:

1. 0 and w;

2. for any index i, [i]~;

3. for any index i, {j|®; € O(P;)}.

On the other side the set {i|®;(a) = b} (i.e. the programs whose
complexity on input a is b) is not a Complexity Clique, in general.

3. Simple properties of Complexity Cliques

A set A C w of indices is extensional if, for all ¢ and j, i €
AN¢; =2 ¢ — j € A; this is equivalent to say that A is
the counter-image (index set) under ¢ of some subset of partial
recursive functions.

The notion of Complexity Clique is a strict generalization of the
notion of extensional set well known in computability theory:

THEOREM 7. Every extensional set is a Complexity Clique.
Proof. Trivial.

Of course, the converse is not true: for instance, the class of pro-
grams with polynomial complexity is not extensional.

Any Complexity Cliques is a union of similarity classes, in
particular:

THEOREM 8. C is a Complexity Clique if and only if

c=Jlil~

i€C

Proof. Trivial.

As a consequence, Complexity Cliques have very good alge-
braic properties; in particular:
THEOREM 9. Complexity Cliques, equipped with the subset rela-
tion, are a Complete Boolean Lattice.

Proof. Just note that C' = | J, i)~ The rest is easy.

The good set-theoretic properties of Complexity Cliques are to
be compared with the very bad properties of Complexity Classes
(stressing again the strong difference between the two notions). In
particular:

1. for any complexity measure, Complexity Classes are not closed
under union (Hartmanis and Stearns 1965; McCreight and
Meyer 1969);

2. there are complexity measures whose Complexity Classes are
not closed under intersection' (Landweber and Robertson 1972)

Let us finally remark an important property about finite functions.

THEOREM 10. Let C' be a Complexity Class and leti € C. If ¢; is
finite then for any j such that ¢; = ¢;, j € C.

Proof.For finite functions, extensional equivalence implies similar-
ity.

4. Generalized Rice’s Theorem

DEFINITION 11. A pair (¢, ®) has the s-m-n property if for all
positive natural numbers m and n there exists a recursive function
Sy, such that, for any i and all 1, . . ., Ty,

(@) Psn (o1,wm)

= )‘yla e 7y’ﬂ'¢i($17' A 7xm,y17 e 7y’ﬂ)
(b) @3%“7117“-72771,)
€Oy, .-, Un-Pi(x1,. .., Tm, Y1, -+, Yn))

Equation (a) is the standard s-m-n theorem, while equation (b)
states that the overhead introduced by the function sj,, is at most
a constant factor: in fact, in standard computational models, it
amounts to the cost of copying the (fixed) parameters x1, ..., ZTm
and then calling ¢; - see e.g. Cutland (1986); Borger (1986);
Odifreddi (1997).

Since the set or recursive functions is closed under composition,
by the s-m-n theorem we may conclude that there exists a total
computable function 4 such that ¢y, ;, 5y = ¢;0¢;. Axioms relating
the complexity of h(i, j) to the complexity of its components have
been considered by Lischke (1975, 1976, 1977). For the purposes
of our analysis, we need a tight bound:

DEFINITION 12. A pair (¢, ®) has the (linear) time-composition
property if there exists a total computable function h such that

(@)  Pngj) = diod;

(0)  Pn(iy) € O(Piod; + 0j)
We say that it has the (linear) space-composition property if equa-
tion (b) is replaced by

(c) Pna,j) € O(maz{®; o0 p;,P;})

Equation (b) says that the cost for computing ¢; (¢;(x)) is, up
to a constant factor, no more than the cost for computing ¢;(x)
plus the cost for computing ¢; on input ¢; (x). Similarly, the space
required for the same computation is the maximum among the

! An important exception are measures satisfying the parallel computation
property (Landweber and Robertson 1972) (see also section 5).



space required for computing ¢;(x) and the space required for
computing ¢; on input ¢, (z).

The previous equations may be extended to n-ary composition,
provided that input variables are linearly partitioned among the
components; if duplication of some input is required, we should
eventually take this cost into account, adding a linear overhead.

A particular case of (multi-variable) linear composition of fre-
quent use in computability theory is sequencing with absence of
communication, i.e. the case of a function

#i(y)

by (T, y) = ¢ (2); ¢i(y) = {L if ¢j() |

otherwise

The aim is merely to force the evaluation of ¢;(xz) before
computing ¢;(y). According to our definitions

Dyi,5) € O(Nay.(2;(z) + Pi(y)))
for time and
Dy, € O(Azy.maz{®;(z), Pi(y)})

for space.
In combination with the s-m-n property, fixing the parameter x,
we have, for both time and space:

LEMMA 13. There exists a total computable function c such that

(a) Ge(iv,e) () = Gi(y)  if ps(x) |
De(iga)(y) =L otherwise

(b) Degija) € O(P:) ifpi(x) ]
Doije) =1 otherwise

In fact, the previous Lemma is all we need for the generalization of
Rice’s Theorem to Complexity Cliques.

THEOREM 14. Under the s-m-n (Def. 11) and the linear-composition
(Def. 12) assumptions (either in time or space), a Complexity
Clique P is recursive if and only if it is trivial, i.e. P = )V P = w.

Proof. Assume P is recursive and let ¢, be its characteristic func-
tion. Suppose P is not trivial, so there exist a and b such that
¢p(a) = 1 and ¢p(b) = 0. Let m be the index of a program
computing the everywhere divergent function; either ¢,(m) = 1
or ¢,(m) = 0. Let us consider the latter case, the other one being

analogous.
Let K be ar.e. not recursive set, and let ¢, be its semi-decision
function, i.e. dom(¢r) = K. Consider the following function:

f(z,y) = ¢r(x); pa(y). By Lemma 13 there exists a total com-
putable function c such that

() Pe(aka) (Y) = da(y) ifz e K
be(ark,a)(y) = L = dm(y) otherwise
(b) (Dc(a,k,z) S e(q:'a) ifx e C
Dcak,z) = L = Pm(y) otherwise
Since P is a Complexity Clique,
opla)=1 ifzek

¢p(m) =0 otherwise

¢P(C(a7 k, 1’)) = {

So, Az.¢p(c(k, a,x)) is a characteristic function for ; ¢ is com-
putable, hence ¢,, cannot be.
The case ¢p(m) = 1 is similar.

The knowledgeable reader will have certainly recognized, in
part (a) of the above proof, the traditional Rice’s argument. We
just rephrased it to put in evidence the two elementary operations

required by the transformation, namely composition and s-m-n.
Providing a complexity bound for such operations is the key point
that allows us to take complexity into account in a formal way.
However, it is clear that, in concrete computational models, part
(b) is always satisfied (that is, the program ¢, (z); o (y) has, for
any given x, the same computational complexity as ¢q (y).

5. Generalized Rice-Shapiro’s Theorem

Rice’s Theorem provides a simple structural criterion for an exten-
sional set to fall in Zp. Rice-Shapiro’s Theorem® does the same for
331. In a modern terminology, the result states that any completely
r.e. set A of partial functions is upward closed and compact, i.e.

¢i € A& Ju finite,u € ANu < ¢;

Let us start considering upward closedness, or monotonicity. The
proof is not as standard as the one for Rice’s Theorem, and not ev-
ery proof is suitable for a complexity-theoretic generalization. We
recall here the argument in Odifreddi (1997), that is particularly
close to our approach. Suppose there exist two partial recursive
functions ¢; and ¢; such that ¢; € A, ¢; € A and ¢; < ¢;.
Let f be a recurtsive function such that

Pre)(w) =y & di(x) =y V(e € KAo;(z) =y)

where K is an arbitrary r.e. non recursive set. Observe that the
function f is well defined and computable just because ¢; < ¢;.
Then

e€ K& dpe €A

and since A is completely re. K would be re. too, that is a
contradiction.

The key point of the above proof essentially consists in running in
parallel two functions, namely ¢;(x) and ¢x(e); ¢;(x) where ¢y,
is a semidecision function for K. In order to study the complexity
of the composite function, we need some assumptions about the
complexity of parallel composition. Remarkably, the subject was
investigated by Landweber and Robertson (1972) a long time ago
and for quite different reasons.

DEFINITION 15. (Landweber and Robertson 1972) A pair (¢p, @)
has the parallel computation property if there exists a total com-
putable function h such that

_J¢i(x) ifPi(z) < Pi(x)
(@) g (@) = ¢;(x) otherwise
(0)  Puu, € OA\z.min{®;(z), P;(x)})

THEOREM 16. Let P be a r.e. Complexity Clique. If i € P, ¢; is
finite and ¢; < ¢j then j € P.

Proof. Suppose there exist ¢ and j such that i« € P, ¢; is finite,
¢i < ¢;butj & P.Let K be ar.e. not recursive set, and let ¢, be
its semi-decision function, i.e. dom(¢i) = K. By Lemma 13 there
exists a total computable function c such that

¢c(j,k,z) (y) = ox(x); 95 (y)

Let h be the function of the parallel computation property, and let
us consider

o N ®i(y)
th(z,c(],k,x))(y) - {¢c(j7k,z)(y)

if @(y) < Pejoh,a) (¥)
otherwise

2There seem to be some controversy on the paternity of this result; in
particular, it is attributed to Shapiro (1956) by Rogers (1987), pag.324,
and to Myhill and Shepherdson (1955) by (Odifreddi 1997), pag.206.



We claim that

_ d)l(y) ifx g C
Phiisc(ik.e)) (Y) = {dy(y) otherwise

If 2 ¢ K then ¢e(jp,0)(y) T so, by definition of ¢pn(; e(jk,0))s
either ®;(y) | and then ¢ c(j,k,2))(¥) = ¢i(y) or otherwise
both ¢p(i,c(5,k,2)) (¥) and ¢;(y) diverge.

Conversely, suppose z € K. If ¢;(y) T, since ¢; < ¢;, also
¢i(y) 1 and hence @ (ic(jra)(y) T.1f ¢;(y) | then, even if
Di(y) < Doy pm () since f; < 63 we have dx(y) = b, (1), and
$0 in any case ¢n(;,c(j,k,2)) (¥) = ¢;(y). The second claim is that

o e@) ifagk
h(iels,k,2)) O(®;) otherwise

Indeed if z ¢ K then ®(; 1 ») = L and

)‘ymln{(bl (y)7 (I)c(j,k:,:c) (y)) =d;

Conversely, if z € K, by Lemma 13, ®.(; 1 o) € O(®;), and
since by hypothesis ¢; is finite, Ay.min{®;(y), Pc(j ko) (y)) =
®.(j,k,2) almost everywhere, so

Oy min{®i(y), Pni,c(i ka1 (¥)} = O(®;)
In conclusion, since P is a Complexity Clique, having assumed
i€ Pand j ¢ P, we have

h(i,c(j, k,x)) € P>z &K

and thus P cannot be r.e.

Let us remark that the hypothesis that ¢; is finite plays a crucial
role in the previous proof. The point is that we have to compute
a function similar to ¢;, if ¢ K and a function similar to ¢; if
x € K. The parallel composition of ¢; and ¢;, when z € K, might
be too fast for our purposes (it could belong to our complexity
clique even if ¢; does not). Take for instance the case ¢; = ¢, but
®; is uniformly faster then ®;: in this case the parallel composition
of ¢ and j gives an algorithm with the same complexity as 4.

As a corollary of Theorem 16 we get the following alternative
proof of Rice’s Theorem (we repeat the statement both for com-
pleteness and for ease of reference to the new proof):

THEOREM 17. A Complexity Clique P is recursive if and only if it
is trivial, i.e. P=0V P = w.

Proof. Let P be a recursive Complexity Clique. Then both P and P
are r.e. and both are Complexity Cliques, since Complexity Cliques
are closed under complementation. Let m be and index for the
everywhere divergent function. Eventually, m € P or m € P.
If m € P then by Theorem 16 the index of any function must be in
P, so P = w. Similarly, if 1 € Pthen P = w.

Let us now come to the converse of Theorem 16, that is com-
pactness. In this case, Odifreddi’s proof runs as follows. Suppose
A is a completely r.e. set of partial computable functions; assume
¢i; € A but no finite subfunction of ¢; is in A. Let g(t) be the
partial computable function such that

1 if ¢»(x) | in less then ¢ steps
t =
9(@:?) {O otherwise

and consider the function ¢ () (z) = g(e, x); ¢i(x). It is clear that
Df(e) = ¢iif dpe(e) T and ¢y is some finite subfunction of ¢ (x)
if pc(e) |. Hence, ¢f(c) € A < e € K, that is a contradiction.

We could probably argue that the complexity of g(x,t), when it
terminates, is at most linear in ¢. However, this seems to require

some delicate assumptions on the complexity of the intrepreter, and
we finally decided to follow a slightly different route.

First of all we need a slight generalization of the parallel com-
position property. The problem is that definition 15 does not allow
to apply different continuations to the two parallel computations
after termination of one of them.

DEFINITION 18. A pair (¢, ®) has the generalized parallel com-
putation property if there exists a total computable function p such
that for all i,i', j, j'

ey = L9 (@i(@))if @i(z) < @5(2)
(a) ¢p(z,2 2353 )( ) {¢j/(¢j (m)) otherwise

O apranco on {Zuro) 100 <00)

Dy, (j0.5)(x)  otherwise
where h is the sequential composition function of Definition 12.

Even if the definition is a bit involved, the generalized parallel
computation property looks like a natural extension of property 15:
roughly, the idea is that, given two algorithms, we may “arbitrarily”
fix a checkpoint in their respective code, run them in parallel and,
according to which one reaches its checkpoint first, drop the other
computation. In order to reduce the generalized property to the
simpler one, it looks enough to state the existence of pairs and a
test function (we must know which one of the two computations
terminated first), but then we should also discuss the complexity of
all these new notions, that would drive us a bit too far away.

THEOREM 19. Let P be a r.e. Complexity Clique. If © € P and
®; & O(1) then there exists j such that ¢; is finite, ¢p; < ¢; and
jeP.

Proof. Let K be a r.e. not recursive set, and let ¢ be its semi-
decision function, i.e. dom(¢r) = K. Let m be an index for
the everywhere divergent function, and let I be an index for the
identity. By the s-m-n property there exists a total computable
function c such that

@c(z,k) 18 either the everywhere divergent function if z ¢ K or
a constant function with complexity ®.(, x) € O(Ay.Pr(z)) =
O(1) otherwise. By the generalized parallel computation property,

(@) bp(i,1,c(a,k),m) (YY) = ?l(y) if 2:(y) < @i ()

otherwise
;(y) if B;(y) < Br(x)
(I) . .
(b) (i1 c(z,k),m) € © (’\y {T otherwise

If 2 ¢ K then forany y ®;(y) < ®r(x), hence ¢y (i, 1,c(a,k),m) (YY) =
¢i(y), and the two functions also have the same complexity. If
z € K, since ®; ¢ O(1) then, ®;(y) < Px(z) only for a finite
number of values for y, and hence ¢p,(;,1,c(x,k),m) 1S a finite func-
tion.

If no index of finite sub-functions of ¢; is in P, we have

¢P(i,1,c(z,k),m) ¢ Pz ¢ IC

and thus P cannot be r.e.

COROLLARY 20. Let P be a re. Complexity Clique. If i € P and
®; & O(1) then for every j such that ¢; = ¢; we have j € P.

Proof. By Theorem 19, there exists a finite sub-function ¢, < ¢;
such that » € P, and by Theorem 16, any j such that ¢, < ¢;,
independently from its complexity ®;, must belong to P.



COROLLARY 21. No Complexity Clique of total functions and
containing (indices of) programs with non constant complexity can
be re.

By the last corollary, we have e.g. that the class of programs
with linear (polynomial, exponential, . . . ) complexity is not r.e. (in
fact, they are all 33: see below).

Corollary 20 essentially says that every Complexity Clique in
%9 is (morally) an extensional set; in other words, all Complexity
Cliques in XY have trivial complexity. Since the complement of
an extensional set is also extensional, a similar result holds for
Complexity Cliques in ITY. Precisely:

COROLLARY 22. Let P be a Complexity Clique in T19. If i € P
then for every j such that ®; ¢ O(1) and ¢; = ¢; we have j € P.

Proof. Let i € P and consider j such that &; ¢ O(1) and ¢; = ¢;.
If j & Pthen j € P. Since P is ar.e. Complexity Clique, then we

are in the hypothesis of Corollary 20 and we should have ¢ € P,
that is contradictory.

It is natural to wonder if there are Complexity Cliques with non
trivial complexity in X5.

THEOREM 23. Let t be any total recursive function. Let Cy be
the following Complexity Clique: Cy = {i|®; € O(t)}. Then,
C: € 2(2)

Proof. By definition, ®; € O(t) if there exist n and c such that
for any m > n, ®;(n) < ct(n). The relation ®;(n) < ct(n)
is decidable by definition of complexity measure (Definition 2).
Hence, C; is 28.

Since X9 is closed under r.e. unions, many interesting Complexity
Cliques (such as, for instance, the Cliques of programs with poly-
nomial complexity) are in £3.

6. Kleene’s Second Fixed Point Theorem

Kleene’s Second Fixed Point Theorem, in Rogers’ formulation
(Rogers 1987), states that for any total recursive function f there
exists an indices 7 such that ¢; = ¢ ;). The question is if we can
always find a fixpoint ¢ with the same complexity as f (7).

In the general framework given by an arbitrary abstract com-
plexity measure, the best we can prove is that the two complexity
of ¢ and f(7) are related by a total recursive function. More pre-
cisely®:

THEOREM 24. (Blum 1971) There exists a binary total recursive
function h monotonically increasing in its second argument such
that, for any total recursive function ¢; there exists an index m
such that, for any x,

(1) ¢m(@) = dg(m)(2)
(2)  Ppm(z) <z, @sim)(2))
B) Pm(z) = Ppim)(2)

Fixing a particular model of computation, we may of course pro-
vide a better estimation for h. The interesting point is that, assum-
ing the s-m-n property, the complexity of i uniquely depends from
the complexity of the universal function ¢.,:

THEOREM 25. Let (¢, ®) be an abstract complexity measure with
the s-m-n property 11, and let u be an index for the universal

3See (Odifreddi  1999) for the analogous theorem in terms of Kleene’s
formulation of the Fixed Point Theorem. This has been also investigated in
(Hansen et al. 1989) but no theoretical measure is given: the emphasis of
the paper is more on practical, implementative issues.

function. Then for any total recursive function ¢; there exists an
index m such that, for any x,

(1) P = ¢¢i(m)
(2) Pm € Oy Pu(i(m),y)

Proof. Consider the following computable function:

9(T,Y) = o, (60 (2)) (¥) = Pu(Puli, (Pulz,2))),y)

By the s-m-n theorem there exists a computable function s such
that ¢,y = Ay.g(x,y) and, for any z,

Puy € Oy Pul¢ulis (Pulw,2))),v))
= O\ Pu(di(¢2(2)),9))

(z is a fixed parameter, hence the complexity of computing ¢; (¢ (z))
does not matter). Since s is a total computable function there exists
p such that s = ¢,. ¢, (p) | since ¢, is total. Moreover we have:

b 0) (W) = 9(0,Y) = Do, (6p ) (V)

and
@y, () = Oy Pu(di(dp(P)), y)

DEFINITION 26. We say that a universal function ¢, is fair if for
any x
Ay @y (z,y) € O(Ps)

The cost of interpreting a program ¢ by a fair universal machine
may only introduce a constant slow-down factor ¢ w.r.t. the direct
computation of . However, the constant ¢ may depend on . Fol-
lowing (Jones 1993) we say that the universal machine is efficient
when the constant c is independent from the interpreted program.

COROLLARY 27. Let (¢, ®) be an abstract complexity measure
with the s —m —n property 11. If it admits a fair universal function
u then for any total recursive function ¢; there exists an index m
such that, for any x,

(1) Pm = dg,(m)
(2) Pm € O(Dy,(m))

Let us remark that the previous result says almost nothing about the
“efficiency” of the fixpoint; it only says that, independently from
¢: we may always find a fixpoint m as (in-)efficient as ¢;(m) (that
is not surprising: a fixpoint program is as efficient as the program
defined by its body).

Not all computational models seem to admit fair universal ma-
chines. Discussing the case of multi-tape Turing machines, Blum
(1971) suggests an upper bound for ®,,(, j) given by ®;(5)* + 4,
where the square is due to the fact that the universal machine has a
given number of tapes, but may need to simulate additional ones (if
we admit that the universal machine has at least two tapes, the cost
is likely to be reduced to log(®;(5))®;(5) + 5)*.

However, many models, comprising single tape Turing ma-
chines, lambda calculus and combinatory logic have fair universal
machines. Unfortunately, this the kind of results that, belonging to
the so called “folklore” of these subjects, cannot be properly quoted
or elaborated. We hope someone will assume soon or later the bur-
den to formally prove these important properties, and also hope that
the scientific community will be so wise to accept these contribu-
tions. As a remarkable exception, the existence of efficient universal
functions is proved by Jones (1993) for several classes of compu-
tational models defining problems in deterministic linear time (i.e.
computational models with very restricted capabilities).

41In our opinion, the notion of multi-tape machine as a foundational model
of computation is arguable: indeed, we are used to work with a fixed ma-
chinery (a given processor), that amounts to fix a single universal machine
with a given number of tapes, emulating all other programs.



The strong version of the Fixed Point Theorem of Corollary 27
(when it holds) is a major tool for the investigation of Complexity
Cliques, since it can be used with the same confidence of the
traditional theorem w.r.t. extensional sets. As a simple example, let
us consider the traditional proof of Rice’s Theorem making use of
a fixed point.

THEOREM 28. A Complexity Clique P is recursive if and only if it
is trivial, ie. P=0V P = w.

Proof. Assume P is recursive and let ¢, be its characteristic func-
tion. Suppose P is not trivial, so there exist a and b such that
¢p(a) = 1 and ¢,(b) = 0. Let us consider the following com-
putable function

boif gp(z) =1

If ¢, is total recursive, so is g, hence we may apply Corollary 27,
concluding that there exists an index m such that

Pm = Pg(m)
b, € @(‘I)g(m))

In particular, if ¢,(m) = 0 we have

¢'m = ¢a
b, € O(D,)

Since P is a Complexity Clique and ¢p(a) = 1 it should also be
¢p(m) = 1: contradiction.
Similarly, if if ¢(m) = 1 we have

¢m = ¢b
D, € O(Dy)

Since P is a Complexity Clique and ¢, (b) = 0 it should also be
¢p(m) = 0, that is again a contradiction.

o) = {a if ¢, (z) = 0

7. Conclusions

In this paper, we introduced the notion of Complexity Clique: a
set of indices for programs closed under a similarity relation de-
fined taking into account their extension and complexity. Recursive
properties of Complexity Cliques have been investigated, sharpen-
ing classical results of Recursion Theory, like Rice’s and Rice-
Shapiro’s Theorems. In particular, we proved that all recursive
Complexity Cliques are trivial, and all Complexity Cliques in X9
and H? are in fact (morally) extensional (i.e. are trivial w.r.t. com-
plexity). In this way, we rephrase classical theorems in computabil-
ity theory in order to establish properties of classes of programs
defined by complexity conditions, concluding that no non-trivial
complexity property is semi-decidable. For instance, the recent field
of implicit computational complexity - see eg Dal Lago and Baillot
(2006), Amadio (2005), citetARO2 and the biliography therein -
studies criteria on programs implying some complexity properties.
The results of this paper put in evidence that such criteria, when-
ever computable, can not be necessary and sufficient conditions. In
other words, if polytime languages may be extensionally complete
(computing all polynomial functions) they cannot be intensionally
complete, that is express all polynomial algorithms.

The technical flavor of the paper follows Blum’s axiomatic ap-
proach, but for the aims of the proofs we extended Blum’s axioms
with stronger assumptions, concerning the complexity of the s-m-n
function, of sequential and parallel composition, and of the univer-
sal machine. Not all assumptions are needed for all results and the
study of complexity seem to allow a deeper, fine grained, investi-
gation even of traditional aspects of Recursion Theory (see e.g. the

three different proofs of the generalized Rice’s Theorem: Theorems
14-17-28).

It is possible (but not evident) that by relaxing the complexity
condition in the notion of similarity (e.g. to recursive relatedness
via some total recursive function h) we could prove (much) weaker
results in the full generality of an arbitrary abstract complexity
measure (i.e. without requiring any additional axiom). However,
our axioms are very natural, and it is not clear if the effort would
be worth the result.

From a strictly technical point of view, the requirement i ¢
O(1) in Theorem 19 (and followings) is annoying (more from an
aesthetic point of view than a practical one). It would be nice to
find a way to avoid it (or, alternatively, to prove that it is indeed an
essential hypothesis).

We believe that most of the interesting problems investigated at
the beginning of the seventies for Complexity Classes can also be
studied, possibly more profitably, in the framework of Complexity
Cliques. A typical example is recursive presentability, that is the
problem to provide effective enumerations of representatives (up to
extensional equivalence) for all elements in the given set (such as
the problem of giving an effective enumeration of programs com-
puting all functions with polynomial complexity). As already re-
marked by several authors - see e.g. Landweber and Robertson
(1972); Young (1969) -, the problem does not make much sense for
Complexity Classes: since complexity Classes are extensional you
could enumerate “bad” programs (not within the given complexity
bound) for “good” functions (functions admitting a program within
the given complexity bound). The problem has been traditionally
solved introducing a notion of quality for presentations (Landwe-
ber and Robertson 1972), but Complexity Cliques, due to their
intensional nature, could provide an alternative and possibly more
natural framework to work with.

One of the appealing aspects of Complexity Cliques is that, (at
the contrary of Complexity Classes, for which even basic composi-
tional properties fail) they have a very nice set-theoretic structure:
they are a Complete Boolean Lattice (Theorem 9).

In a categorical perspective, Complexity Cliques, equipped with
the similarity relation, are partial equivalence relations, and it looks
natural to investigate them as a sub-category of PER (Freyd et
al. 1992). The natural notion of morphism seems to be that of
a complexity-preserving effective operator (Dekker and Myhill
1958); note that, however, in order to define a category you im-
mediately need some additional assumptions on the nature of com-
position beyond Blum’s axioms. As it is often the case, Category
Theory may turn out to be the best tool to grasp the essence of the
notions under investigation.

Finally, from the point of view of Abstract Complexity Theory,
we hope that our work can help to revitalize a field that, lately, has
been a bit starving. In particular, in (Asperti and Ciabattoni 1995) it
was proved that any enumerated collection of functions containing
projections, a universal function, and closed w.r.t. composition and
the s-m-n construction is algorithmically complete. For this reason,
an abstract approach based on complexity assumptions for these
basilar constructions looks particularly appealing.
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