
On the complexity of beta-reduction

Andrea Asperti

Dipartimento di Matematica

P.zza di Porta S. Donato 5, Bologna, Italy

asperti@cs. unibo.it

Abstract

We prove that the complexity of Lamping’s optimal

graph reduction technique for the A-calculus can be ex-

ponential in the number of L6vy ’s family reductions.

Starting from this consideration, we propose a new mea-

sure for what could be considered as “the intrinsic com-

plexity” of A-terms.

1 Introduction

Twenty years ago, L&Jy [Le78] introduced the notion of

redez famikj to formalize the intuitive idea of optimal

sharing in the J-calculus (see also [Le80, AL93]). As

a main consequence, the length of the family reduction

would provide a lower bound to the intrinsic complexity

of A-term reduction, in any possible implementation.

In 1990, Lamping [Lam90] discovered a complex graph

reduction technique that was optimal in L&Ty ’s sense

(that is, all sharable redexes had a unique graphical rep-

resentation, and could be reduced in a single atomical

step). However, Lamping did not establish any com-

plexity relation between his algorithm and the lenght of

the corresponding family reduction.

In this paper, we prove that Lamping’s technique can be

exponential with respect to the number of redex families

reduced along the computation. This fact does not con-

tradict neither the optimality of the algorithm, nor its

relevance in view of an actual implementation (as a mat-

ter of fact, the examples where Lamping’s algorithm is

exponential, are also the examples where it works better

with respect to more traditional implementation tech-

niques). On the contrary, we claim that the lenght of

the family reduction is not a reasonable lower bound

to the “intrinsic complexity” of J-terms, and we shall

propose a different complexity measure.

Permission to make digital/hard copies of all or part of ttda material for
peraoml or classroom use is granted without fee provided that the copies
are not made or dtatributed for profit or commercial advantage, the copY-
right notice, the title of the publication and its date appear, and notice is
given that ~opyright is by permission of the ACM, Inc. To copy orheruk%

to republish, to post on servers or to redistribute to lists, requires apecitic
permission andlor fee.
POPL ’96, St. Petersburg FLA USA
@ 1996 ACM @89791 _769-3195\Ol ..$3 .5(3

2 Lamping’s graph reduction

technique

Lamping’s graph rewriting rules can be naturally clas-

sified in two main groups:

1.

2.

the rules involving application, abstraction and

sharing nodes (fan), that are responsible for ~-

reduction and duplication (we shall call this group

of rules the abstract algorithm);

some rules involving control nodes (square brackets

and croissants), wh~ch are merely required for the

correct application of the first set of rules.

More precisely, the first set of rules requires an “oracle”

to discriminate the correct interaction rule between a

pair of fan-nodes; the second set of rules can be seen as

an effective implementation of this oracle.

This distinction looks particularly appealing since all

different translations proposed in the literature after

Lamping [GAL92a, GAL92b, As94, As95] differ from

each other just in the way the oracle is implemented (in

the sense that all of them perform exactly the same set

of abstract reductions).

In this paper, we shall prove that Lamping’s technique

can be already exponential in its abstract algorithm,

without considering the extra work required by the or-

acle.

For this reason, we shall introduce here Lamping’s tech-

nique without mentioning the possible solution to the

effective implementation of the oracle.

2.1 Initial translation

Initially, in the optimal graph reduction technique, a

A-term is essentially represented by its abstract syntax

tree (like in ordinary graph reduction). There are two

main differences, however:

1. we shall introduce an explicit node for sharing;

2. we shall suppose that variables are explicitly con-

nected to their respective binders.

110

For instance, the graph in Figure l.(l) is the initial

representation of the A-term M = (two 6), where

two= Jz.Ay. (z(zg)) and6=Az.(m z).

The triangle (we shall call it fun) is used to express the

sharing between different occurrences of a same variable.

All variables are connected to their respective binders

(we shall always represent this connection on the left of

the connection to the body). Since multiple occurrences

of a same variable are shared by fans, we shall have a

single edge leaving a J towards its variables. So, each

node in the graph (Cl, J and fan) has exactly three dis-

tinguished sites (ports)

other ports.

where it will be connected with

2.2 Reduction

We shall now illustrate the main ideas of Lamping’s

optimal graph reduction technique by showing how a

simplified version of the algorithm would work on our

sample term (two @. As we shall see, a crucial issue

will remain unresolved. This is exactly where the oracle

comes in: however, since the complexity of the oracle is

not necessary to prove the exponential nature of Lamp-

ing’s algorithm, we shall not discuss this complex topic

here.

Lamping’s algorithm consists of a set of local graph

rewriting rules. At a given stage of the computation,

we can usually have several reducible configurations in

the graph. In this case, the choice of next rule to ap-

ply is made non-deterministically. This does not mat-

ter that much, since the graph rewriting system is an

Interaction Net in Lafont’s sense [Laf90], and it satis-

fies a one-step diamond property (that implies not only

confluence but also that, if a term has a normal form,

all normalizing derivations have the same length). In

particular, we shall usually choose the next rule in our

example of reduction according to a didactical criterion

(and sometimes for graphical convenience).

The most important of the graph rewriting rules is obvi-

ously /3-reduction: (ku.itf N) + M [N/z]. In graph re-

duction, substituting a variable z for a term iV amounts

to explicitly connect the variable to the term N. More-

over, the value returned by the application before the

redex is fired (the link above the application) becomes

the (instantiated) body M of the function. Since the

portions of graph representing M and N do not play

any role in the graph reduction corresponding to the@

rule, this reduction can be expressed by the completely

local graph rewriting rule in Figure 2.

By firing the outermost /3-redex in (two 6), we get the

graph in Figure 1.(2). Since the next redex involves a

shared ~-expression, we must eventually proceede to the

duplication of 6. In ordinary graph reduction, this du-

(1)

k

~

A

(4)

$

/

. . . .
,, ..

~,,,,,

;, ‘/

Y’.

!!?

.
~,,,,’ $,,

;
:b:
:,
., ,,?’

%.. .

(7)

(2)

(5)

I

t

/“

7

A

J

(8)

(3)

I

(6)

!“

/1

f

Y

(9)

Figure 1: Graph reduction of (two 6)

Figure 2: the @-rule

111

plication would be performed as a umque, global step

on the shared piece of graph. On the contrary, the op-

timal graph reduction technique proceedes in a more

lazy way, duplicating the external A but still sharing its

body. However, since the binder has been duplicated,

we are forced to introduce another fan on the edge lead-

ing from the binder to the variable. In a sense, this fan

works as an %nsharing)’ operator (fan-out, usually de-

picted upside-down), that is to be “paired” against the

fan(-in) sharing the body of the functionl. Since the

body of the function Ax .M does not play any role in

this reduction, it can be formally expressed as a local

interaction between a fan and a }, as described in Figure

3. Let us now proceede in the analysis of our example.

Figure 3: Fan-A interaction

By applying the fan-a interaction rule, we get the graph

in Figure 1.(3). Now, two /?-redexes have been created,

and by their firing we are lead to the graph in Figure

1.(5). We have no more ,@redexes in the graph, and

no fan-a interactions, so we must proceede in the dupli-

cation process, but we must be very carefully here. In

particular, the following graph rewriting rule is strictly

x-w
Figure 4: not optimal duplication of the application

forbidden, in the optimal imlementation technique (al-

though semantically correct). The intuition should be

clear: since the shared application could be involved in

some redex, its duplication would imply a double exe-

cution of the redex.

The only other possible interaction is between the two

fans inside the dotted region. This is another crucial

1 Although there is no operational distinction between a fan-in

and a fan-out, their intutive semantics is quite different; in partic-

ular, keep in mind that a fan-out is always supposed to be paired

with some fan-in in the graph, delimiting its scope and annihilat-

ing its sharing effect. The way the correct pairing bet ween fans

is determined is a crucial point of the optimal graph reduction

technique, solved by the “oracle”. Obviously, in order to give a

precise definition of the abstract algorithm we should provide the

formal definition of the oracle, that is very complex and would

just obscure the intuitive natnre of the abstract rules. In particu-

lar, the obvious and naive idea of labeling fans does not work (see

[Lam89]).

point of the optimal graph reduction technique. As we

shall see, this interaction must be handled in a differ-

ent way form the similar interactions in Figure 1. (’7).

Note in particular that the two fans in Figure 1.(5) are

not “paire&: the fan-in is a residual of the shared vari-

able of 6, while the fan-out is a residual of the shared

variable of two, in the process of duplicating 6. Since

the two fans have nothing to do with each other, they

must duplicate each other, according to the rule in Fig-

ure 5.(2). Now (see Figure l.(6)), we have a fan-out

ab sb #b .’.

e d cd cd cd

[1) (2)

Figure 5: fan-annihilation rule

in front of the function-port of the application. In this

case, we can apply the following rule: Intuitively, this

Figure 6: fan-@ interaction

rule is correct from the point of view of optimal sharing

since such a configuration already implies the existence

of two unshakable (class of) redexes for the application.

After firing this rule, we get the graph in Figure l.(7).

In this case, both pairs of fans are paired: they both be~

long to the same “duplication process”, that has been

now (locally) completed. So, the obvious rule, in this

case, is to annihilate the paired fans, according to Fig-

ure 5.(l).

The problem of deciding which rule to apply when two

fans meet each other (that is the question of how theii

pairing is established) is the crucial point of the optimal

implementation technique (solved by the oracle).

By a double application of this rule, we get the graph

in Figure 1.(9), that is in normal form w.r. t. Lamping’s

algorithm.

3 complexity

Before discussing the complexity of Larnping’s “ah:

stract” algorithm, we should start by fixing a few pre-

liminary assumptions. First of all, a typical feature

112

of optimal techniques is that of anticipating work that

could become usefull only later on in the computation.

A reasonable way to take into account this “extra” work

is that of restricting the analysis to A-terms whose nor-

mal form is an atomic constant (or, if you prefer, a

variable). This hypothesis also allows us to avoid some

obviously degene~ate examples. Consider for instance

the term P = Az.Ay. (y z z). If we apply P to a closed

term M in normal form, M gets fully duplicated, and

the “cost” of the @redex would seem proportional to

the size of M. However, this reasoning does not seem

convincing, since in duplicating M we also duplicated

all its A and application nodes (its prerequisite chains,

in Lamping’s terminology), which (whenever turned to

redexes), would eventually belong to distinguished fam-

ilies! So, we just anticipated work that had to be done

in any casez.

Our second assumption will be to consider only terms

of the ~-I calculus. The reason, here, is that the cor-

rect handling of garbage collection in optimal reduction

techniques is still a subject of investigation (in particu-

lar, Lamping’s approach does not seem to be completely

satisfactory).

We shall now provide an example of a A-term satisfying

our assumptions, whose “abstract” reduction (i.e. with-

out considering the extra cost of the oracle) is already

exponential in the number of family reductions. Since

the example is quite complex, we shall proceede by con-

sidering a few auxiliary terms.

Let us start with a simple case. In Figure 7 is a pos-

sible representation of the Church Integer two in shar-

ing graphs, obtained by reducing the l-term two’ =

kc.~y. (h.(z(z y)) ~w.(z w)). Let us now consider the

application of two’ to itself. Recall that the application

(n m) of two church integers n and m gives the church

integer mn, so the expected result is (a representaion

of) the church integer four. The reduction is shown

in Figure 8. The two first reduction steps are ,d-redex.

After these reductions we are left with the term in Fig-

ure 8.(3), where the sub term Jy. (z(z y)) is shared by

means of the two copies of the fan marked “ a“. Now,

this subterm is fully duplicated. This process requires:

2 steps for duplicating the A and the application; 2 steps

for duplicating the fans; 3 steps for effacing all residuals

of fans marked with “ a“.

After these 7 steps we are left with the graph in Fig-

ure 8.(4), where a new ~-redex has been put in evi-

dence. Firing this redex, we obtain the final config-

uration in Figure 8.(5). Summing up, we executed 3

2The idea of considering only those rules which are needed to

put in evidence new redexes gives some problems due to the un-

predictable disposition of fans inside a “virtual” redex: again, if

all copies of prerequisite chains generated by the duplication are

not fired along the computation, we could perform some (appar-

ently) useless work.

Figure 7: two’: a representation of Church’s integer two

//&~
two’ two’

(1) (2) (3)

(4) (5)

Figure 8: the reduction of (two’ two’)

113

/3-reductions (actually, family reductions), and 7 fan-

interactions. Note moreover that the final configuration

has the same shape of the initial one.

Let us now generalize the previous example. As should

be clear, the church integer 2n can be represented by the

graph in Figure 9, where we have exactly a sequence of

fans marked with “ a“ is now fully duplicated. This du-

plication requires: 2 steps for duplicating the A and the

application; 2n steps for duplicating fans; n+2 steps for

effacing fans. This gives a total of 4 + 3n operations.

After these reductions, we get the configuration in Fig-

ure 11. A new fl-redex has been created. 13y firing this

Figure 9: a representation of 2n

fan-in of length n and a corresponding sequence of fan-

out of the same length.

Let us now apply this term to itself. By firing the two

outermost ~-redexes we get the term in Figure 10. As

Figure 11: the reduction of (2n 2n)

Figure 10: the reduction of (2n 2n)

in the case of two, the portion of graph inside the two

redex we obtain the graph in Figure 12. Now, this graph

has the same shape of the graph in Figure 10, and we

can iterate our reasoning. In particular, the duplication

of the innermost part of the graph will now require 4 +

3* (2n) operations. Then, we shall have a new /3-redex,

and by its firing, we shall get a graph of the same shape

of Figure 12 but where the innermost sequences of fans

have length 4n (this length is doubled at every iteration

of the process), while the length of the outermost se-

quences is decremented by one.

Summing up, the total number of fan-interactions is

given by.

({4+3n)+(4+3*(2n))+(4+3 *(4n))+. . .+(4+3 *(2n-’n)))

114

the term (g n) is

n-1

f(rl)=9+3*n+~bi

i=o

Figure 12: the reduction of (2n 2n)

n-1

= 4n+3n*~2i =4n+3n*(2”–1)= n*(3*2n+l)

i=o

In contrast, we have executed just n @-reductions in the

main loop, plus two at the very beginning, for a total of

n + 2 family reductions.

Our final problem consists in providing an example

based on the terms above which satisfies our auxiliary

assumptions mentioned at the beginning of this section

(i.e. it should be a term of the J-I-calculus, whose nor-

mal form is an atomic constant).

The term we consider is: g = An. (n 6 two’ 1 q), where

6 = Az.(fiz), two’ = kz.Ag, (Az. (z(z y)) Aw. (m w)), I is

the identity and q is some constant. If n is a church in-

teger, (g n) obviously reduces to q. The term (n 6 two’)

is a real “monster”, from the complexity point of view.

As a function of n, it corresponds to the church integer

an, in the succession ao = 2; ai+l = a~i. For instance,

a3 = 256256. Let us now consider the number of family

reductions. When we apply g to the Church integer O,

we perform 9 family reductions (one for the application

of g, two for the application of O, three internal to two’,

and three for the extra-identities). These operations are

constant for each input n of the function g. Let us now

compute the cost for each application of (6 ai). This is

1 plus the number of family reductions for (ai ai) com-

puted in the previous section, namely 2 + log(ai). Note

that the succession b~ = Jog(u,) can be equally defined

as b. = l; bi+l = bi*2b; .

Summing up, the number of family reductions ~(n) for

Finally, let us consider the number of fan-interactions.

For each application of (6 ai), we have 1 + 4 + 3 * bi in-

teractions for duplicating a,, plus bi + 3 * b,+l operations

in the reduction of (a~ ai) (recall that b~+l = bi * 2b~).

Moreover, we have one single operation internal to two’,

5 * (n – 1] operations for creating all copies of 6, and

bn final operations of fan-effacement when we apply the

external parameters.

Summing up, the number c(n) of fan-interactions (for

n > 0) is given by the formula

n-1 n

c(n)= 10*n–4+4*~bi+ 3*~bi+bn

i=O i=l

n—1

= 10*n+7* ~bi+4*b. >4 *b.

2=1

Note now that 2~::01 b’ = b.. So,

For n z 3, it is easy to show that 29+3” < 2s*bn. Hence:

2f(nJ < 28* b: < 24* c(n)z.

and finally (for any n z 3)

We can also easily prove that, for any n, c(n) s 2f(n~.

O% ;ne side we have 2ff”l > 29* b~. On the other side,

~i~O hi 5 h. and obviously n s b., so

c(n) < 21 *bn < 29 *b~ < 2f(n)

3.1 The Bologna Optimal Higher-order

Machine

The previous formulas have been also experimentally

confirmed by our prototype implementation of (a vari-

ant of) Lamping’s algorithm: the Bologna Optimal

Higher-Order Machine (BOHM)3. BOHM [AGN95] is

a simple interpreter written in C. Its source language is

a sugared A-calculus enriched with booleans, integers,

lists and basic operations on these data types. The ex-

tension of Lamping’s technique to this language is essen-

tially based on Asperti and Laneve’s work on Interaction

3 BOHM is available by anonymous ftp at ftp .cs.unibo.it, in the

directory /pub/ asperti. Get the file BOHMI .O.tar.Z (compressed

tar format).

115

Systems [AL93b]. In particular, all syntactical opera-

tors are represented as nodes in a graph. These nodes

are divided into constructors and destructors, and re-

duction is expressed as a local interaction (graph rewrit-

ing) between constructor-destructor pairs.

BOHM is lazy (in the sense that it always reduces the

fumily of the leftmost outermost redex) and weak (that

is, it stops computing as soon as the top node in the

graph is a constructor). As a consequence, BOHM sup-

ports lazy data structures, such as streams.

Due to its prototyping nature, BOHM has been espe-

cially designed to provide a large number of experimen-

tal data relative to each computation (user and system

time, total number of different kinds of interactions,

storage allocation, garbage collection, and so on). The

results of the computation of the function g of the pre-

vious section are shown in figure 13. The four columns

Input user tot. inter. fam. fan-inter.

(g zero) 0.00 s. 38 9 2

(g one) 0.00 s. 64 13 18

(g two) 0.00 s. 200 18 66

(g three) 15.90 s. 2642966 29 8292

Figure 13: The function g

in the table are, respectively, the user time required by

the computation (on a Spare-station 5), the total num-

ber of interactions (comprising the “oracle”), the length

of the family reduction (app-lambda interactions), and

the total number of fan-interactions.

It is also possible to find examples of exponential ex-

plosion whith respect to a /inear grow of the number

of family reductions. An interesting case is provided

by the J-term h = Jn.(n two’ two’ 1 q). Using the

same technique of the previous section, it is easy to

prove that, for this function, the number of family re-

ductions ~(n) grows linearly in its input n (in particular,

~(n) = 9 + 3 * n), while the number of fan-interactions

c(n) is given by the formula

c(n)= 12*n– 2+4*2’

In particular, for any n,

In the table of Figure14, you will find the experimental

results in BOHM. In this case, we also make a compar-

ison with two standard (respectively, strict and lazy)

implementations such as CamI-Light and Yale Haskell.

CamlLight [LM92] is a bytecoded, portable implementa-

tion of a dialect of the ML language (about 100K for the

runtime system, and another 100K of bytecode for the

compiler, versions for the Macintosh and IBM PC are

also available) developed at the INRIA-Rocquencourt

(France). In spite of its limited dimensions, the per-

formance of CamlLight is quite good for a bytecoded

implementation: about five times slower than SML-NJ.

We used CamlLight v. O.5.

Yale Haskell [Ya94] is a complete implementation of

the Haskell language developed at Yale University. The

Haskell compiler is written in a small Lisp dialect similar

to Scheme which runs on top of Common Lisp. Haskell

programs are translated into Lisp, and then compiled

by the underlying Lisp Compiler. We used Yale Haskell

Y2 .3b-v2 built on CMU Common Lisp 17f.

The results of the test should give a gist of the power

of the optimal graph reduction technique.

In general, the relative amount of fan-interaction rules

with respect to the number of family reductions in a

computation looks related to the amount of sharing in

the term. So, the cases where Lamping’s algorithm

is exponential in the number of family reductions are

also the cases where the performance of BOHM is so

amazingly better with respect to convential implemen-

tations. The worse cases for BOHM are when Lamping’s

abstract algorithm is /znear in the number of families.

However, also in these cases, its performance is not as

bad as one could expect: BOHM is always five to ten

times better than the Yale Haskell interpreter, and it

is often comparable with the Yale Haskell compder. As

an example, in Figure 15 we give the experimental re-

sults about the computation of the Fibonacci function,

defined in the obvious way. In this case, the number

of family reductions is the total number of constructor-

destructor interactions. For Haskell, the fibonacci func-

tion has been compiled.

4 Discussion

We proved that the complexity of Lamping’s algo-

rithm can be exponential in the number of family re-

ductions. We conjecture that, under our assumptions

(terms of the M-calculus reducing to a constant), this

value should also also provide an upper bound to the

complexity of what we called the abstract algorithm.

More precisely, if ~ is the number of family reductions

required for normalizing the term, we conjecture that

the total number of reductions rules required by Lamp-

ing’s abstract algorithm is alwasy less than 2f. This

result looks difficult to prove, since nothing is known

about the structure of graphs along a reduction (so, it

is not clear how to use induction).

However, in our opinion, the real issue is of a differ-

ent nature. In particular, the number of family reduc-

116

Input BOHM Carol-Light Haskell

user tot. inter. fam. fan-inter. user user

(h one) 0.00 s. 67 12 18 0.00 s. 0.00 s.

(h two) 0.00 s. 119 15 38 0.00 s. 0.02 s.

(h three) 0.00 s. 204 18 66 0.00 s. 0.18 S.

(h four) 0.00 s. 414 21 110 1.02 s. 51.04 s.

(h five) 0.00 s. 1054 24 186 ?? ??

(h six) 0.02 s. 3274 27 326

‘ (h seven) 0.07 s. 11534 30 594

(h eight) 0.26 S. 43394 33 1118

(h nine) 1.01 s. 168534 36 2154

(h ten) 4.04 s. 664554 39 4214

Figure 14: The function h

Input BOHM Carol-Light Haskell

user tot. inter. fam. fan-inter. user user

(fib 4) 0.00 s. 265 75 190 0.00 s. 0.00 s.

(fib 8) 0.02 s. 1991 506 1485 0.00 s. 0.01 s.

- (fib 12) 0.13 s. 13822 3462 10360 0.01 s. 0.06 S.

(fib 16) 0.80 S. 94913 23723 71190 0.03 s. 0.38 S.

- (fib 20) 4.78 S. 650719 162594 488125 0.23 S. 3.63 S.

Figure 15: Fibonacci

tions does not seem to provide a reasonable lower bound

to the “intrinsic” complexity of a A-term. Intuitively,

Lamping’s abstract algorithm does not seem to perform

any useless operation. Our claim is that the total numb-

er of these rules, instead of the number of family reduc-

tions, would provide a more reasonable and interesting

measure of the “intrinsic” complexity of a A-term. More

precisely, we propose to count the total number of anni-

hilation rules between fans (plus the number of family

reductions). Note that, under our assumptions, the two

complexity measures above turn out to be equivalent

(if the term reduces to a constant, all fan, application

and ~ nodes have to be annihilated, soon or later). More

precisely, consider a normalizing computation for a term

M of the M-calculus that reduces to a constant. Let ~

be the number of family reductions in the derivation,

d be the number of duplication rules, e be the number

of fan-annihilation rules, and Iikf I be the total number

of application, abstraction and fan nodes in M. Then,

obviously,

@fl+2*d–2*e-2*~=()

So, e+j=d+~.

There are several motivations to support our claim.

First of all, as it was remarked in [GAL92a], J and

application nodes can be assimilated to fans, and the

~-reduction rule can be seen as an annihilation rule be-

tween a pair of fans. From this respect, there is no clear

reason for giving a special status to /?-redexes.

The second point is subtler. Using context semantics, it

is possible to prove that the annihilation rules between

fans are in bijective correspondence with the number

of discriminants for different @-cycles in the kterm4.

[AL93, ADLR94]. Rouglhy, a @-cycle is a particular

kind of looping path inside the argument of an applica-

tion. Now, every time we have a discriminant for such

a cycle (i.e. the cycle is shared), we also have an extra

and unavoidable operation that amounts to choose the

proper discriminant when coming back from the loop.

Following [DR95], this extra operation (that essentially

amount to save a suitable return information in presence

of a possible looping situation), can be easily recognised

in other typical implementation techniques, such as en-

4 The proof of the bijective correspondence between fan-

annihilations and discriminants for different @l-cycles will be the

subject of a forthcoming paper in collaboration with Cosimo Lan-

eve. Not e that, in this way, we relate a dynamic notion (an in-

teraction) to a static one (et path), This result looks particularly

relevant in view of complexity issues: computing the number of

different paths of this kind is not easy, but it still looks simpler

than directly computing the number of fan-armihilat ions.

117

vironment machines.

Our complexity measure has been confirmed so far by all

the tests we made on many available implementations

of functional languages.

5 Conclusions

There are a lot of interesting open problems related to

optimal reductions. First of all, it looks important to

provide a definite upper bound to the complexity of

Lamping’s “abstract” algorithm in terms of family re-

ductions. Secondly, we should understand the complex-

ity of what we called the “oracle”. The complexity of

this part of the algorithm is actually very different in

all the reduction techniques proposed so far (see [As95]

for a discussion), and it is still a subject of research. As

you can see by the few examples in BOHM (that is now

quite sophisticated from this respect), the complexity

of the oracle is one of the crucial issues of Lamping’s

technique. Although, in BOHM, it is clearly not linear

w.r. t. the number of applications of abstract rules, we

have found no evidence so far of an exponential explo-

sion of its complexity.

Finally, from the implentative point of view, the big

problem is to understand if and how Lamping’s algo-

rithm could be compiled.

Acknowledgements

We would like to thank Cosimo Laneve for many in-

teresting discussions on the subject of this paper.

References

[As94] A. Asperti. Linear Logic, Cornonads, and Opii-

mal Reductions. Fundamental In formaticae, Special

Issue devoted to Categories in Computer Science,

Vol. 22, n.1, pp.3-22. 1995.

[As95] A. Asperti. 60!E = 1: @timzzinO OPtimal

J-calculus implementations. Proc. of the Sixth

Conf. on Rewriting Techniques and Applications,

(RTA’95), Kaiserlautern, Germany. 1995.

[AGN95] A. Asperti, C. Giovannetti, A. Naletto. The

Bologna Opt imal Hzgher-order Machine. Techni-

cal Report UBLCS-95-9, Laboratory for Computer

Science, University of Bologna. To appear in the

Journal of Functional Programming.

[AL93] A. Asperti, C. Laneve. Paths, Computations

and Labels in the J-calculus. To appear in Theo-

retical Computer Science, Special issue devoted to

RTA’93, Montreal. June 1993.

[AL93b] A. Asperti, C. Laneve. Interaction Systems II:

the practice of opitmal reductions. Technical Re-

port UBLCS-93-12, Laboratory for Computer Sci-

ence, University of Bologna. To appear in Theoret-

ical Computer Science.

[ADLR94] A. Asperti, V. Danos, C. Laneve, L. Reg-

nier. Paths in the A-calculus: three years of com-

munications wzthoui understandings. Proceedings

of LICS’94. Paris. 1994.

[DR95] V. Danos, L. Regnier. Reversible and ir-

reversible Computations: GOI and J-machines.

Draft. 1995.

[GAL92a] G. Gonthier, M. Abadi, J.J. L&ry. The geom-

etry of optimal lambda reduction. Proc. of the 19th

Symposium on Principles of Programming Lan-

guages (POPL 92). 1992.

[GAL92b] G. Gonthier, M. Abadi, J.J. L4vy. Linear

Logic without boxes. Proc. of the 7th Annual Sym-

posium on Logic in Computer Science (LICS ‘92).

1992.

[Laf90] Y. Lafont. Interaction Nets. Proc. of the 17th

Symposium on Principles of Programming Lan-

guages (POPL 90). San Francisco. 1990.

[Lam89] J. Lamping. An algorithm for optimal lambda

calculus reductions. Xerox PARC Internal Report.

1989.

[Lam90] J. Lamping. An algordhm for optimal lambda

calculus reductions. Proc. of the 17th Symposium

on Principles of Programming Languages (POPL

90). San Francisco. 1990.

[Le78] J.J.Levy. Reductions correctes et opttmales duns

le lambda-calcv,l. Th&se de doctorat d’&at, Univer-

sit~ de Paris VII. 1978.

[Le80] J. J. L&y. Optzmal reductions m the lambda-

calculus. In J.P. Seldin and J.R. Hindley, editors,

To H.B. Curry, Essays on Combmatory Logic,

Lambda Calculus and Formalism, pages 159-191.

Academic Press. 1980.

[LM92] X. Leroy, M. Mauny. The Carol Light system,

release 0.5. Documentaiton and user’s manual. IN-

RIA Technical Report. September 1992.

[Ya94] The Yale Haskell Group. The Yale Haskel/ Users

Manual. Yale University. October 1994.

118

