
A formal proof of
Borodin-Trakhtenbrot’s Gap Theorem

Andrea Asperti

Department of Computer Science and Engineering – DISI
University of Bologna
asperti@cs.unibo.it

Abstract. In this paper, we discuss the formalization of the well known
Gap Theorem of Complexity Theory, asserting the existence of arbi-
trarily large gaps between complexity classes. The proof is done at an
abstract, machine independent level, and is particularly aimed to iden-
tify the minimal set of assumptions required to prove the result (smaller
than expected, actually). The work is part of a long term reverse com-
plexity program, whose goal is to obtain, via a reverse methodological
approach, a formal treatment of Complexity Theory at a comfortable
level of abstraction and logical rigor.

1 Introduction

The Gap Theorem, first proved by Boris Trakhtenbrot in 1964 [33] and indepen-
dently rediscovered eight years later by Allan Borodin [12], is a major theorem
of Complexity Theory stating the existence of arbitrarily large gaps in the hi-
erarchy of complexity classes. More explicitly, given a computable function g
representing an increase in computational resources, one can effectively find a
recursive function t such that the complexity classes with boundary functions t
and g ◦ t are identical. In Borodin’s words [12] “no matter how much better one
computer may seem compared to the other, there will be a t such that the set
of functions computable in time t is the same for both computers”.

The Gap Theorem is a typical example of an “abstract” complexity result,
that is a fact that can be proved without any reference to concrete computational
models. Actually, our main motivation for addressing the formalization of this
theorem was to derive, along a reverse methodological approach, a minimal set
of logical assumptions sufficient to entail the result. The work is part of a larger
“reverse complexity” program, outlined in [2], that applies the methodology of
reverse mathematics [20, 30] to Complexity Theory, reconstructing from proofs
the basic notions and assumptions underlying the major results of this field.
The final, long term goal would be to obtain a formal, axiomatic treatment of
Complexity Theory at a comfortable level of abstraction and mathematical rigor,
reviving under a new perspective and through an innovative methodological
approach the old quest for a machine-independent theory of complexity; we refer
the reader to [2] for a short historical survey and a more exhaustive discussion
of the Reverse Complexity program.



Mechanical devices such as proof assistants and interactive theorem provers
play a major role in our program, not only to check the formal correctness of the
resulting theory, but as actual drivers of the research. In fact, the reverse method-
ology presupposes a deep and frequent refactoring of the formalization, playing
with different axiomatizations, improving the readability and maintainability of
the code, or reducing its complexity: it is natural to expect to be supported by
automatic devices along this process. As we already observed in [4], the situa-
tion is similar to the role of type checkers in software development, that are not
simply meant to discriminate good programs from bad ones: type checkers are
essential drivers of the development phase, and major tools for the deployment
of lightweight, adaptive software methodologies, requiring frequent modifications
and refactoring. This interactive exploitment of proof checkers, more than their
batch usage as oracles to discriminate between correct and wrong arguments is,
in our opinion, the new and challenging frontier of interactive provers.

The formalization of the Gap Theorem discussed in this paper was done with
the assistance of the Matita Interactive Theorem Prover [7]. Matita is a light
implementation of the Calculus of Inductive Construction developed and main-
tained at the University of Bologna. We do not have enough space to describe
here the syntax of Matita’s script language, so we shall omit formal proofs. We
only wish to remark that Matita is a constructive system, and all proofs in this
paper are constructive.

The development itself is accessible (and executable!) through the web inter-
face of Matita [6] at the following url: http://matita.cs.unibo.it/matitaweb.shtml.
An offline version can be downloaded at http://www.cs.unibo.it/ asperti/gap.tar.

The structure of the paper is the following. In the next section we shall
start giving a rigorous formulation of the gap theorem and the original proof of
Borodin [12], discussing it as well as other, later versions of the proof [15, 35,
17]. Section 3 is devoted to a brief review of the main modules of the Matita
library that will be required for the formalization of the result, and in particular:
bounded quantification, big operators and minimization, iteration, and a bit of
combinatorics. In Section 4, we introduce the axiomatic setting that we shall use
for the proof, essentially based on the existence of a suitable function (intuitively)
playing the role of Kleene’s T-predicate. Section 5 contains the formal proof, as
well as the computation of an interesting and apparently original upper bound
for the gap operator. Conclusions are discussed in Section 6.

2 Borodin’s proof of the Gap Theorem

The gap theorem can be stated and proved without any reference to a concrete
computational model. The typical setting adopted for expressing and proving it
is Blum’s abstract complexity framework [11], that applies to time, space, and
many other reasonable complexity measures.

We write f(x)↓ to express that the partial function f is defined for input x.

Definition 1. (Blum [11]) A pair 〈ϕ,Φ〉 is a computational complexity measure
if ϕ is a principal effective enumeration of all partial recursive functions and Φ



satisfies the following axioms:

(a) ϕi(n) ↓↔ Φi(n) ↓
(b) the predicate Φi(n) = m is decidable

We adopt the convention that Φi(n) =∞ if Φi(n) ↑; in particular, the relation
Φi(n) > n also holds when Φi(n) is undefined.

Blum’s axioms are very weak and very general, and nevertheless they are
sufficient to prove a large number of interesting results in Complexity Theory.
In particular, they proved to be a convenient setting to investigate the order
structure of complexity classes under set theoretic inclusion [12, 26], their re-
cursive presentability and the computational quality of such a presentation [25,
34, 24]. It is important to observe that, from a strictly formal point of view,
Blum’s “axioms” do not provide a real axiomatization, since they rely on the
delicate notion of computable function. The fact that ϕ is a principal effective
enumeration (see e.g.[28]) of all partial recursive functions is used in an essential
way in most proofs based on Blum’s axioms, usually by an invocation of Church
Thesis. For this reason, Blum’s axioms are not easy to use in a strictly formal
framework, urging us to look for a more convenient and possibly more primitive
axiomatisation.

Borodin’s proof of the gap theorem is very concise and elegant, so we report
his original argument here; we just slightly rephrased it for notational reasons,
and retouched some bounds in order to get a more elegant formalization.

Theorem (Gap Theorem). Let 〈ϕ,Φ〉 be a complexity measure, g
a nondecreasing recursive function such that ∀x.x ≤ g(x). Then there
exists a nondecreasing recursive function t such that, for sufficiently large
n,

Φi(n) ≤ t(n) or Φi(n) > g ◦ t(n)

PROOF. Define t as follows:

– t(0) = 1,
– t(n+ 1) = µk ≥ t(n){∀i ≤ n.[Φi(n) ≤ k or Φi(n) > g(k)]}

Then:

1. for any n, k exists, since forall i ≤ n if Φi(n) ↑ then ∀k.Φi(n) > g(k),
and if Φi(n) ↓ then ∃k.Φi(n) ≤ k.

2. k can be found recursively, since Φ is a complexity measure and thus
Φi(n) ≤ k and Φi(n) > g(k) are recursive predicates.

3. t satisfies the theorem, since n ≥ i implies that either Φi(n) ≤ t(n)
or Φi(n) > g ◦ t(n).

QED.

An arbitrarily large t can be found to satisfy the conditions of the gap theo-
rem, by taking k larger than max{r(n), t(n)} (for a suitable function r) in the
definition of t(n+ 1).



2.1 Discussion

The first problem in formalizing the previous proof in a proof system like Matita
is due to the definition of t, that is formulated by means of general (unbounded)
minimization. In general, this kind of recursive functions cannot be directly
expressed in the Calculus of Constructions, and you should resort to an indirect
encoding, by means of a suitable predicate, that is not particularly elegant. A
second problem is point 1. in the proof, that seems to use tertium non datur on
a semidecidable predicate, namely if Φi(n) ↓ or not.

Luckily, as already pointed out by [35] (see also [17]) the existence of k can be
proved in a more constructive way, and this will also induce a more constrained
(primitive recursive) definition of t.

The general idea is relatively simple. Suppose we wish to find a k larger than
a base value b, such that (for given i and n)

Φi(n) ≤ k or Φi(n) > g(k) (1)

If Φi(n) ≤ b then we take k = b (note that the test Φi(n) ≤ b is decidable!);
otherwise we check if Φi(n) < g(b): if the answer is yes, we take k = g(b) and
otherwise we again take k = b (the interesting point is not the decidability of
equation (1), that is obvious, but the fact that we can put an upper bound to
the search for a k solving the equation).

The previous reasoning can be iterated over all i ≤ n: in particular, in the
interval between b and gn+1(b) there must exist at least one k such that

∀i ≤ n.Φi(n) ≤ k or Φi(n) > g(k)

Suppose that at least j functions terminate within bj ≤ gj(b); if no other function
terminates within g(bj) we are done; otherwise we take bj+1 = g(bj) ≤ gj+1(b)
and go on. Since the number of terminating functions increases at each iteration,
we shall eventually stop after n+ 1 steps.

Stated in a different way, let us consider the intervals [gi(b), gi+1(b)[ for 0 ≤
i ≤ n and all functions with index j < n such that Φj(n) ≤ gn+1(b). We have at
most n functions to distribute over n+ 1 intervals, so at least one interval must
remain empty.

An interesting consequence of the previous reasoning, that apparently has
never been emphasized by any author, is that we can compute an explicit upper
bound u for t. In particular, let σ(n) =

∑
i≤n i = n · (n+ 1)/2; then, for any n,

t(n) ≤ gσ(n)(1) ≤ gn
2

(1)

(see Section 5.2 for the simple proof).

3 Preliminaries

In this section, we shall discuss some of the background material we need for our
development: bounded quantification 3.1, big operators and minimization 3.2,
iteration 3.3 and a few combinatorial results 3.4.



Most of the results in this section are absolutely standard; we present them
for the sake of completeness, in order to provide a self-contained description of
the formalization, fixing names and notations.

In the rest of the article, all parts inside round boxes are Matita code; all
proofs are skipped, but they are really simple.

3.1 Bounded quantification

We need to exploit a small library of results about bounded quantification.
A proposition P is decidable if P ∨ ¬P is provable:� �
definition decidable : Prop →Prop :=λA:Prop. A ∨¬A.� �
It is trivial to prove that decidable propositions are closed with respect to logical
connectives and bounded quantification:� �
lemma decidable not: ∀P. decidable P →decidable (¬P).

lemma decidable or: ∀P,Q. decidable P → decidable Q →decidable (P∨Q).

lemma decidable forall: ∀P. (∀i.decidable (P i)) →∀n.decidable (∀i. i < n →P i).

lemma decidable exists: ∀P. (∀i.decidable (P i)) →∀n.decidable (∃i. i < n ∧P i).� �
On a decidable predicate we have the usual duality properties we know from
classical logic, and in particular:� �
lemma not exists to forall: ∀P,n.
¬ (∃i. i < n ∧P i) →∀i. i < n →¬P i.

lemma not forall to exists: ∀P,n. (∀i .decidable (P i)) →
¬ (∀i. i < n →P i) → (∃i. i < n ∧¬ (P i )).� �

3.2 Big operators and minimization

Matita’s library offers a well developed module on big operators, that has been
described in some detail in [5].

A big operator is a higher-order construction that is supposed to iterate a
function F over all elements in a given range, combining the results with an
operator op; a nil value is returned when the range is empty. The range, the
function F , the operator op and the value nil are all explicit parameters of the
big operator.

Matita’s notation is relatively standard ([10]), and has the following shape:� �
\big[op,nil ] { range description } F� �



The range description gives a name to the iteration variable and fixes the domain
over which this variable is supposed to range. The elements in the range are
supposed to be enumerated (that is not a limitation, considering that the range
must be finite), hence the range is specified as an interval i ∈ [a, b] where a is
the lower bound and b is the upper bound (both included in the range). In case
the lower bound is 0, the simpler notation i ≤ b can also be used. The variable i
whose name can obviously be chosen by the user, is bound by the notation, and
it usually occurs free in F .

The range can be further restricted specifying an additional boolean predi-
cate, acting as a filter. For instance, the following notation represents the product
of all primes less or equal to n� �
\big[times,1] {p ≤n | primeb p} p� �

In this paper, we shall use big operators to iterate boolean functions over finite
domains; for instance, the notation� �
\big[andb,true] {i < n} (b i).� �

expresses the boolean conjunction of all (b i) for all i less than n.
Minimization is essentially a big operator where we iterate the binary mini-

mum function min on all elements in a given range enjoying a suitable predicate;
the only problem is the definition of a default nil element. A relatively natural
choice, in case we found no element in the range [a, b[ matching the test, is to
return b:� �
definition Min :=λa,b,f.\big[min,b] {i ∈ [a,b] | f i} i .� �
Although the definition is elegant, the possibility to exploit results on big oper-
ators for proving properties of Min poses some problems, in this case. The point
is that the lemmas on big operations are hierarchically organized according to
the algebraic structure associated with the operator. In the case of the mini-
mum, we have associativity and commutativity, but we do not have a (generic)
neutral element (see also [10] for the discussion of a similar problem relative to
maximization on real numbers), so we have only access to very basic results.

For minimization we shall use the following ad hoc notation:� �
µ { i ∈ [a,b] } p� �

to express the minimum element in the range [a, b] that satisfies p (and returns
the successor of b is no such element is found).

The main results about minimization that we shall exploit are the following:
under the assumption that there exists an element in the range [a, b] that satisfies
f , then the minimum m satisfies f and moreover it is not greater than b (as a
matter of fact, the definition of the function t of the gap theorem does not exploit
minimality, but only existence).� �
lemma f min true: ∀f,a,b.

(∃i . a ≤ i ∧ i ≤ b ∧ f i = true) → f (µ {i ∈[a,b]} (f i )) = true.� �



� �
lemma min up: ∀f,a,b.

(∃i . a ≤ i ∧ i ≤ b ∧ f i = true) →µ {i ∈[a,b]}(f i ) ≤b.� �
3.3 Iteration

We shall need to consider progressive intervals of the kind [gi(b), gi+1(b)[, that
requires a simple higher-order iterator:� �
let rec iter (A:Type[0]) (g:A→A) n a on n :=
match n with

[O ⇒ a
|S m ⇒ g (iter A g m a)].� �

The notation gi(b) is hence a shorthand for (iter nat g i b).
For the proof of the gap theorem we only need the following result:� �
lemma le iter: ∀g,a. (∀x. x ≤ g x) →∀i. a ≤ gˆi a.� �
A few more simple lemmas about composition and monotonicity are used for
computing an upper bound of the gap operator:� �
lemma iter iter: ∀A.∀g:A→A.∀a,b,c. gˆc (gˆb a) = gˆ(b+c) a.

lemma monotonic iter: ∀g,a,b,i. (monotonic ? le g) → a ≤ b →
gˆi a ≤ gˆi b.

lemma monotonic iter2: ∀g,a,i,j. (∀x. x ≤ g x) → i ≤ j → gˆi a ≤ gˆj a.� �
The question mark in monotonic_iter is an implicit parameter, that is an ar-
gument automatically filled in by the type inference algorithm (in this case,
nat).

3.4 A bit of combinatorics

The final ingredient we need for the proof of the gap theorem is a bit of com-
binatorics. The only delicate point in the definition of t is the termination of
the minimization. The general idea is to consider a succession of n + 1 disjoint
intervals [ri, ri+1[ for 0 ≤ i ≤ n; then, we consider a set of at most n values to
distribute over them (expressing the resources required by a machine with index
i < n to terminate on a specific input). Since we have strictly less items than
intervals, one of the interval [rk, rk+1[ must remain empty, that gives the desired
k. This is essentially a variant (an inverse form) of the Pigeonhole principle (also
know as Dirichlet’s drawer principle), that states that if n items are put into m
pigeonholes where n > m, then at least one pigeonhole must contain more than
one item.

A simple way to formalize the principle is by considering lists of natural
numbers. Given a list l we shall denote with |l| the length of l, and we shall



write x ∈ l to express that x is an element f the list. Let us consider a list l of
distinct numbers in the interval [0, n[; then, obviously, |l| ≤ n. The interesting
point is that

|l| = n↔ ∀i.i < n→ i ∈ l

This is expressed by the following notions and results in the library of Matita.
The unique predicate express the fact that the list has no duplicates:� �
let rec unique A (l: list A) on l :=

match l with
[ nil ⇒ True
|cons a tl ⇒ ¬ a ∈tl ∧ unique A tl ].� �

Then, we can prove the following results (the proofs are not entirely straightfor-
ward, but these basic combinatorial principles belong by now to the folklore of
interactive proving, so we do not discuss them).� �
lemma length unique le: ∀n,l.

unique ? l → (∀x. x ∈ l → x < n) →|l| ≤n.

lemma eq length to mem all: ∀n,l.
| l | = n →unique ? l → (∀x. x ∈ l → x < n) →∀i. i < n → i ∈ l .

lemma lt length to not mem: ∀n,l.
unique ? l → (∀x. x ∈ l → x < n) →|l| < n →∃i. i < n ∧¬ (i ∈ l ).� �

4 Kleene’s predicate

The starting point of our axiomatization is Kleene’s predicate, that we shall
represent with a function U with the following type:� �
axiom U: nat →nat →nat → option nat.� �
The intuitive idea is that

U i x r =

{
Some y if program i on input x returns y with resource bound r

None otherwise

You should think of U as some agent performing the execution of the program,
and checking that it respects the given resource bounds. The only assumption
we make about U is about its “monotonicity” with respect to the amount of
resources at our disposal:� �
axiom monotonic U: ∀i,n,m,y. n ≤m →

U i x n = Some ? y →U i x m = Some ? y.� �
From the previous axiom we easily conclude that U is single valued:



� �
lemma unique U: ∀i,x,n,m,yn,ym.

U i x n = Some ? yn →U i x m = Some ? ym → yn = ym.� �
We say that the computation of program x on input y terminates with resource
bound r (notation: 〈i, x〉 ↓ r) if there exists y such that U i x r = Some y:� �
definition terminate :=λi,x,r. ∃y. U i x r = Some ? y.� �
It is straightforward to prove that the previous notion of (bounded) termination
is decidable:� �
lemma terminate dec: ∀x,i,n. 〈x,i〉 ↓ n ∨ ¬ 〈x, i〉 ↓ n.� �

In order to define the gap operator, we need a boolean version of the termi-
nation test:� �
definition termb :=λi,x,t.

match U i x t with [None ⇒ false |Some y ⇒ true].� �
It is easy to prove that termb reflects terminate in the sense of [21]:� �
lemma termb true to term: ∀i,x,t. termb i x t = true →〈i,x〉 ↓ t .

lemma term to termb true: ∀i,x,t. 〈i,x〉 ↓ t → termb i x t = true.� �
Exploiting the decidability of termination and the closure properties of sec-

tion 3.1 it is easy to prove that that the test used in the definition of the gap
function is decidable too:� �
lemma decidable test : ∀n,x,r,r1.

(∀i . i < n →〈i,x〉 ↓ r ∨ ¬ 〈 i ,x〉 ↓ r1) ∨
(∃i . i < n ∧ (¬ 〈i,x〉 ↓ r ∧ 〈 i ,x〉 ↓ r1 )).� �

5 The proof of the gap theorem

Let us define the following predicate gapP n x g r expressing that for all pro-
grams up to n, there is a gap between r and g r on input x:� �
definition gapP :=λn,x,g,r. ∀i. i < n →〈i,x〉 ↓ r ∨ ¬ 〈 i ,x〉 ↓ g r .� �
The important fact is that, for any b, g, n, x we can always find a r in the interval
between b and gn b such that (gapP n x g r):� �
lemma upper bound: ∀g,b,n,x. (∀x. x ≤ g x) →
∃r.b ≤ r ∧ r ≤ gˆn b ∧ gapP n x g r.� �

For the proof, we pass through the following auxiliary lemma



� �
lemma upper bound aux: ∀g,b,n,x. (∀x. x ≤ g x) →∀k.

(∃j . j < k ∧
(∀i . i < n →〈i,x〉 ↓ gˆj b ∨ ¬ 〈 i ,x〉 ↓ gˆ(S j) b)) ∨
∃l . | l | = k ∧ unique ? l ∧ ∀i . i ∈ l → i < n ∧ 〈i ,x〉 ↓ gˆk b .� �

This is proved by induction on k. At the inductive step k0 we reason by cases on
the inductive hypothesis: we already found our j or we have a list of programs ter-
minating with bound gk0 b on input x. In the first case, we are done. In the other
case we reason by cases on decidable_test n x (g^k0 b) (g^(S k0) b)). In
the first case, we can take j = k0, and otherwise we have a program i that does
not terminate in gk0 b but terminates in gk0+1 b on input x, and we add i to the
list l.

Starting from upper_bound_aux it is now easy to prove upper_bound. The
idea is to proceed by cases on (upper_bound_aux g b n x Hg n), where Hg is
the hypothesis that g is increasing. In case we have a j, we take r = gj b and we
conclude easily. Otherwise, we have a list of programs terminating with bound
gn b on input x. Since the list has length n, by property eq_length_to_mem_all

all programs up to n must appear in this list, and we can just take r = gn b.

5.1 The gap operator

The first step for defining the gap operator is to express the gap predicate gapP

as a computable boolean function; a simple approach is to use big operators to
encode bounded quantification:� �
definition gapb :=λn,x,g,r.
\big[andb,true] {i < n} ((termb i x r) ∨ ¬ (termb i x (g r ))).� �

It is straightforward to prove that gapb reflects the gap predicate gapP, and in
particular:� �
lemma gapb true to gapP : ∀n,x,g,t.

gapb n x g t = true →∀i. i < n →〈i,x〉 ↓ t ∨ ¬ (〈i,x〉 ↓ (g t )).

lemma gapP to gapb true : ∀n,x,g,r.
(∀i . i < n →〈i,x〉 ↓ r ∨ ¬ (〈i,x〉 ↓ (g r))) → gapb n x g r = true.� �

It is now easy to define the gap operator as a higher-order function parametric
in g:� �
let rec gap g n on n :=

match n with
[ O ⇒ 1
| S m ⇒ let b :=gap g m in µ {k ∈[b,gˆn b]} (gapb n n g k)
].� �

From upper_bound it is easy to derive an analogous upper bound for gapb:



� �
lemma upper bound gapb: ∀g,m. (∀x. x ≤ g x) →
∃r.gap g m ≤ r ∧ r ≤ gˆ(S m) (gap g m) ∧ gapb (S m) (S m) g r = true.� �

Then, using property f_min_true we easily conclude:� �
lemma gapS true: ∀g,m. (∀x. x ≤ g x) → gapb (S m) (S m) g (gap g (S m)) = true.� �
and from the previous result we derive the expected behaviour of gap operator,
in the general case:� �
theorem gap theorem: ∀g,i.(∀x. x ≤ g x)→∃k.∀n.k < n →
〈 i ,n〉 ↓ (gap g n) ∨ ¬ 〈 i ,n〉 ↓ (g (gap g n)).� �

We just instantiate k with i and proceed by cases on i.

5.2 An upper bound

We conclude this section providing a simple upper bound for gap g, namely, for
any n

gap g n ≤ gσ(n)(1) ≤ gn
2

(1)

where σ(n) =
∑
i≤n i = n · (n+ 1)/2.� �

let rec sigma n :=
match n with
[ O ⇒ 0 | S m ⇒ n + sigma m ].

lemma gap bound: ∀g. (∀x. x ≤ g x) → (monotonic ? le g) →
∀n.gap g n ≤ gˆ(sigma n) 1.� �

The proof is a simple induction on n. If n = 0 both sides are equal to 1. In the
inductive case:

gap g (S n) ≤ g(S n)(gap g n) by min up using upper bound gapb
≤ g(S n)(gσ(n)1) by induction hypothesis
= g(S n+σ(n)1 by iter iter
= gσ(Sn)1 by definition of sigma

It is worth observing that if g is primitive recursive, than (gap g) is too, and not
too far away from g in the elementary hierarchy.

Many authors (see e.g Papadimitriou [27]) note the “fantastically fast growth”
of the gap function (without providing an explicit bound), but after all it is no so
scary (at least, compared to the enormous complexity of other logical problems
[19]). Of course, the growth-rate of the function has little to do with its ability to
create a gap: its upper bound gσ(n)1 is a (space and time) constructible function,
hence the hierarchy theorems apply and it does not define any gap. The really
surprising fact is that in a relatively small interval as that comprised between
g(n) and gσ(n)1 we can find a function with such a strange behaviour as (gap g).



6 Conclusions

In this paper, we presented a formalization in the Matita Interactive Theorem
Prover of Borodin-Trakhtenbrot’s Gap Theorem of Computational Complexity.
The work is part of a huge program of formal revisitation of Complexity Theory,
that we call reverse complexity, based on the application of methodologies typical
of reverse mathematics [20, 30], consisting in a backward reconstruction from
proofs of the basic notions and assumptions underlying the main results of the
field.

The final goal is to understand, at a suitable level of abstraction and logical
rigor, what really matters for a foundational investigation of Complexity, since we
know that the details of the different, specific computational models are largely
uninfluential.

The need for a better understanding of the logical grounds of complexity the-
ory is testified by a long series of works aimed to provide machine-independent
characterizations, spanning from the old works of Blum [11], to the recent field of
Implicit Computation Complexity (see [8], and the bibliography therein), pass-
ing through a multitude of systems defined by controlling different aspects of
the computation: explicit bounds on the growth rate of functions [14, 13], the
logical power required for proving termination [18], the use and replication of
computational resources [9]. See also [16] for a modern treatment of bounded
arithmetical systems and an investigation of proof complexity from the point of
view of computational complexity.

Even in the relatively simple case of the Gap Theorem, the reverse methodol-
ogy was instructive, allowing us to clarify that the full power of Blums’ abstract
framework is not required for this proof. In particular, there is no need to refer to
a principal enumeration of partial recursive functions, that would be a difficult
notion to characterize at an abstract level.
We only postulated the existence of a function U , intuitively playing the role of
Kleene’s T’-predicate, but avoiding any explicit reference to a system of com-
putable functions; we just assumed U to be monotonic:� �
axiom U: nat →nat →nat → option nat.

axiom monotonic U: ∀i,n,m,y. n ≤m →
U i x n = Some ? y →U i x m = Some ? y.� �

The U function seems to provide an interesting starting point for many different
investigations. For instance, exploiting the idea embodied in Kleene’s normal
form, we can easily axiomatize the existence of an interpreter (universal ma-
chine):� �
axiom universal: ∃u.∀i,x,y.
∃n. U u 〈i ,x〉 n = Some y ↔∃m.U i x m = Some y.� �

In [3], we proved that any indexed set of partial functions that is closed under
composition, contains all projections, an interpreter, and satisfies the s-m-n the-
orem of Recursion Theory is algorithmically complete, that is, it enumerates all



computable functions. So, adding a few more axioms, we get a natural, abstract
theory of computable functions. Morevoer, following the ideas outlined in [1],
we can integrate the closure conditions on the class of computable functions
by suitable complexity conditions, obtaining an interesting formal framework to
address complexity theory.

Even more interestingly, we can investigate weaker logical frameworks, corre-
sponding to system of subrecursive functions. For instance, for many interesting
results of Complexity Theory, you do not need the existence of a full interpreter,
but just the possibility to perform a restricted form of bounded interpretation.
This is for instance the case of the well known hierarchy theorems of compu-
tational complexity [22, 31], whose formalization was investigated in [2]. The
relation between full and bound interpretation from the point of view of Com-
plexity Theory seems to be an argument worth to be further investigated too.

The new, major milestone in our program is however to provide a suitable,
abstract axiomatization of the so called “reachability method”. The general idea
is to consider the graph of all possible configurations of the computational de-
vice, reducing the existence of a computation to a reachability problem in such
a graph. Time bounds the dimension of the graph, and in turn the dimen-
sion of each configuration bounds the number of possible distinct nodes in the
graph, allowing to establish the main relations between time and space. This is
largely indepedent from any specific computational device, and it seems impor-
tant to identify the right abstract setting underlying the previous ideas, paving
the way to a reverse investigation of the well known theorems of Savitch [29] and
Immerman-Szelepcsényi [23, 32].
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