
An Enhanced Features Extractor
for a Portfolio of Constraint Solvers

Roberto Amadini
University of Bologna/INRIA

Maurizio Gabbrielli
University of Bologna/INRIA

Jacopo Mauro
University of Bologna/INRIA

ABSTRACT
Recent research has shown that a single arbitrarily efficient
solver can be significantly outperformed by a portfolio of
possibly slower on-average solvers. The solver selection is
usually done by means of (un)supervised learning techniques
which exploit features extracted from the problem specifica-
tion. In this paper we present an useful and flexible frame-
work that is able to extract an extensive set of features from
a Constraint (Satisfaction/Optimization) Problem defined
in possibly different modeling languages: MiniZinc, FlatZ-
inc or XCSP.

Categories and Subject Descriptors
I.2 [Computing Methodologies]: Artificial Intelligence—
Constraint Programming, Machine Learning, Algorithm
Portfolios.

1. INTRODUCTION
It is well recognized within the field of Constraint Pro-

gramming that different solvers are better when solving dif-
ferent problem instances, even within the same problem
class [8]. It has also been shown in other areas, such as SAT-
isfiability testing and Integer Linear Programming that the
best on-average solver can be out performed by a portfolio
of possibly slower on-average solvers. A portfolio approach
[8] for constraint solving can be seen as a methodology that
exploits the significant variety in performances observed in
different algorithms and combines them in order to create a
globally better solver, dubbed a portfolio solver. A crucial
step for the performance of a portfolio solver is the selection
of one or more solvers composing the portfolio for solving a
specific problem instance. Such a selection process is usually
performed by using Machine Learning techniques based on
features extracted from the instances that need to be solved.

Although several portfolio approaches have been exten-
sively studied and used in the SAT solving field (e.g. [19,
11]) to the best of our knowledge the only Constraint Sat-
isfaction Problems (CSP) portfolio solver is CPHydra [17].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’14 March 24-28, 2014, Gyeongju, Korea.
Copyright 2014 ACM 978-1-4503-2469-4/14/03 ...$15.00.

CPHydra deals with problems expressed only in the XCSP
format [18], it uses a rather small portfolio (just 3 solvers)
and exploits only a limited number of features (36 to be
exact, extracted by using Mistral solver [12]). Even worse,
we are not aware of a single portfolio solver for Constraint
Optimization Problems (COPs). There are several reasons
for the lack of CSP/COP portfolio solvers. First of all, the
CSP/COP solving fields are more complex than SAT: con-
straints can be arbitrary complex (e.g. global constraints
like regular or bin-packing) and some of them are supported
by only a few solvers. Moreover, no standard input lan-
guage nor immediately available big dataset exists for CSPs
or COPs.

We deem that, at least from the implementation and tool
development point of view, there is still a big gap between
CSP/COP w.r.t. the SAT field. In this paper we then ad-
dress this problem by presenting a framework that is able to
extract an exhaustive set of 155 features from a CSP/COP
instance specified in the MiniZinc format [16] but supporting
also other formats like XCSP and FlatZinc [4] through a sim-
ple pre-processing phase. Hopefully this framework will be
the starting point for the development of future CSP/COP
portfolio solvers that rely on the extracted features for their
solver selection procedure.

2. FRAMEWORK
In this section we present the technical details of our

framework by introducing its main ingredients: the com-
piler xcsp2mzn and the features extractor mzn2feat (which
includes the parser fzn2feat). Moreover, we provide a sum-
mary of the set of features that mzn2feat can extract.

Note that we decided to use MiniZinc as primary source
format of our tool because it is nowadays the most used,
supported and general language to specify constraint prob-
lems. MiniZinc supports also optimization problems and
is the source format used in the MiniZinc challenge [14],
the only surviving international competition to evaluate the
performances of constraint solvers. Our framework however
offers full compatibility with XCSP and FlatZinc. Indeed,
on one hand, we developed a compiler xcsp2mzn for convert-
ing problem instances from XCSP to MiniZinc by preserving
the most important global constraints. On the other hand,
the feature extractor tool called mzn2feat supports natively
the FlatZinc format and can extract the features from every
FlatZinc model.

2.1 xcsp2mzn

While MiniZinc is nowadays the most used language to

encode CSPs, XCSP was mainly used in the past for the In-
ternational Constraint Solver Competition (ICSC) [6], which
ended in 2009. Nevertheless, the ICSC dataset is by far
the biggest dataset of CSP instances existing today. Hence,
in order to exploit such a dataset for building better port-
folios, we developed a compiler from XCSP to MiniZinc.
xcsp2mzn was developed by adapting x4g [13], a converter
from XCSP to Gecode [7] used in particular to support the
XCSP abridged notation. Since we focused mainly on CSP
we did not consider XCSP extensions like weighted con-
straints or quantifiers over constraints. All the code is writ-
ten in C++ using the well known libxml2 libraries. Exploit-
ing the fact that MiniZinc is more expressive than XCSP
(i.e. the majority of the primitive constraint of XCSP are
also primitive constraints of MiniZinc) the translation was
straightforward. The only notable difference was the com-
pilation of extensional constraints (i.e. relations explicitly
expressed in terms of all the allowed or not allowed tuples)
which are a native feature in XCSP only. To overcome this
limitation we used the table global constraint for encoding
the allowed set of tuples and a conjunction of disjunctions
of inequalities for mapping the forbidden set of tuples. As
far as global constraints are concerned, XCSP supports the
majority of the global constraints defined in the Global Con-
straint Catalog [5]. Since in this catalog there are hundreds
of global constraints, for simplicity we decided to support
only the subset of the global constraints used in the ICSC.

2.2 mzn2feat

The tool mzn2feat allows to extract from a MiniZinc mo-
del a set of 155 features: 144 are static features obtained
by parsing the source problem instance, while 11 are dy-
namic and are obtained by running the Gecode solver for a
short run. Since the complexity of the MiniZinc language (in
particular the possibility of using control flow statements)
makes the extraction of the syntactical features quite dif-
ficult, we decided to not process directly the MiniZinc in-
stances. We instead compile them to FlatZinc [15], a lower
level language having a syntax that is mostly a subset of
MiniZinc and that can be obtained from MiniZinc by us-
ing the mzn2fzn tool provided by the MiniZinc suite. The
compilation to FlatZinc was performed using the Gecode
redefinitions for global constraints. This allowed us to keep
track of how and what global constraints are used without
decomposing them.1 To extract the static features we devel-
oped a parser, called fzn2feat, using the standard Flex and
Bison tools. The dynamic features were collected instead
launching Gecode interpreter fz for 2 seconds runs.

Summarizing, given a generic MiniZinc model M in input,
mzn2feat does the following: i) first, translates M into the
corresponding FlatZinc FM specification by using Gecode
global redefinitions; ii) extracts static features from FM by
means of fzn2feat; iii) extracts dynamic features from FM
by running the fz interpreter of Gecode for 2 seconds.
We remark that step ii) is applicable to every FlatZinc
model F (possibly ignoring the unknown solver-specific re-
definitions). Moreover, steps ii) and iii) are totally inde-

1Without using solver specific redefinitions, during the com-
pilation process some global constraints are indeed decom-
posed into basic constraints. For instance the alldifferent
global constraint is decomposed by default into a conjunc-
tion of inequalities, from which is impossible to uniquely
recover the original global constraint.

pendent and therefore they could be parallelized or done in
reverse order. For instance, it could be useless to compute
the static features if the given instance is solved by Gecode
while trying to compute the dynamic features.

2.3 Features description
In this section we present an overview of the numeric fea-

tures extracted by mzn2feat; for a more detailed description
we defer the interested reader to [2]. mzn2feat tries to col-
lect a set of features as exhaustive and general as possible,
taking inspiration from and adapting those presented in [9,
3]. Although some of these features are quite generic (e.g.,
the number of variables or constraints), others are specific to
FlatZinc (e.g. search annotations) or to Gecode (the global
constraints features). For more details about these techni-
calities please see [15, 4, 7].

Static Features
Thanks to fzn2feat we are able to extract 144 static fea-
tures grouped in the different categories listed below. In the
following we will denote with NV the number of variables
and with NC the number of constraints of a given prob-
lem. Moreover, we will denote respectively by min, max,
avg, CV, and H the minimum, maximum, average, varia-
tion coefficient and entropy of a set of values.

Variables (27): the number of variables NV ; the number
cv of constants; the number av of aliases; the ratio av+cv

NV
;

the ratio NV
NC

; the number of defined variables (i.e. defined as
a function of other variables); the number of introduced vari-
ables (i.e. auxiliary variables introduced during the FlatZinc
conversion); sum, min, max, avg, CV, and H of the: vari-
ables domain size, variables degree, domain size to degree
ratio.

Domains (18): the number of: boolean variables bv and
the ratio bv

NV
; float variables fv and the ratio fv

NV
; integer

variables iv and the ratio iv
NV

; set variables sv and the ratio
sv
NV

; array constraints ac and the ratio ac
NC

; boolean con-

straints bc and the ratio bc
NC

; int constraints ic and the ratio
ic
NC

; float constraints fc and the ratio fc
NC

; set constraints
sc and the ratio sc

NC
.

Constraints (27): the total number of constraints NC,
the ratio NC

NV
, the number of constraints using specific FlatZ-

inc annotations; the logarithm of the product of the: con-
straints domain2 and constraints degree; sum, min, max,
avg, CV, and H of the: constraints domain, constraints de-
gree, domain to degree ratio.

Global Constraints (29): the total number gc of global
constraints, the ratio gc

NC
and the number of global con-

straints for each one of the 27 equivalence classes in which
we have grouped the 47 global constraints that Gecode na-
tively supports.

Graphs (20): once built the Constraint Graph CG and
the Variable Graph VG we compute min, max, avg, CV, and
H of the: CG nodes degree, CG nodes clustering coefficient,
VG nodes degree, VG nodes diameter.3

Solving (11): the number of labeled variables (i.e. the

2We define the domain of a constraint as the product of the
domains size of each variable that occurs in such constraint.
3With diameter of a node x we mean the maximum among
the minimum distances between x and each other different
node y 6= x.

variables to be assigned); the solve goal; the number of
search annotations; the number of variable choice heuristics;
the number of value choice heuristics.

Objective (12):4 the domain dom, the degree deg, the
ratios dom

deg
and deg

NC
of the variable v that has to be opti-

mized; the degree de of v in the variable graph, its diameter
di, de

di
, and di

de
. Moreover, named µdom and σdom the mean

and the standard deviation of the variables domain size and
µdeg and σdeg the mean and the standard deviation of the

variables degree, we compute dom
µdom

, deg
µdeg

, dom−µdom
σdom

, and
deg−µdeg

σdeg
.

Dynamic features
For each problem we extract the following 11 dynamic fea-
tures: the number of solutions found; the number p of prop-
agations performed; the ratio p

NC
; the number e of nodes

expanded in the search tree; the number f of failed nodes
in the search tree; the ratio f

e
; the maximum depth of the

search stack; the peak memory allocated; the CPU time
needed for converting from MiniZinc to FlatZinc; the CPU
time required for static features computation; the total CPU
time needed for extracting all the features.

The first 8 features are collected by mzn2feat executing
short runs (2 seconds) of Gecode fz interpreter with default
parameters and -s and -time options. The last 3 are instead
timing features computed by means of the time command
of the Unix Bash shell.

3. CONCLUSIONS AND EXTENSIONS
In this work we presented a framework that is able to ex-

tract an extensive set of features from both satisfaction and
optimization problems defined in possibly different model-
ing languages: MiniZinc, FlatZinc or XCSP. We deem that
our work could serve as a building block for the creation of
a modern constraint solver adopting a portfolio approach.

Indeed, it should be pretty straightforward to build a
CSP portfolio solver exploiting the features extracted by
mzn2feat: the only requirement is that each constituent
solver of the portfolio must support MiniZinc format.

The set of features we propose was tested using the best
CSP portfolio approaches [1]. Preliminary empirical results
presented in [2] show that portfolio techniques exploiting the
new set of features are effective and competitive with state
of the art CSP portfolio techniques.

An interesting future direction of this work concerns the
improvement of the quality of the features, possibly though
appropriate feature filtering techniques. Our framework is
flexible enough to allow without a great effort to add new
features (e.g. dynamic features computed using local search
algorithm as done by SATzilla [20]) as well as to select a
proper subset of them as done in [10] for SAT and CP prob-
lems.

Since mzn2feat is able to process COPs encoded in MiniZ-
inc format, one of the most promising extension of our work
is to assemble and analyze portfolios of COP solvers. In
our opinion the effectiveness of portfolios in the satisfaction
field can also be reflected in the world of combinatorial opti-
mization. Of course, in order to evaluate a COP solver new
metrics should also be considered. In fact, often in real world

4These features make sense only for optimization problems,
a default value is given in case of satisfaction problems.

it is better to get a good solution in a short time rather than
consume too much time to find the optimal value. Starting
from this assumption, it may be reasonable to develop new
kinds of portfolio approaches that take into consideration
also the solution quality.

4. REFERENCES
[1] R. Amadini, M. Gabbrielli, and J. Mauro. An

Empirical Evaluation of Portfolios Approaches for
Solving CSPs. In CPAIOR, 2013.

[2] R. Amadini, M. Gabbrielli, and J. Mauro. Features for
Building CSP Portfolio Solvers. CoRR, abs/1308.0227,
abs/1308.0227, 2013.

[3] A. Arbelaez, Y. Hamadi, and M. Sebag. Continuous
Search in Constraint Programming. In ICTAI, 2010.

[4] R. Becket. Specification of FlatZinc - Version 1.6.
http://www.minizinc.org/downloads/doc-1.6/

flatzinc-spec.pdf.

[5] N. Beldiceanu, M. Carlsson, S. Demassey, and
T. Petit. Global Constraint Catalogue: Past, Present
and Future. Constraints, 12(1):21–62, 2007.

[6] Third International CSP Solver Competition 2008.
http://www.cril.univ-artois.fr/CPAI09/.

[7] GECODE flatzinc.
http://www.gecode.org/flatzinc.html.

[8] C. P. Gomes and B. Selman. Algorithm portfolios.
Artif. Intell., 126(1-2):43–62, 2001.

[9] F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown.
Algorithm Runtime Prediction: The State of the Art.
CoRR, 2012.

[10] C. Kroer and Y. Malitsky. Feature filtering for
instance-specific algorithm configuration. In ICTAI,
2011.

[11] Y. Malitsky and M. Sellmann. Instance-Specific
Algorithm Configuration as a Method for
Non-Model-Based Portfolio Generation. In CPAIOR,
2012.

[12] Mistral. http://www.4c.ucc.ie/~ehebrard/mistral/
doxygen/html/main.html.

[13] M. Morara, J. Mauro, and M. Gabbrielli. Solving
XCSP problems by using Gecode. In CILC, 2011.

[14] MiniZinc Challenge 2012. http:
//www.minizinc.org/challenge2012/results2012.html.

[15] N. Nethercote. Converting MiniZinc to FlatZinc. http:
//www.minizinc.org/downloads/doc-1.6/mzn2fzn.pdf.

[16] N. Nethercote, P. J. Stuckey, R. Becket, S. Brand,
G. J. Duck, and G. Tack. MiniZinc: Towards a
Standard CP Modelling Language. In CP, 2007.

[17] E. O’Mahony, E. Hebrard, A. Holland, C. Nugent, and
B. O’Sullivan. Using case-based reasoning in an
algorithm portfolio for constraint solving. AICS 08,
2009.

[18] O. Roussel and C. Lecoutre. XML Representation of
Constraint Networks: Format XCSP 2.1. CoRR,
abs/0902.2362, 2009.

[19] L. Xu, F. Hutter, H. Hoos, and K. Leyton-Brown.
Evaluating Component Solver Contributions to
Portfolio-Based Algorithm Selectors. In SAT, 2012.

[20] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown.
SATzilla-07: The Design and Analysis of an Algorithm
Portfolio for SAT. In CP, 2007.

