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Abstract. Within the Constraints Satisfaction Problems (CSP) con-
text, a methodology that has proven to be particularly performant con-
sists in using a portfolio of different constraint solvers. Nevertheless, com-
paratively few studies and investigations have been done in the world of
Constraint Optimization Problems (COP). In this work, we provide a
generalization to COP as well as an empirical evaluation of different
state of the art existing CSP portfolio approaches properly adapted to
deal with COP. Experimental results confirm the effectiveness of portfo-
lios even in the optimization field, and could give rise to some interesting
future research.

1 Introduction

Constraint Programming (CP) is a declarative paradigm that allows to express
relations between different entities in form of constraints that must be satis-
fied. One of the main goals of CP is to model and solve Constraint Satisfaction
Problems (CSP) [25]. Several techniques and constraint solvers were developed
for solving CSPs and simplified CSPs problems such as the well-known Boolean
satisfiability problem (SAT), Satisfiability Modulo Theories (SMT) [7], and An-
swer Set Programming (ASP) [5]. One of the more recent trends in this research
area - especially in the SAT field - is trying to solve a given problem by using
a portfolio approach [12, 32]. An algorithm portfolio is a general methodology
that exploits a number of different algorithms in order to get an overall better
algorithm. A portfolio of CP solvers can therefore be seen as a particular solver,
dubbed portfolio solver, that exploits a collection of m > 1 different constituent
solvers s1, . . . , sm in order to obtain a globally better CP solver. When a new
unseen instance i comes, the portfolio solver tries to predict which are the best
constituent solvers s1, . . . , sk (k ≤ m) for solving i and then runs such solver(s)
on i. This solver selection process is clearly a fundamental part for the success of
the approach and it is usually performed by exploiting Machine Learning (ML)
techniques.

Exploiting the fact that different solvers are better at solving different prob-
lems, portfolios have proven to be particularly effective. For example, the over-
all winners of international solving competitions like [11, 33] are often portfolio
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solvers. Despite the proven effectiveness of the portfolio approach in the CSP
case, and in particular in the SAT field, a few studies have tried to apply portfo-
lio techniques to Constraint Optimization Problems (COPs). In these problems
constraints are used to narrow the space of admissible solutions and then one
has to find a solution that minimizes (maximizes) a specific objective function.
This is done by using suitable constraint solvers integrated with techniques for
comparing different solutions. Clearly a COP is more general than a CSP. More-
over, when considering portfolio approaches, some issues which are obvious for
CSPs are less clear for COPs. For example, as we discuss later, defining a suit-
able metric which allows to compare different solvers is not immediate. These
difficulties explain in part the lack of exhaustive studies on portfolios consisting
of different COP solvers. Indeed, to the best of our knowledge, a few works deal
with portfolios of COP solvers and some of them refer only to a specific problem
like the Traveling Salesman Problem [17], while others use runtime prediction
techniques for tuning the parameters of a single solver [39].

Nevertheless, this area is of particular interest since in many real-life appli-
cations we do not want to find just “a” solution for a given problem but “the”
optimal solution, or at least a good one. In this work we tackle this problem and
we perform a first step toward the definition of COP portfolios. We first formal-
ize a suitable model for adapting the “classical” satisfaction-based portfolios to
address COPs, providing also a metric to measure portfolio performances. Then,
by using an exhaustive benchmark of 2670 instances, we test the performances
of different portfolio approaches using portfolios composed from 2 to 12 different
solvers. In particular, we adapt two among the best effective SAT portfolios,
namely SATzilla [38] and 3S [18], to the optimization field. We compare their
performances w.r.t. some off-the-shelf approaches - built on top of the widely
used ML classifiers - and w.r.t. SUNNY, a promising portfolio approach recently
introduced in [2] that (unlike those mentioned above) does not require an offline
training phase.

Empirical results indicate that these approaches always significantly outper-
form the Single Best Solver available. The performances of the SATzilla and
3S inspired approaches are better than the ones obtained using off-the shelf ap-
proaches, even though not as much as when used for solving CSPs [1]. Finally, we
observe that the generalization of SUNNY to COPs appears to be particularly
effective, since this algorithm has indeed reached the peak performances in our
experiments.

Paper structure. In Section 2 we introduce the metrics adopted to evaluate
the portfolio approaches for COPs. Section 3 presents the methodology and
the portfolio algorithms we used to conduct the tests. The obtained results are
detailed in Section 4 while related work is discussed in Section 5. We finally give
concluding remarks and discuss future work in Section 6.



2 Solution quality evaluation

When satisfaction problems are considered, the definition and the evaluation
of a portfolio solver is straightforward. Indeed, the outcome of a solver run
for a given time on a given instance can be either ’solved’ (i.e., a solution is
found or the unsatisfiability is proven) or ’not solved’ (i.e., the solver does not
say anything about the problem). Building and evaluating a CSP portfolio is
then conceptually easy: the goal is to maximize the number of solved instances,
solving them in the least time possible. Unfortunately, in the COP world the
dichotomy solved/not solved is no longer suitable. A COP solver in fact can
provide sub-optimal solutions or even give the optimal one without being able
to prove its optimality. Moreover, in order to speed up the search COP solvers
could be executed in a non-independent way. Indeed, the knowledge of a sub-
optimal solution can be used by a solver to further prune its search space, and
therefore to speed up the search process. Thus, the independent (even parallel)
execution of a sequence of solvers may differ from a “cooperative” execution
where the best solution found by a given solver is used as a lower bound by the
solvers that are lunched afterwards.

Although the ideal goal is to prove the optimality in the least time possible,
in the real world there is often the need of compromises. For many real life
applications it is far better to get a good solution in a relatively short time rather
than consume too much time to find the optimal value (or proving its optimality).
In order to study the effectiveness of the portfolio approaches we therefore need
new and more sophisticated evaluation metrics. In this work we then propose
to give to each COP solver (portfolio based or not) a reward proportional to
the distance between the best solution it finds and the best known solution.
An additional reward is given if the optimality is proven, while a punishment is
given if no solution are found without proving unsatisfiability.
In particular, given an instance i, we assign to a solver s a score of 1 if it proves
optimality for i, 0 if s does not find solutions. Otherwise, we give to s a score
corresponding to the value of its best solution scaled into the range [0.25, 0.75],
weighting 0.25 and 0.75 respectively the worst and the best known solutions of
the known COP solvers.

In order to formally define the scoring function and to evaluate the quality
of a solver, we denote with U the universe of the available solvers and with
T the solving timeout in seconds that we are willing to wait at most. We use
the function sol to define the solver outcomes. In particular we associate to
sol(s, i, t) the outcome of the solver s for the instance i at time t. The value
sol(s, i, t) can be either unk, if s does not find any solution for i; sat, if s finds
at least a solution for i but does not prove the optimality; opt or uns if s proves
optimality or unsatisfiability. Similarly, we use the function val to define the
values of the objective function. In particular, with val(s, i, t) we indicate the
best value of the objective function found by solver s for instance i at time t. If
s does not find any solution for i at time t, the value val(s, i, t) is undefined. We
assume the solvers behave monotonically, i.e., as time goes the solution quality
gradually improves and never degrades.



We are now ready to associate to every instance i and solver s a weight that
quantitatively represents how good is s when solving i. We define the scoring
value of s (shortly, score) on the instance i at a given time t as a function score

such that score(s, i, t) can be either:

(i) 0 if sol(s, i, t) = unk

(ii) 1 if sol(s, i, t) ∈ {opt, uns}
(iii) 0.75 if sol(s, i, t) = sat and MIN(i) = MAX(i)

(iv) max

{
0, 0.75− 0.5 · val(s, i, t)− MIN(i)

MAX(i)− MIN(i)

}
if sol(s, i, t) = sat, MIN(i) 6= MAX(i) and i is a minimization problem

(v) max

{
0, 0.25 + 0.5 · val(s, i, t)− MIN(i)

MAX(i)− MIN(i)

}
if sol(s, i, t) = sat, MIN(i) 6= MAX(i) and i is a maximization problem

where MIN(i) and MAX(i) are the minimal and maximal objective function
values found by any solver s at the time limit T .1
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Fig. 1: Solver performances example.

As an example, consider the sce-
nario in Fig. 1 depicting the perfor-
mances of three different solvers run
on the same minimization problem.
By choosing T = 500 as time limit,
the score assigned to s1 is 0.75 be-
cause it finds the solution with min-
imal value (40), the score of s2 is 0.25
since it finds the solution with maxi-
mal value (50), and the score of s3 is 0
because it does not find a solution. If
instead T = 800, the score assigned to
s1 becomes 0.75−(40−10)∗0.5/(50−
10) = 0.375 while the score of s2 is 0.25 and the score of s3 is 0.75. If instead
T = 1000, since s3 proves the optimality of the value 10 at time 900 (see the
point marked with a star in Fig. 1 ) it receives a corresponding reward reaching
then the score 1.

The score of a solver is therefore a measure in the range [0, 1] that is linearly
dependent on the distance between the best solution it founds and the best
solutions found by every other available solver. We decided to scale the values
of the objective function in a linear way essentially for the sake of simplicity.
Other choices, like for instance using the logarithm of the objective function for

scaling or considering the subtended area
∫ T
0
val(s, i, t) dt may also be equally

useful and justifiable in a real scenario. The exploration of the impact of such

1 Formally, MIN(i) = minVi and MAX(i) = maxVi where Vi = {val(s, i, T ) . s ∈ U}.
Note that a solver executed by a portfolio solver for t < T seconds could produce a
solution that is worse than MIN(i). This however is very uncommon: in our experi-
ments we noticed that the 0 score was assigned only to the solvers that did not find
any solution.



alternative choices is however outside the scope of this paper, and left as a future
work. Moreover in this work we assume the independent execution of the solvers,
leaving as a future research the study of portfolio approaches that exploit the
collaboration between different solver in order to boost the search speed.

In order to compare different portfolio approaches, we then considered the
following evaluation metrics:

– Average Score (AS): the average of the scores achieved by the selected
solver(s) on all the instances of the dataset;

– Percentage of Optimality Proven (POP): the percentage of instances of the
dataset for which optimality is proven;

– Average Optimization Time (AOT): the average time needed for proving
optimality on every instance of the dataset, using a time penalty of T seconds
when optimality is not proven.

3 Methodology

Taking as baseline the methodology and the results of [1] in this section we
present the main ingredients and the procedure that we have used for conducting
our experiments and for evaluating the portfolio approaches.

3.1 Solvers, dataset, and features

In order to build our portfolios we considered all the publicly available and di-
rectly usable solvers of the MiniZinc Challenge 2012. The universe U was com-
posed by 12 solvers, namely: BProlog, Fzn2smt, CPX, G12/FD, G12/LazyFD,
G12/MIP, Gecode, izplus, JaCoP, MinisatID, Mistral and OR-Tools. We used
all of them with their default parameters, their global constraint redefinitions
when available, and keeping track of each solution found by every solver within
a timeout of T = 1800 seconds.

To conduct our experiments on a dataset of instances as realistic and large as
possible, we have considered all the COPs of the MiniZinc 1.6 benchmark [29].
In addition, we have also added all the instances of the MiniZinc Challenge 2012,
thus obtaining an initial dataset of 4977 instances in MiniZinc format.

In order to reproduce the portfolio approaches, we have extracted for each
instance a set of 155 features by exploiting the features extractor mzn2feat [3].
We preprocessed these features by scaling their values in the range [-1, 1] and by
removing all the constant features. In this way, we ended up with a reduced set
of 130 features on which we conducted our experiments. We have also filtered
the initial dataset by removing, on one hand, the “easiest” instances (i.e., those
for which the optimality was proven during the feature extraction) and, on the
other, the “hardest” (i.e., those for which the features extraction has required
more than T/2 = 900 seconds). These instances were discarded essentially for two
reasons. First, if an instance is already optimized during the features extraction,
no solver prediction is needed. Second, if the extraction time exceeds half of



the timeout it is reasonable to assume that the recompilation of the MiniZinc
model into FlatZinc format2 would end up in wasting the time available to solve
the instance. The final dataset ∆ on which we conducted our experiments thus
consisted of 2670 instances.

3.2 Portfolio composition

After running every solver on each instance of the dataset ∆ keeping track of
all the solutions found, we built portfolios of different size m = 2, . . . , 12. While
in the case of CSPs the ideal choice is typically to select the portfolio of solvers
that maximizes the number of solved instances, in our case such a metric is no
longer appropriate since we have to take into account the quality of the solutions.
We decided to select for each portfolio size m = 2, . . . , 12 the portfolio Pm that
maximizes the total score (possible ties have been broken by minimizing the
solving time). Formally:

Pm = arg max
P∈{S⊆U . |S|=m}

∑
i∈∆

max{score(s, i, T ) . s ∈ P}

We then elected a backup solver, that is a solver designated to handle exceptional
circumstances like the premature failure of a constituent solver. After simulating
different voting scenarios, the choice fell on CPX3 [10] that in the following we
refer also as Single Best Solver (SBS) of the portfolio. As a baseline for our
experiments, we have also introduced an additional solver called Virtual Best
Solver (VBS), i.e., an oracle solver that for every instance always selects and
runs the solver of the portfolio having highest score (by using the solving time
for breaking ties).

3.3 Portfolio Approaches

We tested different portfolio techniques. In particular, we have considered two
state of the art SAT approaches (SATzilla and 3S) as well as some relatively
simple off-the-shelf ML classifiers used as solver selector. Moreover, we have also
implemented a generalization of the recently introduced CSP portfolio solver
SUNNY [2] in order to deal with optimization problems.

We would like to underline that in the case of 3S and SATzilla approaches
we did not use the original methods which are tailored for the SAT domain. As

2 FlatZinc [6] is the low level language that each solver uses for solving a given
MiniZinc instance. A key feature of FlatZinc is that, starting from a general MiniZ-
inc model, every solver can produce a specialized FlatZinc by redefining the global
constraints definitions. arbitrary FlatZinc. We noticed that, especially for huge in-
stances, the time needed for extracting features was strongly dominated by the
FlatZinc conversion. However, for the instances of the final dataset this time was in
average 10.36 seconds, with a maximum value of 504 seconds and a median value of
3.17 seconds.

3 Following [1] methodology, CPX won all the elections we simulated using different
criteria, viz.: Borda, Approval, and Plurality.



later detailed, we have instead adapted these two approaches for the optimization
world trying to modify them as little as possible. For simplicity, in the following,
we refer to these adapted versions with their original names, 3S and SATzilla.
A study of alternative adaptations is outside the scope of this paper.

In the following we then provide an overview of these algorithms.

Off the shelf As in the case of satisfiability [1], off the shelf approaches were
implemented by simulating the execution of a solver predicted by a ML classifier.
We then built 5 different approaches using 5 well-known ML classifiers, viz.: IBk,
J48, PART, Random Forest, and SMO, and exploiting their implementation in
WEKA [15] with default parameters. In order to train the models we added
for each instance of the dataset a label corresponding to the best constituent
solver w.r.t. the score for such instance; for all the instances not solvable by any
solver of the portfolio we used a special label no solver. In the cases where the
solver predicted by a classifier was labeled no solver, we directly simulated the
execution of the backup solver.

3S (SAT Solver Selector) [18] is a SAT portfolio solver that combines a fixed-
time solver schedule with the dynamic selection of one long-running component
solver: first, it executes for 10% of the time limit short runs of solvers; then, if
a given instance is not yet solved after such time, a designated solver is selected
for the remaining time by using a k-NN algorithm. 3S was the best-performing
dynamic portfolio at the International SAT Competition 2011.

The major issue when adapting 3S for optimization problems is to compute
the fixed-time schedule since, different from SAT problems, in this case, the
schedule should also take into account the quality of the solutions. We then
tested different minimal modifications, trying to be as little invasive as possible
and mainly changing the objective metric of the original Integer Programming
(IP) problem used to compute the schedule. The performances of the different
versions we tried were similar. Among those considered, the IP formulation that
has achieved the best performance (with a peak AS of 0.78% more than the
original one) is the one that: first, tries to maximize the solved instances; then,
tries to maximize the sum of the score of the solved instances; finally, tries to
minimize the solving time. 4

SATzilla [38] is a SAT solver that relies on runtime prediction models to
select the solver that (hopefully) has the fastest running time on a given problem
instance. Its last version [37] uses a weighted random forest approach provided
with an explicit cost-sensitive loss function punishing misclassifications in direct

4 The objective function of the best approach considered was obtained by replacing
that of the IP problem defined in [18] (we use the very same notation) with:

max

[
C1

∑
y

yi + C2

∑
i,S,t

score(S, i, t) · xS,t + C3

∑
S,t

t · xS,t

]

where C1 = −C2, C2 = C, C3 = − 1
C

, and adding the constraint
∑

t xS,t ≤ 1, ∀S.



proportion to their impact on portfolio performance. SATzilla won the 2012 SAT
Challenge in the Sequential Portfolio Track.

Unlike 3S, reproducing this approach turned out to be more straightforward.
The only substantial difference concerns the construction of the runtimes matrix
that is exploited by SATzilla to constructs its selector based on m(m − 1)/2
pairwise cost-sensitive decision forests.5 Since our goal is to maximize the score
rather than to minimize the runtime, instead of using such a matrix we have
defined a matrix of “anti-scores” P in which every element Pi,j corresponds to
the score of solver j on instance i subtracted to 1, that is Pi,j = 1−score(j, i, T ).

SUNNY [2] is a brand new lazy algorithm portfolio that, different from
previously mentioned approaches, does not need an offline training phase. For a
given instance i and a given portfolio P , SUNNY uses a k-NN algorithm to select
from the training set a subset N(i, k) of the k instances closer to i. Then, on-the-
fly, it computes a schedule of solvers by considering the smallest sub-portfolio
S ⊆ P able to solve the maximum number of instances in the neighborhood
N(i, k) and by allocating to each solver of S a time proportional to the number
of solved instances in N(i, k).

Even in this case, we faced some design choices to tailor the algorithm for
optimization problems. In particular, we decided to select the sub-portfolio S ⊆
P that maximizes the score in the neighborhood and we allocated to each solver
a time proportional to its total score in N(i, k). In particular, while in the CSP
version SUNNY allocates to the backup solver an amount of time proportional
to the number of instances not solved in N(i, k), here we have instead assigned
to it a slot of time proportional to k−h where h is the maximum score achieved
by the sub-portfolio S.

3.4 Validation

In order to validate and test each of the above approaches we used a 5-repeated
5-fold cross validation [4]. The dataset ∆ was randomly partitioned in 5 disjoint
folds ∆1, . . . ,∆5 treating in turn one fold ∆i, for i = 1, . . . , 5, as the test set and
the union of the remaining folds

⋃
j 6=i∆j as the training set. In order to avoid

possible overfitting problems we repeated the random generation of the folds for 5
times, thus obtaining 25 different training sets (consisting of 534 instances each)
and 25 different training sets (consisting of 2136 instances). For every instance of
every test set we then computed the solving strategy proposed by the particular
portfolio approach and we simulated it using a time cap of 1800 seconds. For
estimating the solving time we have taken into account both the time needed for
converting a MiniZinc model to FlatZinc and the time needed for extracting the
features. In order to evaluate the performances, we then computed the metrics
introduced in the previous section.

5 For more details, we defer the interested reader to [37]
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(a) Results considering all the approaches
and the VBS.

2 3 4 5 6 7 8 9 10 11 12
69

74

79

84

89

Portfolio Size

A
v

e
ra

g
e

 S
c

o
re

 [
%

]

(b) Results considering SBS, VBS, and the
best two approaches.

Fig. 2: AS performances.

4 Results

In this section we present the obtained experimental results.6 In Fig. 2, 3, 4
we summarize the results obtained by the various techniques considering port-
folios of different sizes and by using the Average Score (AS), the Percentage of
Optimality Proven (POP), and the Average Optimization Time (AOT) metrics
introduced in Section 2. For ease of reading, in all the plots we report only the
two best approaches among all the off-the-shelf classifiers we evaluated, namely
Random Forest (RF) and SMO. The source code developed to conduct and repli-
cate the experiments is available at http://www.cs.unibo.it/~amadini/lion_
2014.zip

4.1 Average Score

Fig. 2a shows the AS performances of the various approaches, setting as base-
line the performances of the Virtual Best Solver (VBS). Fig. 2b for the sake of
readability visualizes the same results considering the VBS baseline, the two best
approaches only (SUNNY and 3S) and the Single Best Solver (SBS) performance
as additional baseline.

All the considered approaches have good performances and they greatly out-
perform the SBS. As in the case of CSP [1, 3], it is possible to notice that

6 To conduct the experiments we used Intel Dual-Core 2.93GHz computers with 3 MB
of CPU cache, 2 GB of RAM, and Ubuntu 12.04 operating system. For keeping track
of the solving times we considered the CPU time by exploiting Unix time command.

http://www.cs.unibo.it/~amadini/lion_2014.zip
http://www.cs.unibo.it/~amadini/lion_2014.zip
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(a) Results considering all the approaches
and the VBS.
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(b) Results considering SBS, VBS, and the
best two approaches.

Fig. 3: POP performances.

off-the-shelf approaches have usually lower performances even though the gap
between the best approaches and them is not that pronounced.

The best portfolio approach is SUNNY that reaches a peak performance of
0.8802 using a portfolio of just 6 solvers and is able to close the 91.35% of the
gap between the SBS and VBS. 3S however has performances close to those of
SUNNY and in particular its best performance (0.8718 with 6 and 12 solvers)
is very close to the peak performance of SUNNY. Strangely enough, we can
notice that both SUNNY and 3S have non monotonic performances when the
portfolio sizes increases. This is particularly evident looking at their performance
decrease when a portfolio of size 7 is used instead of one with just 6 solvers. This
instability is obviously a bad property for a portfolio approach. We think that in
this case it may be due to the noise of the addition of a solver that may disrupt
the choices made by the k-NN algorithm on which SUNNY and 3S rely.

SATzilla often does not reach the performances of SUNNY or 3S, even though
for big portfolio sizes its performances are rather close. Moreover its behavior is
monotonic w.r.t. the increase of the size of the portfolio. Hence, it seems that
SATzilla is more reliable and scalable and, as also noticed in [1], it is the only
approach that does not present a degradation of performances for portfolios with
more than 6 solvers.

4.2 Percentage of Optimality Proven

Looking at the number of optimality proven it is clear from Fig. 3a and 3b
that there is a sharp demarcation of SUNNY w.r.t. other approaches. SUNNY
appears to prove many more optimality w.r.t. the other techniques, reaching a
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(a) Results considering all the approaches
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Fig. 4: AOT performances.

maximum POP of 57.03%. We think that the performances of SUNNY exploit
the fact that it schedules more than one solver reducing the risk of making
wrong choices. Moreover, it uses this schedule for the entire time window (on
the contrary, 3S uses a static schedule only for 10% of the time window). Another
interesting fact is that SUNNY mimics the behavior of the VBS. Thus, SUNNY
seems able to properly use the addition of a solver to prove the optimality of
instances exploiting the capability of the newly added solver.

Regarding other approaches, it can be observed by the overlapping of their
curves in Fig. 3a that they are basically equivalent. What may seem surprising
is that the best among them is SMO, which instead turned out to be the worst
by considering the AS (Fig. 2a).

Even in this case, as shown in Fig. 3b all the portfolio approaches greatly
outperform the SBS. SUNNY in particular is able to close the 85.73% of the gap
between the SBS and VBS. Finally, note that there is a significant correlation be-
tween AS and POP (the Pearson coefficient computed taking into account every
instance of all the test sets for all the portfolio sizes is about 0.78). Hence, max-
imizing the score is almost equivalent to maximizing the number of optimality
proven.

4.3 Average Optimization Time

When the AOT metric is considered we can notice that the 3S approach does
not perform very well compared to the other approaches. We think that this is
due to the fact that 3S is a portfolio that uses more than one solver and it does
not employ heuristics to decide which solver has to be executed first. SUNNY



instead does not suffer from this problem since it schedules the solvers according
to their performances on the already known instances. However, 3S is still able
to always outperform the SBS for each portfolio size.

While the performance of SATzilla and the off-the-shelf approaches appear
to be very similar, even in this case we can observe the good performances of
SUNNY that is able to close the 77.51% of the gap SBS/VBS reaching a peak
performance of 832.62 seconds with a portfolio of 12 solvers.

The (anti-)correlation between AOT and AS is lower than the one between
POP and AS (the Pearson coefficient is -0.72) but still considerable. On the other
hand, the anti-correlation between AOT and POP is very strong (the Pearson
coefficient is -0.99). This means that trying to maximize the average percentage
score is like trying to minimizing the average solving time and to maximize the
number of proven optimality.

Finally, we would like to mention that the AOT metric could be too strict
and not so significant. In fact, if a solver finds the best value after few seconds
and stops its execution without proving optimality it is somewhat over-penalized
with the timeout value T . In future it may therefore be interesting to study other
ways to weight and evaluate the solving time (e.g., a rationale metric could be
to consider a properly normalized area under the curve time/value defined by
each solver behavior).

5 Related work

As far as the evaluation of optimization solvers and portfolio approaches is con-
cerned, there exist a variety of metrics used to rank them. Among those used
in practice by well known solving competitions worth mentioning are those that
rank the solvers by using the number of the solved instances first, considering
solving time later in case of ties [27,33]. In [30] instead the ranking is performed
by using a Borda count, i.e., a single-winner election method in which voters
rank candidates in order of preference. Differently from the metrics defined in
Section 2, these metrics address the quality of the solutions in a less direct way
(i.e., by making pairwise comparisons between the score of the different solvers).

In the previous section we have already mentioned SATZilla [38] and 3S [18]
as two of the most effectives portfolio approaches in the SAT and CSP domain.
For a comprehensive survey on portfolio approaches applied to SAT, planning,
and QBF problems we refer the interested reader to the comprehensive survey
[21] and to [1] for CSPs.

As far as optimization problems are concerned, in the 2008 survey on algo-
rithm selection procedures [34] the authors observe that “there have been sur-
prisingly few attempts to generalize the relevant meta-learning ideas developed
by the machine learning community, or even to follow some of the directions of
Leyton-Brown et al. in the constraint programming community.” To the best of
our knowledge, we think that the situation has not improved and we are not
aware of more recent works addressing explicitly the construction of portfolio
solvers for COPs. Indeed, in the literature, we are aware of portfolio approaches



developed just for some specific instances of COP. For instance, problems like
Mixed Integer Programming, Scheduling, Most Probable Explanation (MPE)
and Travel Salesman Problem (TSP) are addressed by means of portfolio tech-
niques exploiting ML methods in [14,17].

Other related work target the analysis of the search space of optimization
problems by using techniques like landscape analysis [20], Kolmogorov complex-
ity [8], and basins of attractions [28]. Some approaches like [23,35] also use ML
techniques to estimate the search space of some algorithms and heuristics on op-
timization problems. These works look interesting because precise performance
evaluations can be exploited in order to built portfolios as done, for instance, by
SATzilla [38] in the SAT domain or by [24] for optimization problems solved by
using branch and bound algorithms.

Another related work is [36] where ML algorithms are used to solve the
Knapsack and the Set Partitioning problems by a run-time selection of different
heuristics during the search. In [19,39] automated algorithm configurators based
on AI techniques are used to boost the solving process of MIP and optimization
problems. In [9] a low-knowledge approach that selects solvers for optimization
problems is proposed. In this case, decisions are based only on the improvement
of the solutions quality, without relying on complex prediction models or on
extensive set of features.

6 Conclusions and Extensions

In this paper we tackled the problem of developing a portfolio approach for solv-
ing COPs. In particular, in order to evaluate the performances of a COP solver
we proposed a scoring function which takes into account the solution quality of
the solver answers. We then proposed three different metrics to evaluate and
compare COP solvers. These criteria were used to compare different portfolio
techniques adapted from the satisfiability world with others based on classifiers
and with a recently proposed lazy portfolio approach.

The results obtained clearly indicate that exploiting portfolio approaches
leads to better performances w.r.t. using a single solver. We conjecture that,
especially when trying to prove optimality, the number of times a solver cannot
give an answer is not negligible and that the solving times have a heavy-tail dis-
tribution typical of complete search methods [13]. Hence, a COP setting can be
considered an ideal scenario to apply a portfolio approach and obtain statistically
better solvers exploiting existing ones.

We noticed that, even though at a first glance it can seem counterintuitive,
the best performances were obtained by SUNNY: a portfolio approach which
(possibly) schedules more than one solver. In these cases the risk of choosing
the wrong solver is reduced and, apparently, this is more important than per-
forming part of the computation again, as could happen when two (or more)
solvers are lunched on the same instance. We also noticed that the adaptation
of methods deriving from SAT does not lead to the same gain of performance
that these methods provide in the CSP and SAT field. We believe that the study



of new techniques tailored to COPs should be done in order to obtain the same
advantages of the SAT field . This is however left as a future work, as well as
adapting and testing other promising portfolio approaches like [19, 26, 31] and
using filtering [22] or benchmark generation techniques [16].

Another direction for further research is the study of how cooperative strate-
gies can be used among the constituent solvers, both in the sequential case and
in a parallel setting, where more than one solver of the portfolio is allowed to be
executed at the same time. As previously said, we would also like to study the
impact of using other metrics to evaluate the solution quality of the solvers. On
the basis of the empirical correlation among the metrics so far considered we are
confident that the performance of portfolio approaches should be robust, i.e.,
the rank of good portfolios approaches does not depend on the specific metric
used, provided that the metric is enough “realistic”.
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