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Inference by Sampling

Consider a discrete random variable with a finite number of
possible states X = {x1, . . . xk} with pi = P(X = xi ).

To sample the variable X from P means to assign X one of the
possible values xi according to the probability pi (i.e., if we
repeatedly sample the variable, the frequency of the value xi
must converge to the probability pi )

Sampling procedure

Generate a uniform random number between 0 and 1;

set X = xi if the number is in the interval corresponding
to xi
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If variable X is continuous and X ∼ U(0, 1), then standard
methods for pseudo-random generation exist. E.g.,
Marsenne-Twister (with period of 219937 − 1)

If the variable X is not U(0, 1), then if the cdf is
F (x) = P(X ≤ x), then X ≡ F−1(U(0, 1)) ∼ F . Requires
F to be invertible
F (x) = 1− e−λx → x = 1

λ log(1− z) with Z ∼ U(0, 1)
(exponential distribution)

Specific methods are also available for important
distributions. E.g., Box-Muller method for N (0, 1); let
U1,U2 ∼ U(0, 1), then
Z =

√
−2 log(U1) cos(2πU2) ∼ N (0, 1)

Remember: if Z ∼ N (0, 1) then σZ + µ ∼ N (µ, σ2)
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Monte Carlo Principle

Given a very large set X and a probability distribution P(X )
over it, draw a set X (1), . . .X (N) of i.i.d samples of X .

Approximate the distribution using such samples:

PN(X = xi ) =
1

N

N∑
k=1

1(X (k) = xi ) −→
N→∞

P(X = xi )

Computing expectations:

EN(f ) =
1

N

N∑
k=1

f (X (k)) −→
N→∞

E(f ) =
∑
X

f (X )P(X )

(

∫
X
f (X )P(X ) in a continuous space)
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When is too complicated to sample directly from
distribution P, we can sample from a simpler distribution
Q called the proposal distribution

The proposal distribution Q must satisfy the following:
P(X ) ≤ αQ(X ) for some α <∞
We sample a candidate X = xi from Q and we accept the
candidate with probability A(xi ) = P(xi )

αQ(xi )

Result has a distribution ∼ Q(x)A(x) = P(x)
α ∝ P(x)
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Inference by Sampling Acceptance-Rejection Sampling

Paccept(xi ) ∝
v

u
=
P(X = xi )

αQ(X = xi )
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Remarks

It works well when P and Q are similar.
If α is too large, then we rarely accept samples
In high dimensional space you have too much to sample from
(many rejections)
We should avoid to sample in regions with low values of P
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In case of rare events (function values belonging to regions
with low probability) a lot of samples are unuseful

Idea: to sample from a proposal where the event is not
rare and always accept the sample; however, suitably
weight and adjusts for the introduced bias.

The resulting strategy is called Importance Sampling
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Importance Sampling

Let Q(x) be a proposal distribution, P(x) the original
distribution from which we want to sample and f (x) the
function whose expected value has to be computed (we require
f (x)P(x) 6= 0).

E(f ) =
∑
x

f (x)P(x) =
∑
x

f (x)P(x)

Q(x)
Q(x)

EN(f ) =
1

N

N∑
k=1

f (X (k))P(X (k))

Q(X (k))
X (k) ∼ Q

w (k) = P(X (k))

Q(X (k))
is the importance weight of the sample (the bias

introduced by sampling from the proposal)

Finding a good importance sampler is an art and a science
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Normalized Importance Sampling

Frequently, target distribution P is known up to a normalizing
constant i.e., P̃(X ) = ZP(X ) (e.g., we know P(X , e) but need
P(X |e), or we have unormalized product of cliques in a MRF)

Define w(X ) = P̃(X )
Q(X )

The expected value wrt Q of w is

EQ(w(X )) =
∑

x Q(x) P̃(X )
Q(X ) =

∑
x P̃(X ) = Z

EP(f (X )) =
∑

x P(x)f (x) =
∑

x Q(x)f (x)P(x)Q(x)

= 1
Z

∑
x Q(x)f (x) P̃(x)Q(x) = 1

ZEQ(f (X )w(X ))

= EQ(f (X )w(X ))
EQ(w(X ))

Thus to estimate EP(f (X )) we can compute∑N
k=1 f (X (k))w(X (k))∑N

k=1 w(X (k))
X (k) ∼ Q
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The choice of a proposal distribution is crucial both in
rejection and importance sampling.

Idea: instead of using a fixed proposal distribution, choose
an adaptive one.

Consider the sampling process as visiting a set of states:
each state has an associated proposal distribution that
depends on the previous state.

Sampling process as a Markov Chain!
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Importance sampling with a bad proposal

An adaptive proposal sampling
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A digression

Markov Chain

A Markov Chain is a sequence od random variables indexed by
a parameter t called the time: X (1),X (2), . . .X (t) . . . satisfying
the Markov property

P(X (t) = x ′|X (1),X (2), . . .X (t−1)) = P(X (t) = x ′|X (t−1))

If parameter t is discrete we have a DTMC (Discrete Time
Markov Chain), otherwise it is called CTMC (Continuous Time
Markov Chain).

We consider only DTMCs and X (t) will be the t-th sample (the
entire set of all the variables in case of a PGM)

P(X (t) = x ′|X (t−1)) is called the transition kernel
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Inference by Sampling Markov Chain Monte Carlo

We consider Homogeneouos Markov Chain where
transition kernel is independent from time

P(X (t) = x ′|X (t−1) = x) = T (x ′|x)

where x is the previous state and x ′ the next state

If πt(x) is the probability distribution over the states of the
MC at time t (the possible values of variable X (t)), then

πt+1(x ′) =
∑
x

πt(x)T (x ′|x)

A distribution is stationary if it does not change under
transitions

π(x ′) =
∑
x

π(x)T (x ′|x) for all x ′
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Irreducible: a MC where any state x ′ can be reach from
any state x in a finite number of steps

P(X (t+n) = x ′|X (t) = x) > 0 for a finite t + n

Aperiodic: a MC where any state can be reached at any
time (no period)

Ergodic: a MC that is irreducible and aperiodic.

Regular: a MC with a regular transition matrix (i.e., a
matrix P such that some power of the matrix Pn has only
positive entries);if a MC is regular then it is ergodic (vice
versa is not true)
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Existence of stationary distribution

If a MC is ergodic, then it has a unique stationary distribution
which is independent from the initial state

Reversibility

The stationary distribution satisfies the detailed balance
condition or reversibility :

π(x ′)T (x |x ′) = π(x)T (x ′|x)

MCMC

Given a desired distribution P(x), we can build a MC such that
P(x) is the stationary distribution; by simulating the MC, once
we have reached the stationary distribution, we can take
sample from it.
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Let us introduce a first MCMC algorithm:

Metropolis Algorithm

Consider a symmetric proposal distribution
Q(x ′|x) = Q(x |x ′) over the considered space X and an
initial state x = x0.

Draw a sample x ′ from the proposal distribution and the
current state x .

Accept the sample (set x ′ to the current state) with

probability A(x ′|x) = min(1, r), where r = P(x ′)
P(x)

repeat N times, by discarding the first K runs (burn-in
phase)

samples are always accepted if more probable than the
current one (r > 1)

only need to compute P(x
′)

P(x) rather than P(x) and P(x ′)
separately.
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Analysis of Metropolis Algorithm

The transition kernel of Metropolis Algorithm is

T (x ′|x) = Q(x ′|x)P(x
′)

P(x) if P(x) > P(x ′) and

T (x ′|x) = Q(x ′|x) otherwise.

Let P(x ′) ≥ P(x)

P(x)T (x ′|x) = P(x)Q(x ′|x)
= P(x)Q(x |x ′) (symmetric proposal)

= P(x ′)Q(x |x ′) P(x)P(x ′)
= P(x ′)T (x |x ′)
The above is the detailed balance equation showing that
P(x) is the stationary distribution of the generated MC
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Another MCMC algorithm:

Metropolis-Hasting Algorithm

Consider a proposal distribution Q(x ′|x) over the
considered space X and an initial state x = x0.

Draw a sample x ′ from the proposal distribution and the
current state x .

Accept the sample (set x ′ to the current state) with

probability A(x ′|x) = min(1, r), where r = P(x ′)Q(x |x ′)
P(x)Q(x ′|x)

repeat N times, by discarding the first K runs (burn-in
phase)

N.B. P(x
′)

Q(x ′|x) is the importance weigth of x ′.

A(x ′|x) is the ratio of the importance weights of x ′ and x .

do not require a symmetric proposal ansd (again) only

need to compute P(x
′)

P(x) .
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Proposal: Gaussian distribution centered on x

Initialize x0
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Initialize x0

Draw and accept x1
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Initialize x0

Draw and accept x1

Draw and accept x2
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Initialize x0

Draw and accept x1

Draw and accept x2

Draw x ′, reject and set x3 = x2

We reject because P(x
′)

P(x2) is very small so A(x ′|x2) is close to 0
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Initialize x0

Draw and accept x1

Draw and accept x2

Draw x ′, reject and set x3 = x2

Draw and accept x4
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Initialize x0

Draw and accept x1

Draw and accept x2

Draw x ′, reject and set x3 = x2

Draw and accept x4

Draw and accept x5
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Analysis of Metropolis-Hasting

The transition kernel of MH is T (x ′|x) = Q(x ′|x)A(x ′|x)

If A(x ′|x) = min(1, P(x
′)Q(x |x ′)

P(x)Q(x ′|x) ) < 1, then P(x)Q(x ′|x)
P(x ′)Q(x |x ′) > 1

and A(x |x ′) = 1

If A(x ′|x) < 1, then A(x ′|x) = P(x ′)Q(x |x ′)
P(x)Q(x ′|x) and

A(x |x ′) = 1

P(x)Q(x ′|x)A(x ′|x) = P(x ′)Q(x |x ′)
P(x)Q(x ′|x)A(x ′|x) = P(x ′)Q(x |x ′)A(x |x ′)
P(x)T (x ′|x) = P(x ′)T (x |x ′)
The above is the detailed balance equation showing that
P(x) is the stationary distribution of the generated MC
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The mixing time of the algorithm is the number of steps
required to reach the stationary distribution.

All the samples generated before the mixing time should
be discarded, since they are not sampled from the required
distribution.

The mixing time may be very long if the proposal
distribution is not good.

The mixing time should be estimated and doing this is an
art!

The steps before mixing constitute the burn-in phase.

The burn-in is not mathematically necessary : it is a
computational statistics trick (without burn-in the bias
introduced by the first samples, may require a lot of
subsequent samples to vanish)
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Inference by Sampling Markov Chain Monte Carlo

A special case

Gibbs Sampling

Suppose we want to sample from a multivariate
distribution P(x1, . . . xn) and we have a proposal
distribution which is P(xi |x−i ) where x−i is the set of all
the variables but xi .

Initialize a random sample X (0) = (x
(0)
1 , . . . x

(0)
n )

For step t = 1 . . .N:

for each variable xi :
sample x

(k)
i from P(xi |x (t)1 , . . . x

(t)
i−1, x

(t−1)
i+1 , . . . x

(t−1)
n )

Optional (but important): discard first K samples
(burn-in) and consider only one sample every h (period)

first variable may be uninitialized (it is sampled from the
others at the first step)
period h mitigates the fact the subsequent samples are
correlated (thinning)

Luigi Portinale (UPO) Approximate Inference in Probabilistic Graphical Models March 7-10, 2017 28 / 48



Approximate
Inference in
Probabilistic
Graphical
Models

Luigi Portinale

Inference by
Sampling

Acceptance-
Rejection
Sampling

Importance
Sampling

Markov Chain
Monte Carlo

Sampling in
Probabilistic
Graphical
Models

Logical Sampling

Likelihood
Weighting

Gibbs Sampling

Inference by Sampling Markov Chain Monte Carlo

Gibbs sampling is a special case of Metropolis-Hasting

Proposal distribution Q(x ′i , x−i |xi , x−i) = P(x ′i |x−i)
A(x ′i , x−i |xi , x−i) = min(1,

P(x ′i ,x−i )Q(xi ,x−i |x ′i ,x−i )

P(xi ,x−i )Q(x ′i ,x−i |xi ,x−i )
)

= min(1,
P(x ′i ,x−i )P(xi |x−i )

P(xi ,x−i )P(x ′i |x−i )
)

= min(1,
P(x ′i ,|x−i )P(x−i )P(xi |x−i )

P(xi ,|x−i )P(x−i )P(x ′i |x−i )
)

= min(1, 1) = 1

Gibbs sampling is a version of Metropolis-Hasting
where the next sample is always accepted!
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Approximate Inference on a Bayesian Network: P(Q|e)

Logical or Ancestral Sampling

Take a topological order X1, . . .Xn of the variable nodes

For i = 1 . . .N,

draw a sample of each variable following the topological

order, producing a network sample (x
(i)
1 , . . . x

(i)
n )

if the network sample does not agree with evidence e,
reject the sample

Let N ′ be the number of accepted sample, let q be an
assignment to variables in Q and let Nq be the number of

samples satisfying q; estimate P̂(q|e) =
Nq

N′

A network sample can be rejected as soon as a sampled
variable does not agree with the evidence (i.e., the samples
value is different than the observed one).
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Approximate Inference on a Bayesian Network: P(Q|e)

Logical or Ancestral Sampling

Take a topological order X1, . . .Xn of the variable nodes

For i = 1 . . .N,

draw a sample of each variable following the topological

order, producing a network sample (x
(i)
1 , . . . x

(i)
n )

if the network sample does not agree with evidence e,
reject the sample

Let N ′ be the number of accepted sample, let q be an
assignment to variables in Q and let Nq be the number of

samples satisfying q; estimate P̂(q|e) =
Nq

N′

Variable samples start from root nodes and proceed
forward (indeed, Forward Sampling is an alternative name)
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Approximate Inference on a Bayesian Network: P(Q|e)

Logical or Ancestral Sampling

Take a topological order X1, . . .Xn of the variable nodes

For i = 1 . . .N,

draw a sample of each variable following the topological

order, producing a network sample (x
(i)
1 , . . . x

(i)
n )

if the network sample does not agree with evidence e,
reject the sample

Let N ′ be the number of accepted sample, let q be an
assignment to variables in Q and let Nq be the number of

samples satisfying q; estimate P̂(q|e) =
Nq

N′

Following topological order, every variable can be sampled
from its CPD (parents are already assigned when sampling
the variable)
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Logical sampling is a special case of Acceptance/Rejection
sampling

Target distribution is P(X ) = P(x−e|e)

Proposal distribution is Q(X ) = P(x−e, e)

Probability of acceptance is A(X ) = P(e) (a sample is
accepted if it agrees with e)

Since A(X ) = P(x−e|e)
αP(x−e,e)

, it follows that α = P(e)−2

The requirement P(X ) ≤ αQ(X ) is satisfied.
P(x−e,e)
P(e) ≤ P(e)−2P(x−e, e) since P(e)−1 ≤ P(e)−2

Pros and Cons

Pro: easy to implement
Cons: too many rejections if evidence is rare, applicable only to
directed models
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Sampling order as in logical sampling but:
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evidence variables are not sampled
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each sample is weighted with an importance weight which
is the likelihood accorded to the evidence in such a
sample, as measured by the product of the CPDs of each
evidence variable
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if N is the total number of particles (runs), estimate

P̂(q|e) =

∑N
i=1 w

(i)
1(X (i)〈Q〉 = q)∑N
i=1 w

(i)
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w = 1.0
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w = 1.0× 0.1
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w = 1.0× 0.1× 0.99 = 0.099
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Likelihood weighting is a special case of Normalized
Importance Sampling
Given a BN B and some evidence e, we define the
mutilated network Be as follows:

every evidence node has no parent
the CPD of an evidence node Ei = ei is set to 1 for state
ei and set to 0 for every other state.
all other CPDs are kept unchanged
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Evidence: Grade=B, Intelligence=high
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Let B be the original network defining distribution PB , e
the evidence and Be the mutilated network defining
distribution PBe .

The proposal distribution of LW is the one defined by the
mutilated network PBe .

the weight of a sample s is w(s) = PB(s)
PBe (s)

the estimation provided by the algorithm corresponds to
the one of Normalized IS where:

proposal distribution is Q(X ) = PBe(X )
target distribution is P(X ) = PB(X−e|e)
unormalized distribution is P̃(X ) = PB(X−e, e)
the function whose expected value is estimated is the
indicator function of the query
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P̃(X ) =
∏
x

P(x |π(x)) =
∏
e∈E
P(e|π(e))

∏
x∈x−e

P(x |π(x))

Q(X ) =
∏

x∈x−e

P(x |π(x))

w(X ) =
P̃(X )

Q(X )
=

∏
e∈E P(e|π(e))

∏
x∈x−e

P(x |π(x))∏
x∈x−e

P(x |π(x))
=

∏
e∈E
P(e|π(e))
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LW: pros and cons

Pros: no sampling on evidence variables; no need for
rejection.

Cons: with many evidence variables (or in general with
rare evidence) estimate dominated by a small fraction of
samples, since the large part will have a small weight (slow
convergence); downstream evidence does not influence
samples (non evidence variables are sampled without
taking into account evidence “from below”)
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Forward sampling algorithms can be applied only to DAG
or tree-based UGM.

Gibbs sampling requires to sample a single variable
conditioned on the other variables.

PGM (either directed or undirected) have the notion of
Markov Blanket that works as isolation of each variable
wrt the rest of the model. A variable is independent from
the rest of the network given its MB.

If we devise an efficient way to sample a variable given its
MB, then we could apply Gibbs sampling using a local
view of each variable.
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Markov Blanket: Bayesian Network

Given a variable node X , the Markov Blanket of X is given
by its parents π(X ), its children γ(X ), and its mates
(other parents of the children)

P(X |MB(X )) ∝ P(X |π(X ))
∏

Y∈γ(x)

P(Y |π(Y ))

Markov Blanket: MRF

Given a variable node X , the Markov Blanket of X is given
by its neighbors.

Given a clique C , if SC is the scope (set of variables) of C

P(X |MB(X )) ∝
∏

C :X∈SC

ΦC (SC )
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Gibbs Sampling for PGMs

Let V = {X1 . . .Xn} be the variables of a PGM with
distribution P, let Q ⊆ V be a set of queried variables and e
the evidence (i.e. an assignment to variables in E ⊆ V \ Q)

set the variables in V to a random initial state (consistent
with e)

For k = 1 . . .N (number of runs)

For each Xi ∈ V :
if Xi ∈ E then set Xi to the value assigned in e
else sample Xi from P(Xi |MB(Xi ))

P̂(Q = q|e) =

∑N
j=b 1(Q = q)

N − b

where b is the number of burn-in steps
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Assume sampling order is B,E ,A, J,M

Initialize all variables to F
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Sampling B from P(B|A,E ) ∝ P(A|B,E )P(B)

P(B = T|A = F, E = F) ∝ (0.06)(0.01) = 0.0006
P(B = F|A = F, E = F) ∝ (0.999)(0.999) = 0.9980
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Sampling E from P(E |A,B) ∝ P(A|B,E )P(E )

P(E = T|A = F, B = F) ∝ (0.71)(0.02) = 0.142
P(E = F|A = F, B = F) ∝ (0.999)(0.998) = 0.9970
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Sampling A from
P(A|B,E , J,M) ∝ P(J|A)P(M|A)P(A|B,E )

P(A = T|B = F, E = T, J = F, M = F) ∝ (0.1)(0.3)(0.29) =
0.0087
P(A = F|B = F, E = T, J = F, M = F) ∝
(0.95)(0.99)(0.71) = 0.6678
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Sampling J from P(J|A)

P(J = T|A = F) ∝ 0.05
P(J = F|A = F) ∝ 0.95
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Sampling M from P(M|A)

P(M = T|A = F) ∝ 0.01
P(M = F|A = F) ∝ 0.99
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New run t = 2

repeat sampling B,E ,A, J,M
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Similarly for t = 3, 4, . . .

Based on the 4 runs (no burn-in) we get e.g.,
P̂(A = T) = 3

4

P̂(A = T, B = F) = 1
4

etc...
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GS: pros and cons

Pros: usable in both BN and MRF; can take into account
all the evidence in every sample.

Cons: hard to determine when convergence has been
achieved; wasteful if MB is large.
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