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Decision making

Decision: an irrevocable alllocation of domain resources;

decisions are taken from observations, in order to
maximize some utility (or minimize some cost);

in real world, the environment of a decision problem is
uncertain (decision making under uncertainty)

Utility theory : formalization of preferences and utilities

Decision Theory : combination of probability and utility
theories; not claimed to be descriptive, but normative

Decision Analysis: set of practical techniques for applying
decision theory to real world situations
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Utility theory: preferences

Given two different outcomes A and B:

A � B if we prefer A to B;

A ∼ B if we are indifferent between A and B

A � B if B is not preferred to A

Utility theory: lotteries

A lottery is a set of mutually exclusive and exhaustive
outcomes, with their associated probabilities of occurrence.

L : [S1 : p1; . . . Sn : pn]

where pi is the probability of occurrence of outcome Si
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Utility theory: rational preferences

Von Neumann-Morgenstein axioms of rationality

Completeness: (A � B) ∨ (A ∼ B) ∨ (A � B)

Transitivity: (A � B) ∧ (B � C )→ (A � C )

Continuity: if A � C � B, then there exists a probability p
such that [A : p;B : 1− p] ∼ C

Independence: if A � B, then for any C and probability p,
[A : p;C : 1− p] � [B : p;C : 1− p]
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Utility Function

Constraints on rational preferences lead to a real-valued utility
measure over the space S of possible outcomes

U : S → R

U(A) > U(B) iff A � B and
U(A) = U(B) iff A ∼ B

Expected Utility

Given a lottery L : [S1 : p1, . . .Sn : pn] and a utility function U
over the space of the outcomes, the lottery expected utility is

EU(L) =
n∑

i=1

piU(Si )
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Preference between lotteries

Given lotteries L1 and L2 we say that
L1 � L2 iff EU(L1) > EU(L2) and
L1 ∼ L2 iff EU(L1) = EU(L2)

Lotteries are models of actions or decisions leading to
outcomes.
Given a set of decisions represented as lotteries, the Maximum
Expected Utility principle states that the rational choice is to
select the one (or one among those) producing the maximum
EU.
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To generalize, suppose we have a probabilistic model providing
P(s ′|o, a), the probability of obtaining the outcome (state of
the world) s ′ given that we observe o and take action a; the
expected utility of taking a when observing o is

EU(a|o) =
∑
s′

P(s ′|o, a)U(s ′)

MEU Principle

The MEU principle select the action a∗ such that

a∗ = arg max
a

EU(a|o)
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Normalized utility

Utility measure can always be normalized such that the worst
outcome S⊥ has utility U(S⊥) = 0 and the best outcome S>
has utility U(S>) = 1

Utility elicitation

In a normalized utility setting, the utility of an outcome S is
U(S) = p where S ∼ [S> : p; S⊥ : 1− p]

U(S) = EU(L) = 1× p + 0× (1− p) = p
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Risk Aversion, Neutrality or Propension

Risk Neutral : the utility function is linear; there is no
preference between a certain prize and a lottery with
expected value equal to the price

Risk Aversion: the utility function is concave (concave
down); preference for a certain prize wrt a lottery with
expected value equal to the price

Risk Seeking : the utility function is convex (concave up);
preference for a lottery with a given prize as expected
value wrt the certain prize.
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St. Petersurg Paradox (Bernoulli)

Toss a fair coin several times: win 2n money units if head
come up at toss number n;

Computing EU of the game in case of linear utility:

EU =
∞∑
i=1

2i
1

2i
= 1 + 1 + 1 + · · · → ∞

Paradox : a player should be willing to pay any sum to play
the game!
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St. Petersburg Paradox (solution)

Computing EU of the game with a concave function (e.g.
log(x)):

EU =
∞∑
i=1

log(2i )
1

2i
=
∞∑
i=1

i log(2)
1

2i
=

= log(2)
∞∑
i=1

i
1

2i
= 2 log(2) = log(4)

The price to be paid is the inverse function of the utility
thus

price = e log(4) ≈ 4
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Decision Network

A Decision Network is a triple DN = 〈G ,P,U〉 where

G = (V ,E ) is a DAG where:

V = CN ∪ DN ∪ VN with CN chance nodes (ovals), DN
decision nodes (rectangles), VN value nodes (diamonds).
E = CA ∪ IA ∪ FA with CA conditional arcs entering a
chance node, IA informational arcs entering a decision
node, FA functional arcs entering a value node

P is a parametrized probability distribution

Pr(X1,X2, . . .Xn : d1, . . . dm) =
n∏

i=1

Pr(Xi |π(Xi ))

with d1, . . . dm assignments to the decision variables

U is is the joint utility function (additively decomposable)
U =

∑
v∈VN Uv , where Uv : Ωπ(v) → R is the local utility

function of value node v .
ΩX is the domain of X (i.e., the set of states or values of X )
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Disease no yes

Treatment no yes no yes

Outcome
bad 0.01 0.01 0.9 0.15
good 0.99 0.99 0.1 0.85

CPT for a chance node (entering conditional arcs)

Test no yes

Outcome bad good bad good

Utility 0.1 1 0 0.9
Utility function for a value node (entering functional arcs)

To decide whether to perform Test, need to observe
Symptoms (informational arc)
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Single Decision, no informational arcs

Luigi Portinale (UPO) Decision Theory March 7-10, 2017 23 / 60



Decision
Theory

Luigi Portinale

Decision
Problems

Decision
Networks

Influence
Diagrams

LIMIDs

Dynamic
Decision
Networks

Decision Networks

Inference Algorithm

� set evidence (if present)

� for each value of action node
� compute posterior probability of parents of utility node;
� compute EU of action value

� return action value with MEU
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EU(yes) = 0.938×1+0.049×0.3+0.012×0.1+0.001×0 = 0.954
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Single Decision, informational arcs
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Inference Algorithm

� set evidence (if present)

� for each combination of values of parent nodes of action
� for each value of action node

� compute posterior probability of parents of utility node;
� compute EU of action value

� return (combination, action) such that action has MEU
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Single Decision: policy

Optimal policy π:
if measure no fever then don’t take aspirin
if measure fever then take aspirin
EU(π) = 0.893× 0.976 + 0.106× 0.937 = 0.971
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Value of Information (VOI)

The VOI of a piece of information is the difference between the
EU of the best decision taken when the information is available
and the EU of the best decision taken when it is not available

Aspirin example

VOI (Thermometer) = 0.971− 0.954 = 0.017

The VOI is always either positive or null;

The VOI is the maximum rational price to be paid for
gathering the information
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VOI (Newcast) = 12.5
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Influence Diagram

An Influence Diagram (ID) is a decision network with the
following properties:

Regularity: decision nodes are connected through a direct
path; it follows that decision are temporally ordered

No Forgetting:every decision is conditioned by all
previous decisions and related information; this means that
any disclosed information (i.e., decisions and observations
made) is remembered and considered for future decisions.
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Necessary Evidence

Given a sequence of decisions {D1, . . .Dm}, let us define as
Ei =

⋃i−1
k=0 Ek ∪ π(Di+1) with E0 = π(D1); we call Ei the

necessary evidence for Di+1.

ID: Policy

Given an influence diagram and the corresponding sequence of
decisions {D1 . . .Dm}, for any decision variable Di (1 ≤ i ≤ m),
a policy δDi

is a function specifying an instance of Di for any
configuration of its necessary evidence, that is
δDi

: ΩEi−1
→ ΩDi

. If E0 = ∅ (i.e., the first decision D1 has no
parents), then δD1 ∈ ΩD1 (i.e., it is simply a valid state of D1)
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The car buyer problem

I need a car and my colleague John can sell me a used car
(market value e12K ) for e10K

I don’t totally trust John; he can sell me a lemon
(defective car) with probability 20%

I can test for the defect (cost e25); the test is completely
reliable if the car is a peach (good car), while it can
discover a lemon 99% of the times;

After deciding about the test, I can choose whether to buy
the car, keeping in mind that I can possibly repair the car
(cost e150); repair can trasform a lemon into a peach
95% of the times;

Suppose utilities are modeled as additive negative costs.
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analyze the best sequence of decisions

what changes if test reports a lemon or a peach?

what changes if repair is 10 times more expensive?
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Limited Memory Influence Diagrams

A LIMID is a decision network where regularity and
no-forgetting assumptions are removed

LIMID: Policy

Given a LIMID, for any decision variable D ∈ DN, a policy δD
is a function specifying an instance of D for any configuration
of its parent variables, that is δD : Ωπ(D) → ΩD . If π(D) = ∅
(i.e., D has no parents), then δD ∈ ΩD (i.e., it is simply a valid
state of D).

Strategy

Given a decision network (either an ID or a LIMID), a strategy
is a set q = {δD : D ∈ DN} of policies for the decisions.
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An Influence Diagram
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Influence Diagram: policies
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http://www.bayesfusion.com
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A LIMID with Policies
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http://www.hugin.com
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Dynamic Decision Networks
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By assuming a stationary model we can consider only
adjacent time slices or a plate representation

For a finite horizon, the unrolling produces the desired
model
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Interpreted as a LIMID
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Interpreted as an ID
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Influence Diagram

Treat(t=0)

Treat(t=1)

Treat(t=2)
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LIMID
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Pure and Random Policies

A pure policy is a mapping from states of parent nodes of
a decision node, to a state of the decision node

A random policy is a probability distribution over the
states of the decision node, given the state of the parents

A pure policy is a special case of random policy

Let δd be a policy (either pure or random) for decision d and
q = {δd : d ∈ DN} be a strategy;
The probability of a strategy q is given by

fq =
∏
r

pr
∏
d

δd

where pr are the local distributions over the random variables r
and δd is either 0 or 1 in case of pure policy.
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Example: robot positioning

Pi robot position at time i

PSi measured (by sensor)
robot position at time i

Di = {l , r , s} movement
action (left, right, stay)

Ui utility of robot position
at time i (1 for center, 0
otherwise)
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Pure policies:

δ1 : {PS1 = l → D1 = r ;PS1 = c → D1 = s;PS1 = r → D1 = l}
δ2 : {PS2 = l → D2 = r ;PS2 = c → D2 = s;PS2 = r → D2 = l}
P(D1 = l |PS1 = l) = 0;P(D2 = l |PS2 = l) = 0; . . .
P(D1 = r |PS1 = l) = 1;P(D2 = s|PS2 = c) = 1; . . .

Let q = {δ1, δ2}, we compute fq(P1,PS1,D1,P2,PS2,D2,P3):

fq(l , l , l , l , l , l , l) = P(P1 = l)P(PS1 = l |P1 = l)P(P2 = l |P1 =
l ,D1 = l)P(PS2 = l |P2 = l)P(P3 = l |P2 = l ,D2 = l)×
P(D1 = l |PS1 = l)P((D2 = l |PS2 = l)

fq(l , l , r , c , c , s, c) = P(P1 = l)P(PS1 = l |P1 = l)P(P2 = c |P1 =
l ,D1 = r)P(PS2 = c |P2 = c)P(P3 = c |P2 = c ,D2 = s)×
P(D1 = r |PS1 = l)P((D2 = s|PS2 = c)
. . .
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EU(q) =
∑
x

fq(x)U(x) =
∑
x

fq(x)
∑
u

Uu(π(u))

where u are the utility nodes.

A global maximum strategy q̂ is such that
∀q EU(q̂) ≥ EU(q)

let δ′d0
∗ q = {δ′d0

} ∪ q−d0 denote the strategy obtained
from q by replacing δd0 with δ′d0

A locally maximum policy for strategy q at d is a policy
δ̃d such that EU(δ̃d ∗ q) = supδ′d EU(δ′d ∗ q)

A strategy q̃ is a local maximum strategy if all its policies
are local maximum policies at the corresponding decisions
i.e., ∀d , δd we have EU(q̃) ≥ EU(δd ∗ q̃) (the EU does not
increase by changing only one of its policies)
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Algorithm Single Policy Updating

q ← random select initial strategy
repeat

PrevEU ← EU(q)
for all δd ∈ q do

find local max policy δ′d
q ← δ′d ∗ q

end for
until EU(q) = PrevEU
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Single Policy Updating

Finding local maximum policy step can be implemented
through junction tree inference [Lauritzen & Nilsson 2001]

There is always a pure local maximum policy (but it may
not be unique)

SPU is an iterative improvment algorithm; the algorithm
usually finds the globally optimal policies, but it is possible
that the algorithm may get stuck at a local maximum.
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Inference in LIMID

Unless all relevant information has been specified as parents,
then it can be useful to recompute policies whenever new
information becomes available. This is because the
computations take all existing observations (in addition to
future observations specified as parents of decision nodes) into
account when policies are computed.
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Suppose in the Apple tree example we have the evidence
Loses = yes (t = 0) and we choose Do not treat, then we
observe Loses = yes (t = 1) and we choose again
Do not treat, finally we observe Loses = no (t = 2); by
considering the policy for treatment at time t = 2 we should
decide Do not treat, resulting in EU = 21541; however by
choosing Treat we get EU = 26166. SPU must be run with the
new evidence to get this result; in ID it is pre-computed
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