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Learning in PGM: issues

Parameter Learning : to learn the quantitative
(probabilistic) part of the net

Structure Learning : to learn the qualitative (graph) part
of the net

Missing Data: how to deal with data that are missing,
especially if there are latent variables (i.e., variables that
are never observed)

We mainly focus on BN learning
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Estimating parameter for binary variables

Suppose θ is the parameter to be estimated: e.g., given a
binary variable X with no parent θ = P(X = T ) or given a
variable X with a parent Y , then θ = P(X = T |Y = T ).

Common assumptions: observed data come from a binomial
distribution.

Suppose to observe N successes in N trials:

Maximum Likelihood Estimation

θ̂ =
M

N

Bayesian Estimation (p prior, γ prior’s confidence)

θ̂ =
γp + M

γ + N
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MLE corresponds to a frequentist view

BE corresponds to a subjective view

Confidence γ is also called equivalent sample size:

Prior p can be viewed as the frequency of “hypothetical”
m successes over “hypothetical” n trials (before data are
observed)

the confidence is given by γ = n: the larger is the
“hypothetical” sample size, the greater is the confidence in
the prior

it easy to see that θ̂ = γp+M
γ+N = m+M

n+N

BE is like MLE including the hypothetical samples
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Beta Distribution

fB(θ;α, β) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1

where Γ(n) = (n − 1)! when n is integer

can be used to model binary priors when reference
distribution is binomial

Θ = (Θ1,Θ2) ∼ Beta(α, β) if Θ1 has density fB(θ, α, β)
and Θ2 = 1−Θ1

E (Θ1) =
∫ 1
0 θfB(θ;α, β)dθ = α

α+β

it is a conjugate prior for the binomial distribution

if you have a prior Beta(α, β) and actually observe data D
with M successes on N trials, then

fB(θ;α, β|D) = fB(θ;α + M, β + N −M)
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Dirichlet Distribution

fD(θ1...k−1;α1...k) =
Γ(α0)∏k
i=1 Γ(αi )

k∏
i=1

θαi−1
i

where α0 =
∑k

i=1 αi ; θi > 0 (i = 1 . . . k);
∑k

i=1 θi = 1

Θ = (Θ1 . . .Θk) ∼ Dir(α1...k) if first k − 1 r.v. have
density fD and Θk = 1−

∑k−1
i=1 Θi

used as a prior for multinomial distribution

E [Θi ] = αi
α0

it is a conjugate distribution for multinomial data

given a prior Dir(α1,...k) and a multinomial data sample D

with Mi occurences of the i-th result over N =
∑k

i=1Mi

trials, then

fD(θ1...k−1;α1...k |D) = fD(θ1...k−1;α1 + M1, . . . αk + Mk)
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Dir(θ1, θ2, θ3; 2, 2, 2): the density fD(θ1, θ2; 2, 2, 2)
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When all parameters are equal the distrubution is called
symmetric ; it is characterized by parameter α called
concentration parameter

α = 1 means uniform prior among all the possible
outcomes (states of the variable)

α > 1 means dense random variates (i.e., all the values
within a single sample are similar to each other)

α < 1 means sparse random variates (i.e., most of the
values within a single sample will be close to 0, and the
vast majority of the mass will be concentrated in a few of
the values)
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Illustrating how the log of the density function changes when
k = 3 as we change the concentration parameter from 0.3 to

2.0.
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Example

P(X = t) = 0.2 X Y
P(Y = t|X = f ) = 0.1
P(Y = t|X = t) = 0.7

Equivalent sample sizes: γX = 1000; γY |f = γY |t = 500

n1 = #(X = f ,Y = t) = 300
n2 = #(X = t,Y = t) = 1000
n3 = #(X = t,Y = f ) = 200
n4 = #(X = f ,Y = f ) = 500

N ⇒ 2000

P(X = t|D) = γX 0.2+n2+n3
γX+N = 0.47

P(Y = t|X = f ,D) =
γY |f 0.1+n1
γY |f +n1+n4

= 0.27

P(Y = t|X = t,D) =
γY |t0.7+n2
γY |t+n2+n3

= 0.79
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Example

ΘX

X Y

ΘY |f ΘY |t

ΘX ∼ Beta(200, 800)
since α = γX0.2 and β = γX − α

ΘY |f ∼ Beta(50, 450)

ΘY |t ∼ Beta(350, 150)
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Beta distributions from the priors and the given confidence
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Prior/Posterior distribution on X = t
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Some notation:

N: number of BN’s random variables

n: cardinality of dataset (number of cases)

ri : cardinality (number of states) of Xi

qi : number of configurations of parents of Xi

D: the dataset (observed sample) with cases
Dm (m = 1 . . . n)

Xi : generic variable with states xik

pai parent variables of Xi

πij : j-th configuration of parents of Xi
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D = 〈D1,D2, . . .Dn〉 is the dataset

Dm = (x1[m], x2[m], . . . xN [m]) generic case (xi [m]
observed state of variable Xi in case m)

θ = (θijk) parameter vector

θijk = P(xik |πij : θ)

θijl = 1−
∑

k 6=l θijk

θij = (θij1, θij2, . . . θijri ): parameter vector of variable Xi

given the j-th configuration of parents

θi |pai = (θij1 , θij2 . . .) parameter vector of Xi ’s family.
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Parameter Estimation

Likelihood function: L(θ : D) = P(D|θ)

coin landing
heads-up without
prior knowledge
after observing
HHT

Maximum Likelihood Estimation (MLE):
θ̂ = arg max

θ
L(θ : D)

Bayesian Estimation (BE): θ̂ = EP [θ] where
P(θ|D) ∝ P(θ)L(θ : D)
likelihood function has to be computed
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Given a set of cases D = {Dm} we assume i.i.d. samples, thus
L(θ : D) =

∏n
m=1 P(Dm : θ)

Because of network factorization:

L(θ : D) =
n∏

m=1

N∏
i=1

P(xi [m]|pai [m] : θ) =
N∏
i=1

n∏
m=1

P(xi [m]|pai [m] : θ)

If the parameters local to a given family (CPD) are mutually
independent (i.e., θi |pai are independent from θi ′|pai′ ) we have
that

L(θ : D) =
N∏
i=1

Li (θi |pai : D)

where Li (θi |pai : D) =
∏n

m=1 P(xi [m]|pai [m] : θi |pai ) is the
conditional likelihood of Xi
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If global likelihood factorizes into conditional local
likelihoods, parameters for each variable can be maximized
independently

if θ̂i |pai are parameters maximazing Li (θi |pai : D) then

θ̂ = (θ̂1|pa1 , θ̂2|pa2 , . . . θ̂N|paN ) maximizes L(θ : D)

in case of multinomial distribution, if Mi [k , j ] is the
number of times Xi = k and pai are in configuration j ,
then we get a further decomposition

Li (θi |pai : D) =
∏

j

∏
k θ

Mi [k,j]
ijk

it follows that MLE is θ̂i |pai = (θ̂ij1 , θ̂ij2 . . . θ̂ijqi ) where

θ̂ij = (θ̂ijk1 , θ̂ijk2 . . . θ̂ijkri ) and finally

θ̂ijk =
Mi [k , j ]∑
k Mi [k , j ]

θ̂ijk estimates P(Xi = k |pai = j)
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Bayesian Estimation of BN Parameters

Let G be a BN structure with parameters
θ = (θ1|pa1 , . . . θN|paN ), a prior P(θ) satisfies the global

parameter independence if P(θ) =
∏N

i=1 P(θi |pai )

P(θ|D) =
N∏
i=1

P(θi |pai |D)

we can determine the posterior over parameters independently
Luigi Portinale (UPO) Learning Bayesian Networks March 7-10, 2017 26 / 53
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Let Xi be a variable with parents pai , the prior P(θi |pai ) satisfies
local parameter independence if P(θi |pai ) =

∏qi
j=1 P(θij)

Let G be a BN structure with parameters
θ = (θ1|pa1 , . . . θN|paN ), if the prior P(θ) satisfies global and
local parameter independence then

P(θ|D) =
N∏
i=1

qi∏
j=1

P(θij |D)
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Let θij = (θijk1 , . . . θijkri ) ∼ Dir(αijk1 . . . αijkri
) then

(θij |D) ∼ Dir(αijk1 + Mi [k1, j ] . . . αijkri
+ Mi [kri , j ])

Estimate

P(Xi = k|pai = j) = E [θijk |D] =
αijk + Mi [k , j ]∑

k αijk +
∑

k Mi [k , j ]

How to set hyper-parameters?

K2 prior : use a fixed value (say αijk = 1) for all the net’s
hyper-parameters [Cooper & Herskovitz:93]
BDe prior (Bayesian Dirichlet equivalent): set an
imaginary data set size α and a representation
P ′(X1 . . .XN) of the probability of each possible imaginary
sample; set then αijk = αP ′(Xi = k |pai = j)

Luigi Portinale (UPO) Learning Bayesian Networks March 7-10, 2017 28 / 53



Learning
Bayesian
Networks

Luigi Portinale

Introduction

Known
Structure,
Complete
Data

Structure
Learning

Known Structure, Complete Data

in BDe prior the number of imaginary samples for different
choices of parent values is identical

we can use a prior BN to model P ′ (only for the
parameters and not necessarily for the structure); we can
then compute efficiently P ′(Xi = k |pai = j)

it is common to define P ′ as a set of independent
marginals P ′(Xi ) (i = 1 . . .N)

another choice can be to set P ′ to uniform distribution
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Case study: Alarm ICU network

Lowest error with weakest prior (α = 5)
Larger values introduce bias; bias disappears as samples increase
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Given data which model is correct?

X Y

X Y

Bayesian approach: given data which model is correct
more likely?
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X Y

P(m1) = 0.7

X Y

P(m2) = 0.2

data D
=⇒

P(m1|D) = 0.1
P(m2|D) = 0.9

Bayesian Model Selection: m̃ = arg max
m

P(m|D)

In the example select model m2 and use it as the correct model
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Score-based Search

main idea for model selection: assign a score to each
candidate network, then search for the network with the
highest score

optimization problem

Pros: statistically motivated, takes the structure of
conditional probability into account

Cons: computationally hard

Heuristic search: hill climbing, best-first, simulated
annealing
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Natural score measure: the likelihood function of 〈G, θG〉

max
G,θG
L(〈G, θG〉 : D) = max

G
[max
θG
L(〈G, θG〉 : D)]

= max
G

[L(〈G, θ̂G〉 : D)]

to find max likelihood pair 〈G, θG〉 we search structure G
that achieves highest likelihood when using MLE
parameters θ̂G for G
let `(θ̂G : D) be the log-likelihood function

scoreL(G : D) = `(θ̂G : D)
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Information theoretic interpretation

HP(X ) = −
∑
x

P(x) logP(x)

entropy of X

IP(X ;Y ) =
∑
x ,y

P(x , y) log
P(x , y)

P(x)P(y)

Mutual Information between X and Y

it measures how much information each variable provides
about the other

IP(X ;Y ) ≥ 0

IP(X ;Y ) = 0 iff X and Y are independent

IP(X ;Y ) = HP(X ) iff X is totally predictable given Y
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It can be proved that:

scoreL(G : D) = n
N∑
i=1

[IP(Xi ; pa
G
i )− HP(Xi )]

where n is the number of samples

the term n
∑N

i=1HP(Xi ) does not depend on structure G
the score measures the strength of the dependence
between variables and their parents

good news: we prefer networks where the parents of each
variable are informative about it

bad news: adding arcs always helps
I (X ;Y ) ≤ I (X ;Y ∪ Z )
maximal score attained by fully connected network
such network can overfit data
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Avoiding overfitting

Classical issue in Machine Learning

Restricting hypotheses space: restrict the number of
parents and/or the number of parameters

Minimum Description Length: penalize models that are
too complex (Occam’s razor)

Bayesian Methods: use prior knowledge and/or average
over all parameters values

Luigi Portinale (UPO) Learning Bayesian Networks March 7-10, 2017 38 / 53



Learning
Bayesian
Networks

Luigi Portinale

Introduction

Known
Structure,
Complete
Data

Structure
Learning

Structure Learning

Bayesian Score

P(G|D) =
P(G)P(D|G)

P(D)

scoreB(G : D) = logP(D|G) + logP(G)

Problem: computation of the marginal likelihood

P(D|G) =

∫
θG

P(D|θG ,G)P(θG |G)

P(D|θG ,G) likelihood of data given network 〈G, θG〉
P(θG |G) prior distribution over parameters of G
n.b.: MLE returns maximum of likelihood function; marginal
likelihood returns the expected value of the function
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Cooper-Herskovitz formula

Given a network 〈G, θG〉 with P(θG |G) satisfying global and
local independence; let each parameter
θij ∼ Dir(αijk : (k = 1 . . . ri )) then

P(D|G) =
N∏
i=1

qi∏
j=1

Γ(αij)

Γ(αij + Mi [j ])

ri∏
k=1

Γ(αijk + Mi [k, j ])

Γ(αijk)

where αij =
∑

k αijk and Mi [j ] =
∑

k Mi [k , j ]
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BIC: Bayesian Information Criterion

We can use an approximation for marginal likelihood exploiting
the following theorem

Theorem

If we use Dirichlet priors for all parameters of the network, then
when n→∞ we have that

logP(D|G) = `(θ̂G : D)− log n

2
Dim[G] + O(1)

where Dim[G] is the number of independent parameters in G.

scoreBIC (G : D) = `(θ̂G : D)− log n

2
Dim[G]

It exploit MLE, by penalizing too complex models (MDL)
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In general Bayesian scores are biased towards simpler
structure, by recognizing that more complex structure is
necessary as more data are available (trade-off fit to data
with model complexity)

if variables are independent, small fluctuations in the data
(sampling noise) are unlikely to cause preference for more
complex structures

in case of BIC it is evident that, the stronger is
dependence from parents, the higher is the score; the more
complex is the network, the lower is the score

the data likelihood term grows linearly with n, while
complexity grows logarithmically (the larger n is, the more
emphasis is given to fit the data)
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Score consistency

Suppose G∗ is a perfect map for a distribution P. A scoring
function is consistent if the following properties hold as
n→∞, with probability that approaches 1 (over all possible
dataset D):

G∗ will maximize the score

all strcture G that are not I -equivalent to G∗ will have
strictly lower score

Theorem

Bayesian score and BIC are consistent

Asymptotically, these scores prefer a structure that exactly fits
the dependencies in the data.
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Structure priors

structure prior does not grow with n and do not play a role
asymptotically (unless it rules out some structures with 0
prob)

usual choices: uniform priors or edge penalty where
P ∝ c |E| (c < 1 and E edges of G)

no need to worry about the actual number of prior
networks, since it suffices a value proportional to the
actual prior (e.g. P(G) = 1 when uniform)

structure modularity :

P(G) ∝
N∏
i=1

P(pai = paGi )

P(pai = paGi ) prior to choosing the set of parents of Xi
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Score Decomposability

a structure score is decomposable iff

score(G : D) =
N∑
i=1

Fscore(Xi |pai : D)

where Fscore(Xi |pai : D) measures how well pai serves as
parents of Xi in D

e.g., likelihood score is decomposable since
FscoreL(Xi |pai : D) = n(IP(Xi ; pai )− HP(Xi ))

with a decomposable score, a local change in structure
does not change the score of other parts (easier search)

under which condition is Bayesian score decomposable?
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Decomposability of Bayesian Score

Let P(θG |G) be a set of parameter priors with global
independence. They satisfy parameter modularity if for
each G,G′ such that paGi = paG

′

i , then
P(θXi |paGi

|G) = P(θ
Xi |paG

′
i
|G′)

above property states that prior over Xi depends only on
local structure

Theorem

Let G be a network structure, P(G) be a structure prior with
structure modularity, and P(θG |G) be a parameter prior with
global independence and parameter modularity, then the
Bayesian score is decomposable
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Parameter Priors

impossible to elicit parameter priors for each possible
network (superexponential)

K2 prior : choose Dir(α, . . . α) for every parameter, where
α is a fixed constant

BDe prior : choose an equivalent sample size α and set
αijk = αP ′(Xi = k |pai = j)

BDe prior allows also to satisfy the important property of
score equivalence
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Score equivalence

Let score(G : D) be a score. It satisfies score equivalence if for
all I -equivalent networks G,G′, we have that
score(G : D) = score(G′ : D) for all dataset D

Theorem

The likelihood and the BIC scores satisfy score equivalence

What about bayesian score?
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Theorem

Let P(G) be a structure score assigning equal prior to
I -equivalent networks; let P(θG |G) be a Dirichlet parameter
prior with global and local independence. The Bayesian score
with this prior satisfies score equivalence iff the prior is a BDe
prior for some α and P ′.

It follows that if we use Dirichlet priors and want
decomposition, then to satisfy score equivalence we MUST use
BDe prior
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Structure Learning as Search

Input: training set, scoring function, priors (if needed), set of
possible structures

Output: a networks (or networks) maximising the score

Key property: decomposability : the score is a sum of local
terms

Optimization problem to be solved by heuristic search (hill
climbing, simulated annealing, genetic algorithms, best first,
etc. . .
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Hill Climbing

start with an initial network (random network, empty
network, . . . )

at each iteration

evaluate all possible changes
apply change resulting to best increase in score
reiterate

stop when no change improves the score

Better results obtained with random restarting

Each step requires evaluating approximately N new changes
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