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Introduction

The task of inference in a PGM is to compute the posterior
probability of a set of query nodes, given a set of evidence
nodes.

Inference in a PGM

Given a set of random variables X whose distribution is
represented as a PGM, given a subset Q ⊆ X (called query
variables) and a subset E ⊂ X of observed variables such that
Q ∩ E = ∅, the inference task consists in computing P(Q|e) for
a given state e of variables in E .

Inference can be efficiently implemented when the
structure of the PGM is a tree (actually a poly-tree)

Exact approaches try to exploit such a feature
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Introduction

We have seen that a directed model can be converted in
an undirected model by discarding some independencies
(moralization);

We have seen the notion of a chordal graph; they have the
property of having a junction tree (definition later on);

We will see how to build such a tree by transforming a
given graphical model, and we will discuss how to exploit
such a tree structure to perform inference;

NB. Transformations will possibly discard some
independencies present in the original model, but the
resulting distribution has the same joint probability as the
original one
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Inference on a chain

Consider the following chains (they represent the same set of
conditional independencies)

Consider the undirected version

P(x) =
1

Z
Ψ1,2(x1, x2)Ψ2,3(x2, x3) . . .ΨN−1,N(xN−1, xN)

If each variable has K states, each potential is a K × K table
and we have (N − 1)K 2 parameters
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Inference on a chain

P(xn) =
∑
x1

· · ·
∑
xn−1

∑
xn+1

· · ·
∑
xN

P(x)

=
1

Z

∑
x1

Ψ1,2(x1, x2) . . .
∑
xn−1

Ψn−1,n(xn−1, xn)

∑
xn+1

Ψn+1,n+2(xn+1, xn+2) . . .
∑
xN

ΨN−1,N(xN−1, xN)

Now observe that the summation over xN involves the last
term, producing a factor of xN−1
(Ψ′N−1 =

∑
xN

ΨN−1,N(xN−1, xN)) and the summation over
xN−1 will involve only Ψ′N−1ΨN−2,N−1(xN−2, xN−1) and so on.

Simlar considerations apply for x1 towards x2, towards x3,
etc. . .
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Inference on a chain

x2 x3 xN−2 xN−1

Ψ′2,3 = [
∑

x1
Ψ1,2(x1, x2)]Ψ2,3(x2, x3)

Ψ′N−2,N−1 = [
∑

xN
ΨN−1,N(xn−1, xN)]ΨN−2,N−1(xN−2, xN−1)

Every summation eliminates a variable

Variable elimination occurs from left to right from x1
towards xn, and from right to left from xN towards xn.

It is like passing messages containing the summation
factor to the neighbor node which then perform the
multiplication with the factor shared with the other
neighbor
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Inference on a chain

To compute local marginals:

compute and store all forward messages µα(xn).

compute and store all backward messages µβ(xn).

compute Z at any node xn.

compute

P(xn) =
1

Z
µα(xn)µβ(xn)

for all variables required

If some variables are observed (conditional queries):
evidence variables are clamped to their observed
values, thus disappearing from the corresponding
factors (no need for summation)
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Inference on Trees and Polytrees

Undirected tree: only one path between any pair of nodes
(no loops)

Directed tree: only one node with no parents (the root)
and other nodes having exactly one parent; the moralized
undirected graph is the underlying undirected graph.

Directed polytree: the underlying undirected graph is a
tree (more than one root); the moralized undirected graph
has loops.
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Factor Graphs from a DAG
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Inference on Trees and Polytrees

Factor Graphs from an UGM

If we create a FG from a tree (either directed or
indirected), the FG is a tree as well
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Inference on Trees and Polytrees

If a DAG is a polytree, the corresponding moral graph has
loops, but the FG is still a tree
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Sum-Product Algorithm

Objective:

to obtain an efficient, exact inference algorithm for finding
marginals;
in situations where several marginals are required, to allow
computations to be shared efficiently.

Assumptions:

the original graph is an undirected tree or a directed tree
or a polytree
we convert the orginal graph into a FG, so that we can
deal with both directed and undirected models using the
same framework

Remember

P(x) =
k∏

s=1

fs(xs)

where k is the number of factors and xs is the subset of
variables in the scope of factor fs .
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Inference on Trees and Polytrees Sum-Product Algorithm

Consider the computation of a single marginal: the tree
structure of the FG allows us to partition the factors in the
joint into groups with one group associated with each of
the factor nodes that is a neighbor of the variable node x ;

let ne(x) denotes the set of factor nodes that are
neighbors of x ;

let Xs denotes the set of all variables in the subtree
connected to the variable node x via the factor node fs ;

let Fs(x ,Xs) represents the product of all the factors in
the group associated with factor fs .
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Inference on Trees and Polytrees Sum-Product Algorithm

From factor fs , node x can receive the marginalization of the
factor product wrt Xs (µfs→x(x)).

Marginal of x is the product of incoming messages
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Each factor Fs(x ,Xs), can in turns be factorized into different
sub-factors, one for each variable in the scope of fs other than
x (let call them x1, . . . xM), plus the factor fs(x , x1, . . . xM)
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Initialization

If the leaf is a variable node, since the sent
message must be the product of incoming
messages (see previous slide), then the sent
message is 1;

if the leaf is a factor node, then the sent
message is the factor itself (see two previous
slides)
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The outgoing message shown by the blue arrow is obtained by
taking the product of all the incoming messages shown by
green arrows, multiplying by the factor fs , and marginalizing
over the variables x1 and x2.
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Sum-Product Algorithm: Marginals

To compute local marginarls:

Pick an arbitrary node as root

Compute and propagate messages from the leaf nodes
to the root, storing received messages at every node

Compute and propagate messages from the root to the
leaf nodes, storing received messages at every node.

Compute the product of received messages at each
node for which the marginal is required, and normalize
if necessary
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Inference on Trees and Polytrees Sum-Product Algorithm

Example

P̃(x1, x2, x3) = fa(x1, x2)fb(x2, x3)fc(x2, x4)

(P̃ unormalized distribution)

Consider x3 as root node . . .
Luigi Portinale (UPO) Inference in Probabilistic Graphical Models March 7-10, 2017 31 / 55



Inference in
Probabilistic
Graphical
Models

Luigi Portinale

Introduction

Inference on a
chain

Inference on
Trees and
Polytrees

Sum-Product
Algorithm

Inference on
Graphs

Junction Tree
Algorithm

Inference on Trees and Polytrees Sum-Product Algorithm

Example

P̃(x1, x2, x3) = fa(x1, x2)fb(x2, x3)fc(x2, x4)

(P̃ unormalized distribution)

Consider x3 as root node . . .
Luigi Portinale (UPO) Inference in Probabilistic Graphical Models March 7-10, 2017 31 / 55



Inference in
Probabilistic
Graphical
Models

Luigi Portinale

Introduction

Inference on a
chain

Inference on
Trees and
Polytrees

Sum-Product
Algorithm

Inference on
Graphs

Junction Tree
Algorithm

Inference on Trees and Polytrees Sum-Product Algorithm

Example

P̃(x1, x2, x3) = fa(x1, x2)fb(x2, x3)fc(x2, x4)

(P̃ unormalized distribution)

Consider x3 as root node . . .
Luigi Portinale (UPO) Inference in Probabilistic Graphical Models March 7-10, 2017 31 / 55



Inference in
Probabilistic
Graphical
Models

Luigi Portinale

Introduction

Inference on a
chain

Inference on
Trees and
Polytrees

Sum-Product
Algorithm

Inference on
Graphs

Junction Tree
Algorithm

Inference on Trees and Polytrees Sum-Product Algorithm

Example

Luigi Portinale (UPO) Inference in Probabilistic Graphical Models March 7-10, 2017 32 / 55



Inference in
Probabilistic
Graphical
Models

Luigi Portinale

Introduction

Inference on a
chain

Inference on
Trees and
Polytrees

Sum-Product
Algorithm

Inference on
Graphs

Junction Tree
Algorithm

Inference on Trees and Polytrees Sum-Product Algorithm

Example

Luigi Portinale (UPO) Inference in Probabilistic Graphical Models March 7-10, 2017 33 / 55



Inference in
Probabilistic
Graphical
Models

Luigi Portinale

Introduction

Inference on a
chain

Inference on
Trees and
Polytrees

Sum-Product
Algorithm

Inference on
Graphs

Junction Tree
Algorithm

Inference on Trees and Polytrees Sum-Product Algorithm

Example

Luigi Portinale (UPO) Inference in Probabilistic Graphical Models March 7-10, 2017 34 / 55



Inference in
Probabilistic
Graphical
Models

Luigi Portinale

Introduction

Inference on a
chain

Inference on
Trees and
Polytrees

Sum-Product
Algorithm

Inference on
Graphs

Junction Tree
Algorithm

Inference on Trees and Polytrees Sum-Product Algorithm

In conclusion:

if the original graph produces a tree FG, then we can use
the Sum-Product message passing algorithm;

this certainly occurs when the original graph is an
undirected tree, a directed tree or a polytree

it may happen that the FG is a tree even if the original
graph is not a tree or a polytree (see figure)

visiting twice all the nodes in the graph we compute every
marginal

we compute posterior probabilities over each variable given
the evidence, by just reducing the factors where a variable
is observed (technically it corresponds to multiply the
factor for the Kronecker delta function of each variable
and the observed ones)
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x2

x1

x3 x2

x1

x3f

f (x1, x2, x3) = P(x1)P(x2|x1)P(x3|x1, x2)

x2

x1

x3 x2

x1

x3f

f (x1, x2, x3) = Ψ(x1, x2, x3)
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Kronecker Delta Function

δ(xi , xj) =

{
0 if xi 6= xj
1 if xi = xj

Suppose there is a factor f (x1, x2, x3) and suppose x2 is
observed to value x2;

then we modify the factor f to
f ′(x1, x2, x3) = f (x1, x2, x3)δ(x2, x2)

now, since x2 is observed it is eliminated by summation
producing the new factor f ′′(x1, x3) =

∑
x2
f ′(x1, x2, x3)

it corresponds to eliminating from f all the entry with x2 6= x2
and to consider only x1, x3
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Example of evidence: x2 = 0

x1, x2, x3 f (x1, x2, x3)

0 0 0 10
0 0 1 10
0 1 0 5
0 1 1 5
1 0 0 100
1 0 1 10
1 1 0 20
1 1 1 5

x1, x2, x3 f (x1, x2, x3)δ(x2, 0)

0 0 0 10
0 0 1 10
0 1 0 0
0 1 1 0
1 0 0 100
1 0 1 10
1 1 0 0
1 1 1 0

x1, x3
∑

x2
f (x1, x2, x3)δ(x2, 0)

0 0 10
0 1 10
1 0 100
1 1 10
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A digression on Belief Propagation on Trees

In case of trees, the propagation rules can be defined
directly between variable nodes (with no need for factor
nodes)

In a tree, each edge between two variables corresponds to
a factor fij(xi , xj) = Ψ(xi , xj); exception the factor for the
prior of the root node in case of a DAG

x1

x2

x3

x4

x5

x6

x1

f12 x2 f26

f13

f35

x3

x4f34

x5

x6

f1
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Propagation rule

xjxi

µij (xj )−→

µij(xj) =
∑
xi

(Ψ(xi )Ψ(xi , xj)
∏
k 6=j

µki (xi ))

if xi is the root of a DAG

µij(xj) =
∑
xi

(Ψ(xi , xj)
∏
k 6=j

µki (xi ))

otherwise

Thus the message sent from one node xi to another node xj is the
marginalization wrt to the first node xi of the product of all the messages
entering xi and sent by other nodes different than xj , times the potential(s)
involving the nodes.
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Cooping with loops: Idea!

If I can transform the original (loopy) graph into a tree, then I
can use the Belief Propagation (Sum Product) algorithm to
perform inference.
A suitable rule should then be provided to feed back the
obtained results into the original graph.

Solution: Junction Tree
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Clique Graph

Given an undirected graph G = 〈V ,E 〉, the clique graph of G
is the graph CG = 〈C ,F 〉 where C ⊆ 2V is the set of cliques of
G and an edge 〈ci , cj〉 ∈ F if ci ∩ cj 6= ∅; each edge is labeled
by the intersection of the connected cliques and is called a
separator.

A

B C

DE F

ABC

BCE CD

DF

BC

C

C D

Separators between ci and cj are denoted as sij and can be
indicated as additional “square nodes” instead of labels.
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Junction (Join) Tree

A junction or join tree of un undirected graph G , is a subtree of
the clique graph of G satisfying the running intersection
property : for each pair of cliques ci , cj with separator sij , then
all cliques in the path between ci and cj contain sij .

Chordal Graphs and Junction Trees

A graph is chordal if and only if it has a junction tree
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ABC

BCE CD

DF

BC

C

C D

ABC

BCE CD

DF

BC C D

ABC

BCE CD

DF

BC

C

D
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ABC

BCE CD

DF

BC

C

C D
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An alternative representation: explicit separator nodes

ABC

BC

BCE C

D

CD

DF

Path between ABC to CD: all
cliques (and all separators)
contain C
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Junction Tree Algorithm

If the graph is a DAG, then moralize the graph

Make the graph chordal, i.e., triangulate the graph from
previous step

Build the junction tree of the chordal graph

Run the Sum-Product algorithm on the junction tree
(Shafer-Shenoy architecture)

The updated potential of each clique will result in the
joint probability of the clique’s variables.

graph triangulation is NP-hard, but there exists good
heuristic allgorithms

to build the junction tree, one can run a maximum
spanning tree algorithm on the clique graph, by weighting
each arc with the separator’s cardinality

Luigi Portinale (UPO) Inference in Probabilistic Graphical Models March 7-10, 2017 49 / 55



Inference in
Probabilistic
Graphical
Models

Luigi Portinale

Introduction

Inference on a
chain

Inference on
Trees and
Polytrees

Sum-Product
Algorithm

Inference on
Graphs

Junction Tree
Algorithm

Inference on Graphs Junction Tree Algorithm

Shafer-Shenoy Propagation

Message from clique i to clique j

µij =
∑
ci\sij

Ψci

∏
k 6=j

µki

Clique Marginal

P(ci ) ∝ Ψci

∏
k

µki
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An alternative propagation rule: the Hugin architecture

An alternative to sum-product algorithm exploits the
following equation; let C be the set of cliques and S the
set of separators, then

P(X ) =

∏
c∈C Ψc∏
s∈S Ψs

The message sent from node ci to node cj through
separator sij is the following

µij =

∑
ci\sij Ψci

Ψsij

The clique potential of cj is then updated as
Ψcj ← Ψcj µij while the separator potential is updated as
Ψsij =

∑
ci\sij Ψci
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Considerations

treewidth of a graph: is the size of the largest clique in the
junction tree

the complexity of the algorithm is exponential in the
treewidth of the graph

the triangulation ordering affects the efficiency (as the
elimination order of the variables in the joint)

a proxy for the treewidth is the number of parents in each
node

when the treewidth is too large, approximate algorithms
are the only solutions
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Considerations (cont.)

To deal with evidence, clamp clique potentials to the
observed values

To get marginal probability of a variable x , marginalize the
potential of any clique containing x

To get the joint probability of a set of variables contained
in a given clique, then marginalize the clique potential
over such a set

To get the joint probability of a set of variables not
contained in any clique:

P(x1, . . . xk |e) =
P(x1|e)P(x2|x1, e) . . .P(xk |x1, . . . xk−1, e) (inefficient)
perform variable elimination on the calibrated junction tree
(i.e. after propagation)
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Example: joint probability computation on a
JT

ABC

BC

BCE C

D

CD

DF

P(A,D|e) =
∑

B,C Ψ∗1(ABC )
∑

E Ψ∗2(BCE )Ψ∗3(CD)

where Ψ∗i is the calibrated (i.e., after propagation of evidence
e) potential of clique ci .

Luigi Portinale (UPO) Inference in Probabilistic Graphical Models March 7-10, 2017 55 / 55


	Introduction
	Inference on a chain
	Inference on Trees and Polytrees
	Sum-Product Algorithm

	Inference on Graphs
	Junction Tree Algorithm


