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Decision making
Decision

Problems @ Decision: an irrevocable alllocation of domain resources;

@ decisions are taken from observations, in order to
maximize some utility (or minimize some cost);

@ in real world, the environment of a decision problem is
uncertain (decision making under uncertainty)

e Utility theory: formalization of preferences and utilities

@ Decision Theory: combination of probability and utility
theories; not claimed to be descriptive, but normative

@ Decision Analysis: set of practical techniques for applying
decision theory to real world situations
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Utility theory: preferences
Decision Given two different outcomes A and B:

Problems

o A > B if we prefer A to B;
@ A ~ B if we are indifferent between A and B

o A > B if B is not preferred to A

Utility theory: lotteries
A lottery is a set of mutually exclusive and exhaustive
outcomes, with their associated probabilities of occurrence.

L:[S1:p1;---Sn:pnl

where p; is the probability of occurrence of outcome S;
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Decision
Pl Utility theory: rational preferences

Von Neumann-Morgenstein axioms of rationality
e Completeness: (A= B)V (A~ B)V (A > B)
o Transitivity: (A= B)A(B = C) — (A*> C)
o Continuity: if A > C > B, then there exists a probability p
such that [A: p;B:1—p|~ C
o Independence: if A~ B, then for any C and probability p,
[A:p;C:1—p]>=[B:p;C:1—p]
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Decision Problems

The money pump

Violating the constraints leads to self-evident irrationality

For example: an agent with intransitive preferences can be induced to give

away all its money

If B = (', then an agent who has
would pay (say) 1 cent to get BB

If A~ B, then an agent who has B
would pay (say) 1 cent to get A

If "~ A, then an agent who has A
would pay (say) 1 cent to get '

Decision Theory

-
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Y
B‘ C
\;/
c
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Utility Function

Constraints on rational preferences lead to a real-valued utility
measure over the space S of possible outcomes

U:S— R

U(A) > U(B) iff A= B and
U(A) = U(B) iff A~ B

| A

Expected Utility

Given a lottery L : [S1: p1,...5n: pn] and a utility function U
over the space of the outcomes, the lottery expected utility is

u(L) =>_piu(s)
i=1

Luigi Portinale (UPO) Decision Theory March 7-10, 2017 9 / 60
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Preference between lotteries

Given lotteries L1 and L, we say that
Ly > Ly iff EU(Ly) > EU(L,) and
Ly ~ Ly iff EU(Ly) = EU(Ly)

Lotteries are models of actions or decisions leading to
outcomes.

Given a set of decisions represented as lotteries, the Maximum
Expected Utility principle states that the rational choice is to
select the one (or one among those) producing the maximum
EU.
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To generalize, suppose we have a probabilistic model providing
P(s'|o, a), the probability of obtaining the outcome (state of
the world) s” given that we observe o and take action a; the
expected utility of taking a when observing o is

EU(alo) =Y P(s'|o,a)U(s")

MEU Principle

The MEU principle select the action a* such that

a* = argmax EU(a|o)
a
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Action 1

Do nothing

Probability of fault “1” —
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Decision
Problems

Utility measure can always be normalized such that the worst
outcome S, has utility U(S,) = 0 and the best outcome St
has utility U(S1) =1

| A

Utility elicitation
In a normalized utility setting, the utility of an outcome S is
U(S) =pwhere S~ [ST:p; S :1—p]

US)=EU(L)=1xp+0x(1—p)=p
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The utility of money

0.2 $40,000 025 _— $30,000
< o <
0.8 $0

0.75 $0

0.2+ U($40k) > 0.25+ U($30k)
0.8 U($40k) > U($30k)

0.8 $40,000 1 $30,000
< < <
0.2 $0 0

$0

Decision
Problems

0.8« U($40k) < U($30k)
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Decision

Risk aversion: Potential {
Problems

value gained seems
small, so do not risk it

Loss —| : : : : |
SlelEIO 533]31] $2000 —51000 £1000  $2000  S$3000 54000

Gain

_|* Risk seeking: Potential
value lost seems small,
so risk it
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Decision Risk Aversion, Neutrality or Propension
roblems

@ Risk Neutral: the utility function is linear; there is no
preference between a certain prize and a lottery with
expected value equal to the price

@ Risk Aversion: the utility function is concave (concave
down); preference for a certain prize wrt a lottery with
expected value equal to the price

@ Risk Seeking: the utility function is convex (concave up);
preference for a lottery with a given prize as expected
value wrt the certain prize.

Luigi Portinale (UPO) Decision Theory March 7-10, 2017 16 / 60
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St. Petersurg Paradox (Bernoulli)

@ Toss a fair coin several times: win 2" money units if head
come up at toss number n;

@ Computing EU of the game in case of linear utility:

e}
i1
EU222'§=1+1+1+~-—>00
i=1

@ Paradox: a player should be willing to pay any sum to play
the game!

Luigi Portinale (UPO) Decision Theory March 7-10, 2017 17 / 60



Decision Problems

Theor
R (solution)
o e Computing EU of the game with a concave function (e.g.
log(x)):
EU = Z Iog(2’)§ = Z i Iog(Q)E =
i=1 i=1

= log(2) Z i% = 2log(2) = log(4)
i=1

@ The price to be paid is the inverse function of the utility
thus

price = €'°8(*) ~ 4

Luigi Portinale (UPO) Decision Theory March 7-10, 2017 18 / 60
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Decision Network

A Decision Network is a triple DN = (G, P, U) where
e G=(V,E) is a DAG where:
o V= CNUDNU VN with CN chance nodes (ovals), DN
decision nodes (rectangles), VN value nodes (diamonds).
o E = CAUIAU FA with CA conditional arcs entering a
chance node, /A informational arcs entering a decision
node, FA functional arcs entering a value node

@ P is a parametrized probability distribution
Pr(Xy, Xa, ... Xn : ... dm) = [ ] Pr(Xilm(Xi))
i=1

with di,...dp, assignments to the decision variables

@ U is is the joint utility function (additively decomposable)
U=>,cwn Uv, where U, : Q) — R is the local utility
function of value node v.

Qx is the domain of X (i.e., the set of states or values of X)

Luigi Portinale (UPO) Decision Theory March 7-10, 2017 20 / 60
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Treatmeant

Luigi Portinale (UPO) Decision Theory March 7-10, 2017 21 / 60



Decision Networks

Decision
Theory

Luigi Portinale

Disease no yes
Treatment | no | yes | no | yes
Dection Outcome bad 0.01 | 0.01|0.9]|0.15
Networks good 0.99 | 099 | 0.1 | 0.85
CPT for a chance node (entering conditional arcs)

Test no yes
Outcome | bad | good | bad | good
Utility 0.1 1 0 0.9
Utility function for a value node (entering functional arcs)

To decide whether to perform Test, need to observe
Symptoms (informational arc)

Luigi Portinale (UPO) Decision Theory March 7-10, 2017 22 / 60
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Single Decision, no informational arcs

TakeAspirin

Late Fever

TakeAspiin | yes no
» [no [ 0.95 1
[yes 0.05 0

AllergicReaction

Luigi Portinale (UPO)

TakeAspirin \ yes no
Fever \ no | yes no yes
¥ [no 0.99: 0.95 0.98: 0.1
|yes 001; 0.05 0.02; 0.9
LaterFever \ no yes
AllergicReaction \ no yes no |
¥ [Value 1} 0.3 0.1

Decision Theory

March 7-10, 2017
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Sy Inference Algorithm
Networks

> set evidence (if present)

> for each value of action node

> compute posterior probability of parents of utility node;
> compute EU of action value

> return action value with MEU

Luigi Portinale (UPO) Decision Theory March 7-10, 2017 24 / 60
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Late Fever AllergicReaction

Posterior probability
|

no-no | k| Stated 0.937973)
no-yes | |Statel 0.049367: V-
yes-no State2 0.012027: 0.1
Yes-ves | |Stated 0.000633; ¢

Thermometer

EU(yes) = 0.938x1+0.049x0.3+0.012x0.14+-0.001x0 = 0.954

Luigi Portinale (UPO) Decision Theory March 7-10, 2017 25 / 60
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TakeAspirin
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Networks

Late Fever AllergicReaction

K
.
Thermometer

Luigi Portinale (UPO) Decision Theory
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Inference Algorithm

Decision
Networks

> set evidence (if present)
> for each combination of values of parent nodes of action
> for each value of action node

> compute posterior probability of parents of utility node;
> compute EU of action value

> return (combination, action) such that action has MEU

Luigi Portinale (UPO) Decision Theory March 7-10, 2017
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. Themmometer | _no_fever
TakeAspirin | [bles 093674 |
097610 053, H

Decision
Networks

AllergicReaction

- B T0EE35

Optimal policy

if measure no fever then don't take aspirin

if measure fever then take aspirin

EU(m) = 0.893 x 0.976 + 0.106 x 0.937 = 0.971

Luigi Portinale (UPO) Decision Theory March 7-10, 2017 28
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Value of Information (VOI)

The VOI of a piece of information is the difference between the
EU of the best decision taken when the information is available
and the EU of the best decision taken when it is not available

Aspirin example
VOI(Thermometer) = 0.971 — 0.954 = 0.017

@ The VOI is always either positive or null;

@ The VOI is the maximum rational price to be paid for
gathering the information
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Earthquake

Y

Decision
Networks Newcast

3 1997 Jack Breese, Microsoft Corporation and Daphne Keller, Stanford University.
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‘C"ull‘? Go Home?
Newhbor Phoned |Yes

ﬂ\lo Phone Call No
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Expected Utility of this policy is 100

© 1997 Jack Breese, Microsoll Corperation and Daphne Koller, Stanford Universicy.
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Newcast

Goods

Phonecall? |Newscast? |Go Home? u 5
Yes Quake No i

Yes No Quake |Yes
No Quake No
No No Quake [No

Expected Utility of this policy is 112.5

© 1997 Jack Breese, Microsolt Cerporation and Daphne Koller, Stanford University.

VOI(Newcast) = 12.5

Decision Theory March 7-10, 2017
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An Influence Diagram (ID) is a decision network with the
following properties:

nfluence Diagram

Portinale

path; it follows that decision are temporally ordered

Influence
Diagrams

@ No Forgetting:every decision is conditioned by all

@ Regularity: decision nodes are connected through a direct

previous decisions and related information; this means that
any disclosed information (i.e., decisions and observations
made) is remembered and considered for future decisions.

v

Luigi Portinale (UPO) Decision Theory March 7-10, 2017
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Necessary Evidence

Given a sequence of decisions {D,...Dp}, let us define as

Ei = U2} B Un(Dit1) with Ey = m(Dy); we call E; the

Influence necessary evidence for Djyj.

Diagrams

| A\

ID: Policy
Given an influence diagram and the corresponding sequence of
decisions {D; ... D}, for any decision variable D;(1 < i < m),
a policy dp, is a function specifying an instance of D; for any
configuration of its necessary evidence, that is

op, : Qe_, — Qp,. If Eg =0 (i.e., the first decision D; has no
parents), then dp, € Qp, (i.e., it is simply a valid state of D;)

4
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The car buyer problem

@ | need a car and my colleague John can sell me a used car
(market value €12K) for €10K

- @ | don't totally trust John; he can sell me a lemon
Disgrams (defective car) with probability 20%

@ | can test for the defect (cost €25); the test is completely
reliable if the car is a peach (good car), while it can
discover a lemon 99% of the times;

Luigi Portinale

o After deciding about the test, | can choose whether to buy
the car, keeping in mind that | can possibly repair the car
(cost €150); repair can trasform a lemon into a peach
95% of the times;

@ Suppose utilities are modeled as additive negative costs.

v
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LemonPre

LemonPost

Influence
Diagrams
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Influence

Diagrams @ analyze the best sequence of decisions
@ what changes if test reports a lemon or a peach?

@ what changes if repair is 10 times more expensive?

Luigi Portinale (UPO) Decision Theory March 7-10, 2017 38 / 60
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A LIMID is a decision network where regularity and
no-forgetting assumptions are removed

| A

LIMID: Policy

Given a LIMID, for any decision variable D € DN, a policy ép
is a function specifying an instance of D for any configuration
of its parent variables, that is dp : Qr(py = Qp. If 7(D) =0
(i.e., D has no parents), then dp € Qp (i.e., it is simply a valid
state of D).

LIMIDs

Strategy

Given a decision network (either an ID or a LIMID), a strategy
is aset g ={dp : D € DN} of policies for the decisions.

Luigi Portinale (UPO) Decision Theory March 7-10, 2017 40 / 60
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An Influence Diagram

@ —

LIMIDs \%C‘S@

COS

T1cost

LIMIDs
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Influence Diagram: policies

CE@T\— — a@;t;g)ry Y —’@_’VE)W\

Expected utilities for different policies |

e T loses | yes o
Sick }—  Teal | yes no yes no

N

N Pty = = = = =T = = =
¥ [yes 24256.732] 25626667 23991571 26924781 24945425 25702322 26075.028. 27651583
no 20000664 26994562 10436441 2541135 2316642 27383863 Z1073.04 29325.97
Treat1 — . _ Treat?
Expected utiities for different policies
[ ]
24555543 .

N
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by BayesFusion LLC

LIMIDs

3
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LIMIDs

LateDry

LIMIDs

) Treatl
Loses
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http://www.hugin.com
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@ By assuming a stationary model we can consider only
adjacent time slices or a plate representation

Dynamic

@ For a finite horizon, the unrolling produces the desired
Decision

RSN
() '

VAN A VAR
O\l Y

(a) General representation. (b) Stationary representation.
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Interpreted as a LIMID

O-H-H-D-6

‘ecis\'o‘n /r -.\I (/ \\, f’/— 1\

Networks

\\/

I

'.3

®

UF-J

t’lp-z

ff-:%

Decision Theory

© © &
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Interpreted as an ID

G,} / u f I ; / FD—!@
o /b /,L\
_\

d, u’;

556
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) Loses Si No
Byn_a(mc b |Si 255994 732]  26579.586
Networks [tia 26431264 28839902
Treat(t=1)
Loses No
Treat Si Si No
Loses {=1) Si No Si No Si No
E 24207791} 25143.655 . 24496.03: 25713172 26304.036: 27210135
|No 24280.267 26946.209: 23992.924 27113.179.  26123.081: 29094.986
Treat(t=2)
Loses Si
Treat Si
Loses {=1) Si No
Treat ¢=1) Si No Si No
Loses =2} Si No Si No Si No Si No
S 23030.077] 236558651 23446 572 35343650° 23092.088: 23702434 24288 142 75689.211: 237
[Ne 21548.813 25143.626. 15864603 2 .358 22765, 25381.373  20161.035: 27313.864: 174
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Treat (=1}

) Treat 33 | | 2 Treat (t=1) %) Treat (t=2) [
Loses Si No Loses (t=1) Si No Loses (t=2) Si No

si o o e 1 o I | 1 lo |

Mo 1 |t ||| ho o |1 || [ ™o o |1 |
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@ A pure policy is a mapping from states of parent nodes of
a decision node, to a state of the decision node

@ A random policy is a probability distribution over the
states of the decision node, given the state of the parents

Dynamic @ A pure policy is a special case of random policy
Networks

Let 04 be a policy (either pure or random) for decision d and
g ={dq : d € DN} be a strategy;
The probability of a strategy g is given by

fq:HPrH(Sd
r d

where p, are the local distributions over the random variables r
and &y is either 0 or 1 in case of pure policy.

Luigi Portinale (UPO) Decision Theory March 7-10, 2017 53 / 60
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Luigi Portinale (UPO) Decision Theory

Decision Networks Dynamic Decision Networks

P; robot position at time i

PS; measured (by sensor)
robot position at time i
D; = {l,r,s} movement
action (left, right, stay)
U; utility of robot position
at time 7 (1 for center, 0
otherwise)
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Pure policies:

(51:{P51:I—>D1:r;P51:c—>D1:S;P51:r—>D1:/}
0 :{PS; =1 =D, =riPS;=c— Dy =s;PS; =r— D, = I}
P(Dl:r|P51:/):1;P(D2:S|P52:C):l;...

Let g = {01,092}, we compute fq(P1, PS1, D1, P2, PSy, Do, P3):

(1,11 1111 = P(Py=1)P(PS1 = 1|PL=1)P(P, = I|P, =
1,Dy = [)P(PSy = I|Py = [)P(P3 = I|Py = I, Dy = I)x

P(Dy = I|PS; = NP((Dy = 1|PS; = 1)

fa(1,1,r,c,c,s,¢c) = P(Py=1)P(PS1 = I|P1=1)P(P, = c|P, =
/, D1 S I‘)P(P52 S C‘Pz = C)P(P3 = C|P2 =C, D2 = S)X

P(Dl = I’|P51 = /)P((D2 = S|P52 = C)
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EU(q) = Y fa()U(x) = Y f(x) D Uu(m(u))

where u are the utility nodes.

o A global maximum strategy § is such that
Vq EU(g) > EU(q)

Networks o let 0y * g = {Jy } U q-d, denote the strategy obtained
from q by replacing d4, with 07,

@ A Jocally maximum policy for strategy q at d is a policy
dg such that EU(dq * q) = sup, EU(S, * q)

@ A strategy § is a local maximum strategy if all its policies
are local maximum policies at the corresponding decisions
i.e., Vd,d4 we have EU(G) > EU(d4 * §) (the EU does not
increase by changing only one of its policies)
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Algorithm Single Policy Updating

g < random select initial strategy
repeat
PrevEU < EU(q)
for all o4 € g do
find local max policy 6/,
g 0,*xq
end for
until EU(q) = PrevEU

Luigi Portinale (UPO)

Decision Theory
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Single Policy Updating

@ Finding local maximum policy step can be implemented
through junction tree inference [Lauritzen & Nilsson 2001]

Dynamic

Decision @ There is ailways a pure local maximum policy (but it may
not be unique)

@ SPU is an iterative improvment algorithm; the algorithm
usually finds the globally optimal policies, but it is possible
that the algorithm may get stuck at a local maximum.
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Inference in LIMID

Unless all relevant information has been specified as parents,
then it can be useful to recompute policies whenever new
information becomes available. This is because the
computations take all existing observations (in addition to
future observations specified as parents of decision nodes) into
account when policies are computed.
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Suppose in the Apple tree example we have the evidence
Loses = yes (t = 0) and we choose Do not treat, then we
observe Loses = yes (t = 1) and we choose again
Do not treat, finally we observe Loses = no (t = 2); by

_ considering the policy for treatment at time t = 2 we should
ﬁvmmk decide Do not treat, resulting in EU = 21541; however by

choosing Treat we get EU = 26166. SPU must be run with the

new evidence to get this result; in ID it is pre-computed

Loses Si
Treat No
Loses t=1) |o Si
Treat §=1) No Si Mo
Loses {=2) Si Mo Si No Si No Si
]S 24288 142 25685211 23747 633 25600.02: 23357228 26166.814: 24456.1
|Na 20161.035: 27313.864: 17401601: 26858.5625: 71575534 21541623 21018¢
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