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Probabilistic Graphical Models (PGM)

A probabilistic graphical model is a pair 〈G ,P〉 such that G is
a graph whose nodes correspond to (discrete) random variables
and edges to dependency relations, while P is a probability
distribution over the variables corresponding to nodes in G .

if the graph G is undirected we have un Undirected
Graphical Model (UGM) also called Markov Random Field
(MRF) or Markov Network (MN);

if the graph G is a DAG we have a Bayesian Network
(BN) also called Belief Network
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B

D

A

C
Edge between X and Y states
that X and Y depend from
each other

Bayesian Network

B

D

A

C

Edge from X to Y states that
X influences Y and that the
influence has a directionality
(e.g. causality)
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Bayesian Network: definition

A Bayesian Network is a pair 〈G ,P〉 where:

G = 〈V ,E 〉 is a DAG whose vertices V = {X1, . . .Xn}
represent (discrete) random variables and and edge
(Xi → Xj) ∈ E represents a direct influence of Xi over Xj

(e.g. Xi “causes” Xj or “the presence of Xi suggests the
presence of Xj”);

P is a probability distribution over the variables
represented by V , such that

P(X1, . . .Xn) =
n∏

i=1

P(Xi |π(Xi ))

with π(X ) = {Y ∈ V : Y is a parent of X in G}

We say that P factorizes over G .
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Bayesian Network: an example

B

D

A

C
P(A,B,C ,D) =
P(A)P(B|A)P(C |A)P(D|B,C )

A
0 1

0.3 0.7
P(A)

A
B 0 1
0 0.2 0.65
1 0.8 0.35

P(B|A)

A
C 0 1
0 0.1 0.25
1 0.9 0.75

P(C |A)

B C
D 00 01 10 11
0 0.7 0.4 0.5 0.9
1 0.3 0.6 0.5 0.1

P(D|B,C )
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BN Joint Distribution

(A,B,C ,D) P(A) P(B|A) P(C |A) P(D|BC) P(A,B,C ,D)

(0, 0, 0, 0) 0.3 0.2 0.1 0.7 0.0042

(0, 0, 0, 1) 0.3 0.2 0.1 0.3 0.0018

(0, 0, 1, 0) 0.3 0.2 0.9 0.4 0.0216

(0, 0, 1, 1) 0.3 0.2 0.9 0.6 0.0324

(0, 1, 0, 0) 0.3 0.8 0.1 0.5 0.0120

(0, 1, 0, 1) 0.3 0.8 0.1 0.5 0.0120

(0, 1, 1, 0) 0.3 0.8 0.9 0.9 0.1944

(0, 1, 1, 1) 0.3 0.8 0.9 0.1 0.0216

(1, 0, 0, 0) 0.7 0.65 0.25 0.7 0.0796

(1, 0, 0, 1) 0.7 0.65 0.25 0.3 0.0341

(1, 0, 1, 0) 0.7 0.65 0.75 0.4 0.1365

(1, 0, 1, 1) 0.7 0.65 0.75 0.6 0.2048

(1, 1, 0, 0) 0.7 0.35 0.25 0.5 0.0306

(1, 1, 0, 1) 0.7 0.35 0.25 0.5 0.0306

(1, 1, 1, 0) 0.7 0.35 0.75 0.9 0.1654

(1, 1, 1, 1) 0.7 0.35 0.75 0.1 0.0184
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Pairwise Markov Random Field: definition

A Pairwise Markov Random Field is a pair 〈G ,P〉 where:

G = 〈V ,E 〉 is an undirected graph whose vertices
V = {X1, . . .Xn} represent (discrete) random variables
and and edge (Xi − Xj) ∈ E represents a dependence
between Xi and Xj

each edge (Xi −Xj) is associated with a factor or potential
Φi ,j : D(Xi )×D(Xj)→ R+ ∪ {0} (D(X ) domain of X )

P(X1, . . .Xn) = 1
Z

∏
i ,j Φi ,j(Xi ,Xj)

Z =
∑

X1,...Xn

∏
i ,j Φi ,j(Xi ,Xj) and is called the partition

function (normalization factor)

we say that P factorizes over G
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Pairwise MRF: an example

B

A C

B
ΦA,B 0 1

A
0 10 1
1 1 10

C
ΦB,C 0 1

B
0 10 1
1 1 10

C
ΦA,C 0 1

A
0 10 1
1 1 10

(A, B, C) ΦA,B ΦB,C ΦA,C P̂(A, B, C) 1
Z
P̂(A, B, C)

(0, 0, 0) 10 10 10 1000 0.485
(0, 0, 1) 10 1 1 10 0.005
(0, 1, 0) 1 1 10 10 0.005
(0, 1, 1) 1 10 1 10 0.005
(1, 0, 0) 1 10 1 10 0.005
(1, 0, 1) 1 1 10 10 0.005
(1, 1, 0) 10 1 1 10 0.005
(1, 1, 1) 10 10 10 1000 0.485∑

Z=2060 1

Z =
∑

a,b,c∈{0,1}3 ΦA,B(a, b)ΦB,C (bc)ΦA,C (a, c)
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Question

Is a pairwise MRF able to model any probability distribution
over n variables?

A possibility could be that of buiding a complete graph
over the n variables

The number of required parameters for the joint
distribution of n variables with d states and no
independence assumption is O(nd)

However: number of arcs is
(n

2

)
; number of states of the

variables is d , then the required number of parameters is
O(n2d2)

Pairwise MRF cannot specify the required number of
parameters (nd � n2d2)
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Markov Random Field: Gibbs Distribution

A Markov Random Field is a pair 〈G ,P〉 where:

G = 〈V ,E 〉 is an undirected graph whose vertices
V = {X1, . . .Xn} represent (discrete) random variables
and and edge (Xi − Xj) ∈ E represents a dependence
between Xi and Xj

each maximal cliques Ci ⊆ V is associated with a factor or
potential Φi : D(X i

1)× . . .×D(X i
k)→ R+ ∪ {0} where

X i
1 . . .X

i
k are the vertices in Ci ;

P(X1, . . .Xn) = 1
Z

∏
Ci

Φi (X
i
1, . . .X

i
k)

Z =
∑

X1,...Xn

∏
i Φi (X

i
1, . . .X

i
k) and is called the partition

function (normalization factor)

we say that P factorizes over G
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Gibbs Distribution MRF: an example

B

A C

D

Max Cliques: C1 = {A,B,C}; C2 = {A,C ,D}

(A,B,C) Φ1(A,B,C)

(0, 0, 0) 100

(0, 0, 1) 1

(0, 1, 0) 100

(0, 1, 1) 1

(1, 0, 0) 1

(1, 0, 1) 100

(1, 1, 0) 1

(1, 1, 1) 100

(A,C ,D) Φ2(A,C ,D)

(0, 0, 0) 100

(0, 0, 1) 1

(0, 1, 0) 100

(0, 1, 1) 1

(1, 0, 0) 1

(1, 0, 1) 100

(1, 1, 0) 1

(1, 1, 1) 100
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Gibbs Distribution

(A,B,C ,D) Φ1 Φ2 P̂(A,B,C) 1
Z
P̂(A,B,C)

(0, 0, 0, 0) 100 100 10000 0.245
(0, 0, 0, 1) 100 1 100 0.002
(0, 0, 1, 0) 1 100 100 0.002
(0, 0, 1, 1) 1 1 1 2.4× 10−05

(0, 1, 0, 0) 100 100 10000 0.245
(0, 1, 0, 1) 100 1 100 0.002
(0, 1, 1, 0) 1 100 100 0.002
(0, 1, 1, 1) 1 1 1 2.4× 10−05

(1, 0, 0, 0) 1 1 1 2.4× 10−05

(1, 0, 0, 1) 1 100 100 0.002
(1, 0, 1, 0) 100 1 100 0.002
(1, 0, 1, 1) 100 100 10000 0.245
(1, 1, 0, 0) 1 1 1 2.4× 10−05

(1, 1, 0, 1) 1 100 100 0.002
(1, 1, 1, 0) 100 1 100 0.002
(1, 1, 1, 1) 100 100 10000 0.245∑

Z=40804 1

Z =
∑

a,b,c,d∈{0,1}4 Φ1(a, b, c)Φ2(a, c , d)
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titolo

v -structure

Given a DAG G = 〈V ,E 〉 and un undirected path (trail)
X1 . . .Xn, there is a v-structure in the trail if there exists a
node Xi in the trail such that Xi−1 and Xi+1 are parents of Xi

in G (i.e., Xi−1 → Xi ← Xi+1)

Active trail

Given a DAG G = 〈V ,E 〉, and a subset of nodes Z ⊂ V , a trail
X1 . . .Xn is said to be active given Z if

for any v-structure Xi−1 → Xi ← Xi+1, we have that Xi or
one of its descendant is in Z ;

no other Xi along the trail and not in a v-structure is in Z
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d-Separation

Given a DAG G = 〈V ,E 〉, two nodes X ,Y ∈ V are said to be
d-separated given Z ⊂ V if there is no active trail between X
and Y given Z . We indicate this through the notation
dsepG (X ,Y |Z )

Example

B

D

A

C

E

dsepG (A,D|B,C )
dsepG (B,C |A)
¬dsepG (B,C |A,D)
¬dsepG (B,C |A,E )
despG (A,E |D)

Luigi Portinale (UPO) Probabilistic Graphical Models March 7-10, 2017 20 / 59



Probabilistic
Graphical
Models

Luigi Portinale

Probabilistic
Graphical
Models

Bayesian
Networks

Markov
Random Fields

Conditional
Independence
and
Factorization

Bayesian
Networks

Markov Random
Fields

BN and MRF:
Common
Notions on
Independence

Conversion
between BN
and MRF

Factor Graphs

Conditional Independence and Factorization Bayesian Networks

I-map

Given a DAG G = 〈V ,E 〉 and a probability distribution P over
the variables/nodes of G , we say that G is an I-map
(Independence Map) of P if and only if it satisfies
I(G ) = {(X⊥Y |Z ) : dsepG (X ,Y |Z )}

i.e., d-separation captures actual conditional
independencies (there may be more independencies in P
not captured by d-separation)

we call I(G ) the global independence property

Luigi Portinale (UPO) Probabilistic Graphical Models March 7-10, 2017 21 / 59



Probabilistic
Graphical
Models

Luigi Portinale

Probabilistic
Graphical
Models

Bayesian
Networks

Markov
Random Fields

Conditional
Independence
and
Factorization

Bayesian
Networks

Markov Random
Fields

BN and MRF:
Common
Notions on
Independence

Conversion
between BN
and MRF

Factor Graphs

Conditional Independence and Factorization Bayesian Networks

Factorization in BN

Let G be a DAG over variables X1 . . .Xn, a distribution P over
the same space of variables factorizes according to G if it can
be expressed as follows

P(X1 . . .Xn) =
n∏

i=1

P(Xi |π(Xi ))

with π(X ) = {Y ∈ V : Y is a parent of X in G}

Theorem: Independence and Factorization

A distribution P factorizes according to a DAG G if and only if
G is an I-map for P.
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Part of previous theorem states the soundness of d-separation.
Let I(P) be the set of independencies present in distribution P

Soundness of d-separation

If P factorizes according to G then G is an I-map of P; i.e.,
I(G) ⊆ I(P).

Question: is d-separation detecting ALL the independencies of
I(P)? i.e., is it also true that I(P) ⊆ I(G) ?

Unfortunately it turns out that I(G) 6= I(P), meaning that
even if P factorizes according to G , it may contain
dependencies that cannot be captured by the structure of G .
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Faithfulness

A distribution P is faithful to G if whenever (X⊥Y |Z ) ∈ I(P),
then dsepG (X ,Y |Z ).

If any distribution that factorizes over G would be faithful to
G , then we would prove the completeness of d-separation; i.e.,
if ¬dsepG (X ,Y |Z ) then X and Y would be dependent given Z
in all distribution that factorize over G .

Counterexample

A B

P(B = b0|A = a0) = P(B = b0|A = a1)
P(B = b1|A = a0) = P(B = b1|A = a1)
(A⊥B) but ¬dsepG (A,B|∅)
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Weak Completeness

Let G be a DAG; if ¬dsepG (X ,Y |Z ) then X and Y are
dependent given Z in some distribution P that factorizes
according to G .

the property does not hold for any possible distribution
that factorizes over G

alternative forumulation: if (X⊥Y |Z ) for all the
distributions P that factorize according to G , then
dsepG (X ,Y |Z ).

Remark

For almost all the distributions P that factorizes over G , we
have that I(P) = I(G )
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BN: Local Independence Criteria

Local Independence

Given a BN N = 〈G ,P〉 we define the local independence
property as Il(N) = {(X⊥NDX |π(X )} where NDX are the
non-descendant nodes of X in G and π(X ) are the parents of
X in G . Any node X is independent from its non-descendant
given its parents.
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Markov Blanket

Given a BN N = 〈G ,P〉 and a node X , the Markov Blanket of
X , denoted as MB(X ) is the set of parents, children and mates
(other parents of the children) of X in G .
Any node X is independent from the rest of the network, given
MB(X ).
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Local independence property and Markov Blanket
independence are equivalent to the global
semantics i.e., that P factorizes over G
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Active path

Given an MRF with graph G = 〈V ,E 〉, we say that a path
X1 − . . .− Xk in G is active given Z ⊂ V , if no Xi (1 ≤ i ≤ k)
is in Z

Separation

Given an MRF with graph G = 〈V ,E 〉, two nodes X ,Y ∈ V
and Z ⊂ V , we say that X is separated from Y given Z (or
alternatively that Z separates X from Y ), denoted
sepG (X ,Y |Z ), if there is no active path connecting X and Y
given Z

B

A C

D

sepG (B,D|AC) ¬sepG (B,D|A) ¬sepG (B,D|C)
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I-map

Given a graph G and a probability distribution P over the
variables/nodes of G , we say that G is an I-map (Independence
Map) of P if and only if P satisfies
I(G ) = {(X⊥Y |Z ) : sepG (X ,Y |Z )}

i.e., separation captures actual conditional independencies
(there may be however independencies in P not captured
by separation)

we call I(G ) the global independence property
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Factorization in MRF

Given a distribution PΦ with factors Φ = {Φ1(D1), . . .Φk(Dk)}
(i.e. PΦ =

∏k
i=1 Φi (Di )) and an MRF 〈G ,P〉, we say that PΦ

factorizes on G if and only if each Di (1 ≤ i ≤ k) is a clique
(complete subgraph) of G ; in other words P = PΦ.

each factor Φi is calles a clique potential

without lost of generality, we consider cliques as maximal
cliques (i.e. complete subgraph that cannot be extended
to a clique by adding adjacent nodes)
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A product of factors
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Soundness

Let P be a distribution over V and G the graph of an MRF
with nodes V ; if P factorizes over G , then G is an I-map for P.

the separation criterion is sound wrt conditional independencies
in P

Hammersley-Clifford Theorem

If P is a positive distribution over V and G is the graph of an
MRF with nodes V , if G is an I-map for P, then P factorizes
over G .

conditional independencies represented in the graph allows the
factorization of the distribution (but only if it is positive!)

a positive distribution P factorizes over a graph G if and
only if G is an I-map for P
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Weak Completeness

If X and Y are not separated given Z in a graph G of an MRF,
then X and Y are dependent given Z in some distribution P
that factorizes over G .

the above property does not hold in general for any
possibile distribution that factorizes over G

Remark

As for BN, for almost all the distributions P that factorizes
over G , we have that I(P) = I(G )
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MRF: Local Independence Criteria

Pairwise independence

Given an MRF with graph G = 〈V ,E 〉, we define the pairwise
independency property as
Ip(G ) = {(X⊥Y |V − {X ,Y }) : (X − Y /∈ E )}

Any two non-adjacent variables are conditionally independent
given all other variables.

Markov Blanket Independence

The Markov Blanket MBG (X ) of a node X in a graph G is the
set of all neighbors of X in G ; we define the local independency
property as
Il(G ) = {(X⊥V − {X} −MBG (X )|MBG (X )) : X ∈ V }

A node is conditionally independent of all the rest of the nodes
given its immediate neighbors.
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Relationships between independence
properties

pairwise independence is strictly weaker than local
independence that is strictly weaker than global
independence

if P � Il(G ) then P � Ip(G )
if P � I(G ) then P � Il(G )

in case of positive distribution we also have that if
P � Ip(G ) then P � I(G )

In case of positive distributions all the properties are equivalent
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BN and MRF: Common Notions on Independence

Luigi Portinale (UPO) Probabilistic Graphical Models March 7-10, 2017 38 / 59



Probabilistic
Graphical
Models

Luigi Portinale

Probabilistic
Graphical
Models

Bayesian
Networks

Markov
Random Fields

Conditional
Independence
and
Factorization

Bayesian
Networks

Markov Random
Fields

BN and MRF:
Common
Notions on
Independence

Conversion
between BN
and MRF

Factor Graphs

Conditional Independence and Factorization BN and MRF: Common Notions on Independence

A generic I-map cannot be so useful e.g., a complete
graph (either undirected or a DAG) does not imply any
independence, thus is an I-map for any distribution

Recall: an I-map is such that is there is a
(d)separation, then it corresponds to a conditional
independence; if there is no such a (d)separation (as in
a complete graph) than the definition is satisfied.

Luigi Portinale (UPO) Probabilistic Graphical Models March 7-10, 2017 39 / 59



Probabilistic
Graphical
Models

Luigi Portinale

Probabilistic
Graphical
Models

Bayesian
Networks

Markov
Random Fields

Conditional
Independence
and
Factorization

Bayesian
Networks

Markov Random
Fields

BN and MRF:
Common
Notions on
Independence

Conversion
between BN
and MRF

Factor Graphs

Conditional Independence and Factorization BN and MRF: Common Notions on Independence

Minimal I-map

An I-map is minimal if the removal of even a single edge
renders it not an I-map

Example

A B

A B

P(B|A = a0) = P(B|A = a1)
Both are I-maps, but the second is not
minimal.
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BN: Minimal I-map Construction

Fix an ordering X1 . . .Xn;

for each i

select π(Xi ) the minimal set {X1 . . .Xi−1} such that
(X1⊥{Xi . . .Xi−1} − π(Xi )|π(Xi ))

MRF: Minimal I-map Construction

For positive distributions, the simplest way is to exploit
pairwise independence.

Given a a distribution P over a set of variable X , add an
edge between any pair X ,Y ∈ X such that
P 2 (X⊥Y |X − {X ,Y }) (i.e., ¬(X⊥Y |X − {X ,Y }))

Similar construction can be defined for MB independence
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BN: Uniqueness of minimal I-map

In a BN there is no unique minimal I-maps (different orderings
of the variables applied to the construction procedure may
produce different minimal I-maps)

R

E B

A

C

Order: E,B,A,C,R

R

E B

A

C

Order: C ,R,A,E ,B

Suppose left graph encodes exactly the probabilitic dependencies of our
target distribution (we see later it is a P-map)

(E⊥B) (E⊥B|R) (E⊥C |A) (B⊥R) (B⊥R|A,E) (B⊥R|C ,E)

(B⊥R|A,C ,E) (B⊥C |A) (A⊥R|E) (C⊥R|E) etc...
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MRF: Uniqueness of minimal I-map

Let P be a positive distribution and G be the graph
constructed on the variables of P by adding an edge for all
X ,Y satisfying the pairwise independence property, then G is
the unique minimal I-map of P

The same uniqueness result holds if you use the MB
independence property.

Remark

A BN has no unique minimal I-map for its distribution.
An MRF has a unique minimal I-map for its distribution
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Minimal I-map for the distribution of E ,B,R,A,C

R

E B

A

C

It is easy to see that if we add edges following the pairwise
independence property, then we end up with this network (e.g.,
when considering the pair of nodes E ,B, we test if
(E⊥B|R,A,C ); since it turns out to be false, then we add an
edge between E and B)
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P-map

A graph G is a P-map (Perfect Map) for a distribution P if
I(G ) = I(P)

Unfortunately P-maps may not exist!

Question n.1

Is there a BN that is a perfect map for a given MRF? (answer:
NO, diamond network)

Question n.2

Is there an MRF that is a perfect map for a given BN? (answer:
NO, v-structure)
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MRF Diamond Network

B

A

C

D
(A⊥D|B,C ); (B⊥C |A,D)

B

A

C

D

(B⊥C |A); not an
I-map

B

A

C

D

(B⊥C ); not an
I-map

B

A

C

D

(A⊥D|B,C );
I(G ) ⊂ I(P)
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BN v-structure

A B

C

(A⊥B); ¬(A⊥B|C )

A B

C

(A⊥B|C )

A B

C

¬(A⊥B|C );¬(A⊥B)
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Uniqueness of a P-map

A P-map if it exists, it is not genarally unique. Multiple graphs
can encode precisely the same independence assumptions.

A B A B

They both encode ¬(A⊥B) and are perfect map for such
property.

however, if multiple P-maps exist, they are I-equivalent

I-equivalence

Two graph G1 and G2 are I-equivalent iff I(G1) = I(G2) (i.e.,
they represent the same independence assumptions)
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From BN to MRF
We can build an MRF such that I(MRF ) ⊆ I(BN)

We cannot just remove arrows at the arcs, since we would add
independencies when a v-structure is present

Solution: remove arrows and then moralize (i.e., connect nodes
having a common child, meaning every node is then connected to its
Markov Blanket). Assign each CPT to one clique potential that
contains it.

X1

X2 X3

X4 X5

X6

(X4⊥X5|X1)

X1

X2 X3

X4 X5

X6

¬(X4⊥X5|X1)
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From MRF to BN

We can build a BN such that I(BN) ⊆ I(MRF )

We cannot just add arrows at the arcs, since we would add
independencies when a v-structure is present

X1

X2 X3

X4 X5

X6

¬(X2⊥X3|X1)

X1

X2 X3

X4 X5

X6

(X2⊥X3|X1)
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From MRF to BN (cont.)

Solution: Fix an order of the nodes, then add each node
along with its minimal parent set according to the
independencies defined in the MRF

X1

X2 X3

X4 X5

X6

(X1⊥X6|X2,X5)

X1

X2 X3

X4 X5

X6

¬(X1⊥X6|X2,X5)
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When can BN and MRF model the same
distribution?

Chordal Graph

An undirected graph G is chordal or triangulated iff any loop of
length greater than 3 has a chord. A chord in a loop is an edge
connecting two non-consecutive nodes in the loop.
A directed graph is said to be chordal iff the underlying
undirected graph is chordal.

B

A

C

D

NON CHORDAL

B

A

C

D

CHORDAL

B

A

C

D

CHORDAL
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Theorem

Let G be the graph of a chordal MRF, then it exist a BN
whose graph H is such that I(G ) = I(G )

Type of PGM
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Factor Graphs

Factor graphs are a representation that makes explicit how
the factorization takes place on a graph (relevant for
MRF).

Factor Graph

A factor graph (FG) F is an undirected bi-partite graph where
nodes are of type variables (circles) and factors (squares); an
edge is present between a variable and a factor node iff the
variable is contained in the scope of the factor. A distribution
P factorizes over F if it can be represented as a set of factors
in this form.
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Example

B

A

C

B

A

C

ΦABC

Max cliques factorization

B

A

C

ΦAB

ΦBC

ΦAC

Pairwise factorization
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Factor Graphs

Remember: given a set of factors we can induce an MRF
by just adding an edge between variables which are in the
scope of the same factor
However, given an MRF different factorizations are
possible (see previous slide)
We CANNOT read the factorization from the graph
Factor Graphs make explicit the factorization

Example: Φ1(A,B,C ),Φ2(B,C ,D)

B

A

C

D

However also the following can be factorizations from such a
graph: Φ1(A,B,C ),Φ2(B,D),Φ3(C ,D);
Φ1(A,B),Φ2(A,C ),Φ3(B,C ),Φ4(B,D),Φ5(C ,D), etc . . .
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BA C D

Φ1 Φ2 Φ3

Φ1(A,B ,C ),Φ2(B ,D),Φ3(C ,D)
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