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Probabilistic Graphical Models (PGM)
Graphical A probabilistic graphical model is a pair (G, P) such that G is

Probabilistic

Models
a graph whose nodes correspond to (discrete) random variables

and edges to dependency relations, while P is a probability
distribution over the variables corresponding to nodes in G.

o if the graph G is undirected we have un Undirected
Graphical Model (UGM) also called Markov Random Field
(MRF) or Markov Network (MN);

o if the graph G is a DAG we have a Bayesian Network
(BN) also called Belief Network
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Luigi Portinale o
Cronhicar Edge between X and Y states
Modeis e e that X and Y depend from
e each other

Bayesian Network

o Edge from X to Y states that
e e X influences Y and that the
influence has a directionality

(e.g. causality)
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Bayesian Network: definition

A Bayesian Network is a pair (G, P) where:

e G =(V,E) is a DAG whose vertices V = {Xy,... X}
represent (discrete) random variables and and edge

(Xi = X;) € E represents a direct influence of X; over X;

(e.g. X; “causes” X; or “the presence of X; suggests the
presence of X;");
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Bayesian Network: definition

A Bayesian Network is a pair (G, P) where:

e G =(V,E) is a DAG whose vertices V = {Xy,... X}
represent (discrete) random variables and and edge

(e.g. X; “causes” X; or “the presence of X; suggests the
presence of X;");

@ P is a probability distribution over the variables
represented by V/, such that

n

P(X1,... Xa) = [ [ P(Xilm (X))

i=1

with 7(X) ={Y € V : Y is a parent of X in G}

(Xi = X;) € E represents a direct influence of X; over X;
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Bayesian Network: definition

A Bayesian Network is a pair (G, P) where:
e G =(V,E) is a DAG whose vertices V = {Xy,... X}
represent (discrete) random variables and and edge
(Xi = X;) € E represents a direct influence of X; over X;
(e.g. X; “causes” X; or “the presence of X; suggests the
presence of X;");

@ P is a probability distribution over the variables
represented by V/, such that

n

P(X1,... Xa) = [ [ P(Xilm (X))

i=1

with 7(X) ={Y € V : Y is a parent of X in G}

We say that P factorizes over G.
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P(A, B, C,D) =
e G P(A)P(B|A)P(C|A)P(D|B, C)
Nearis G
A A
oA . B[ 0 1 croy 1
oo [0]02]065| [0]01]02
R 1708035 [1]09]075
P(BIA) P(CIA)
BC
D 0001101l
0 07040500
1703060501
P(DIB, )
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Probabilistic
SR BN Joint Distribution
Luigi Portinale
: l (A7 B, C, D) l P(A) l P(B|A) l P(C|A) l P(D|BC) l P(A, B, C, D) ‘

0,0,0,0) | 03 0.2 01 0.7 0.0042
(07 0,0, 1) 0.3 0.2 0.1 0.3 0.0018

Bayesian (0,0,1,0) | 03 0.2 0.9 0.4 0.0216

Networks (0,0,1,1) | 03 0.2 0.9 0.6 0.0324
(0,1,0,0) | 03 08 0.1 05 0.0120
(0, 1,0, 1) 0.3 0.8 0.1 0.5 0.0120
(0,1,1,0) | 03 0.8 0.9 0.9 0.1944
(0,1,1,1) | 03 08 0.9 0.1 0.0216
(1, 0,0, O) 0.7 0.65 0.25 0.7 0.0796
(1,0,0,1) | 07 | 065 0.25 0.3 0.0341
(17 0,1, O) 0.7 0.65 0.75 0.4 0.1365
(17 0,1, 1) 0.7 0.65 0.75 0.6 0.2048
(1,1,0,0) | 07 | 035 0.25 05 0.0306
(1,1,0,1) | 07 | 035 0.25 05 0.0306
(17 1,1, 0) 0.7 0.35 0.75 0.9 0.1654
(1,1,1,1) | 07 | 035 0.75 01 0.0184
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A Pairwise Markov Random Field is a pair (G, P) where:
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A Pairwise Markov Random Field is a pair (G, P) where:
e G = (V,E) is an undirected graph whose vertices
V = {Xi,... Xy} represent (discrete) random variables
and and edge (X; — Xj) € E represents a dependence

Markov 5 q
Random Fields between X’ and XJ
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A Pairwise Markov Random Field is a pair (G, P) where:
e G = (V,E) is an undirected graph whose vertices
V = {Xi,... Xy} represent (discrete) random variables
and and edge (X; — Xj) € E represents a dependence
IF\zAaanr:Z; Fields between X; and X;
@ each edge (X; — Xj) is associated with a factor or potential
®;;j : D(X;) x D(X;) — Rt U {0} (D(X) domain of X)
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A Pairwise Markov Random Field is a pair (G, P) where:
e G = (V,E) is an undirected graph whose vertices
V = {Xi,... Xy} represent (discrete) random variables
and and edge (X; — Xj) € E represents a dependence
IF\zAaanr:Z; Fields between X; and X;
@ each edge (X; — Xj) is associated with a factor or potential
®;;j : D(X;) x D(X;) — Rt U {0} (D(X) domain of X)
o P(Xu,... Xn) = 5 [1;; ®ij(Xi, X))
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A Pairwise Markov Random Field is a pair (G, P) where:

e G = (V,E) is an undirected graph whose vertices
V = {Xi,... Xy} represent (discrete) random variables
and and edge (X; — Xj) € E represents a dependence
IF\zAaanr:Z; Fields between X; and X;
@ each edge (X; — Xj) is associated with a factor or potential
®;;j : D(X;) x D(X;) — Rt U {0} (D(X) domain of X)
o P(Xu,... Xn) = 5 [1;; ®ij(Xi, X))

© Z=73 x  x 11 ®ij(Xi,X;) and is called the partition
function (normalization factor)

@ we say that P factorizes over G
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Markov
Random Fields

[(AB.C) | %a5 | ®5.c |
(0,0,0) 10 10 10 1000 0.485
(0,0,1) 10 1 1 10 0.005
(0,1,0) 1 1 10 10 0.005
(0,1, 1) 1 10 1 10 0.005
(1,0,0) 1 10 1 10 0.005
(1,0,1) 1 1 10 10 0.005
(1,1,0) 10 1 1 10 0.005
(1,1,1) 10 10 10 1000 0.485
> 7=2060 1

Z = Za,b,ce{0,1}3 ¢A7B(a, b)d)B)C(bC)‘DAc(a, C)
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Is a pairwise MRF able to model any probability distribution
over n variables?

@ A possibility could be that of buiding a complete graph

Markov over the n variables

andom Fielés @ The number of required parameters for the joint

distribution of n variables with d states and no
independence assumption is O(n9)

@ However: number of arcs is (5); number of states of the
variables is d, then the required number of parameters is
O(n?d?)

@ Pairwise MRF cannot specify the required number of
parameters (n? >> n?d?)
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BB A Markov Random Field is a pair (G, P) where:

e G = (V,E) is an undirected graph whose vertices
V = {Xi,... Xy} represent (discrete) random variables
and and edge (X; — X)) € E represents a dependence
between X; and X;
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Ghr/lag;;c? Markov Random Field: Gibbs Distribution

B A Markov Random Field is a pair (G, P) where:

e G = (V,E) is an undirected graph whose vertices
V = {Xi,... Xy} represent (discrete) random variables
and and edge (X; — X)) € E represents a dependence

Markov between X; and X;
Random Fields

@ each maximal cliques C; C V is associated with a factor or
potential ®; : D(X{) x ... x D(X]) = RT U {0} where
X{ ... X are the vertices in Cj;
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V = {Xi,... Xy} represent (discrete) random variables
and and edge (X; — X)) € E represents a dependence

Markov between X; and X;
Random Fields

@ each maximal cliques C; C V is associated with a factor or
potential ®; : D(X{) x ... x D(X}) — RT U {0} where
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Ghr/lag;;c? Markov Random Field: Gibbs Distribution

B A Markov Random Field is a pair (G, P) where:

e G = (V,E) is an undirected graph whose vertices
V = {Xi,... Xy} represent (discrete) random variables
and and edge (X; — X)) € E represents a dependence

Markov between X; and X;
Random Fields

@ each maximal cliques C; C V is associated with a factor or
potential ®; : D(X{) x ... x D(X}) — RT U {0} where
X{...X] are the vertices in C;;

o P(X1,... Xn) = 5 [1c ®i(X{,... X])

o 7= ZXthn [T, ®i(X{,...X}) and is called the partition
function (normalization factor)

@ we say that P factorizes over G
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Gibbs Distribution

oee Max Cliques

MRF: an example

: G.={A,B,C}; G ={A C,D}

[(A,B,C) [ %:1(A,B,0) |

[(A.C.D) [ :(A,C.D) ]

(0,0,0) 100 (0,0,0) 100
(0,0,1) 1 (0,0,1) 1
(0,1,0) 100 (0,1,0) 100
(0,1,1) 1 (0,1,1) 1
(1,0,0) 1 (1,0,0) 1
(1,0,1) 100 (1,0,1) 100
(1,1,0) 1 (1,1,0) 1
(1,1,1) 100 (1,1,1) 100
Probabilistic Graphical Models March 7-10, 2017
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Probabilistic Gibbs Distribution

Graphical
Models

Luigi Portinale [(AB,C,D) | & | ® | P(AB,C) | LP(AB,C) |
(0,0,0,0) 100 | 100 10000 0.245
(0,0,0,1) 100 | 1 100 0.002
(0,0,1,0) 1 | 100 100 0.002
(0,0,1,1) 1 1 1 2.4 x 1070
(0,1,0,0) 100 | 100 10000 0.245

Markov (0,1,0,1) 100 | 1 100 0.002

Random Fields (0,1,1,0) 1 | 100 100 0.002
(0,1,1,1) 1 1 1 2.4 x 10"
(1,0,0,0) 1 1 1 2.4 x 10705
(1,0,0,1) 1 | 100 100 0.002
(1,0,1,0) 100 | 1 100 0.002
(1,0,1,1) 100 | 100 10000 0.245
(1,1,0,0) 1 1 1 2.4 x10~%
(1,1,0,1) 1 | 100 100 0.002
(1,1,1,0) 100 | 1 100 0.002
(1,1,1,1) 100 | 100 10000 0.245

ST | Z=40804 1

Z= Za,b,c,de{o,l}“ <D1(a, b, C)¢2(2, c, d)
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Conditional Independence and Factorization Bayesian Networks

Given a DAG G = (V, E) and un undirected path (trail)
Xi...X,, there is a v-structure in the trail if there exists a
node X; in the trail such that X;_; and X, are parents of X;
in G (i.e., X,',l = X,' = XiJrl)

Active trail

Given a DAG G = (V/, E), and a subset of nodes Z C V/, a trail
Xi...X, is said to be active given Z if

o for any v-structure X;_; — X; <~ X1, we have that X; or
one of its descendant is in Z;

@ no other X; along the trail and not in a v-structure is in Z

4

Luigi Portinale (UPO) Probabilistic Graphical Models March 7-10, 2017 19 / 59



Probabilistic
Graphical
Models

Luigi Portinale

Bayesian
Networks

Conditional Independence and Factorization Bayesian Networks

d-Separation

Given a DAG G = (V, E), two nodes X, Y € V are said to be
d-separated given Z C V if there is no active trail between X
and Y given Z. We indicate this through the notation
dsepg(X, Y|Z)

Example

dsepg (A, D|B, C)
(B) ()  dsepc(B,ClA)
—dsepg (B, C|A, D)

_'dsepG(B7 ClAa E)
despG(A7 ElD)

Luigi Portinale (UPO) Probabilistic Graphical Models March 7-10, 2017 20 / 59
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Given a DAG G = (V, E) and a probability distribution P over
the variables/nodes of G, we say that G is an |-map

(Independence Map) of P if and only if it satisfies
Z(G) = {(XLY|Z) : dsepc(X, Y|2)}

@ i.e., d-separation captures actual conditional
Tzt independencies (there may be more independencies in P
not captured by d-separation)

e we call Z(G) the global independence property
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Factorization in BN

Let G be a DAG over variables Xj ... X, a distribution P over
the same space of variables factorizes according to G if it can
be expressed as follows

P(X1... X)) = [[ P(Xilm (X))
i=1

with 7(X) ={Y € V : Y is a parent of X in G}

Theorem: Independence and Factorization

A distribution P factorizes according to a DAG G if and only if
G is an |-map for P.

Luigi Portinale (UPO) Probabilistic Graphical Models March 7-10, 2017 22 /59



Probabilistic
Graphical
Models

Luigi Portinale

Bayesian
Networks

Conditional Independence and Factorization Bayesian Networks

Part of previous theorem states the soundness of d-separation.
Let Z(P) be the set of independencies present in distribution P

Soundness of d-separation

If P factorizes according to G then G is an |I-map of P; i.e.,
(9) € I(P).

Question: is d-separation detecting ALL the independencies of
Z(P)? i.e., is it also true that Z(P) C Z(G) ?

Unfortunately it turns out that Z(G) # Z(P), meaning that
even if P factorizes according to G, it may contain
dependencies that cannot be captured by the structure of G.
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A distribution P is faithful to G if whenever (X_LY|Z) € Z(P),
then dsepg(X, Y|Z).

If any distribution that factorizes over G would be faithful to
G, then we would prove the completeness of d-separation; i.e.,
if —dsepg(X, Y|Z) then X and Y would be dependent given Z
in all distribution that factorize over G.

Counterexample

P(B = b0|A = ao) = P(B = b0|A = al)

P(B = bi|A = a) = P(B = bi|A = a1)

(ALB) but —dsepg(A, B|0)
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Let G be a DAG; if —dsepg(X, Y|Z) then X and Y are
dependent given Z in some distribution P that factorizes
according to G.

@ the property does not hold for any possible distribution
that factorizes over G

e alternative forumulation: if (X_LY|Z) for all the

o distributions P that factorize according to G, then
Networks dSepG (X, Y|Z)

For almost all the distributions P that factorizes over G, we
have that Z(P) = Z(G)
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Local Independence

Given a BN N = (G, P) we define the local independence
property as Z;(N) = {(XLNDx|m(X)} where NDx are the
non-descendant nodes of X in G and 7(X) are the parents of
X in G. Any node X is independent from its non-descendant
given its parents.

Luigi Portinale

Bayesian
Networks
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Markov Blanket

Given a BN N = (G, P) and a node X, the Markov Blanket of
X, denoted as MB(X) is the set of parents, children and mates
(other parents of the children) of X in G.

Any node X is independent from the rest of the network, given
MB(X).

Luigi Portinale (UPO) Probabilistic Graphical Models March 7-10, 2017 27 / 59
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Local independence property and Markov Blanket
independence are equivalent to the global
semantics i.e., that P factorizes over G

Bayesian
Networks
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Active path

Given an MRF with graph G = (V, E), we say that a path

X1 —...— Xk in G is active given Z C V, if no X;(1 < i < k)
isin Z

Separation

Given an MRF with graph G = (V, E), two nodes X,Y € V
and Z C V, we say that X is separated from Y given Z (or
alternatively that Z separates X from Y'), denoted

sepc(X, Y|Z), if there is no active path connecting X and Y
given Z

ee sepa(B, DIAC) —sepa(B, D|A) —sepa(B, D|C)

Luigi Portinale (UPO) Probabilistic Graphical Models March 7-10, 2017 30/ 59
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Given a graph G and a probability distribution P over the
variables/nodes of G, we say that G is an |-map (Independence
Map) of P if and only if P satisfies

Z(G) = {(XLY|Z) : sepc(X, Y|Z)}

@ i.e., separation captures actual conditional independencies
(there may be however independencies in P not captured
Einda by separation)

e we call Z(G) the global independence property

Luigi Portinale (UPO) Probabilistic Graphical Models March 7-10, 2017 31/59
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Factorization in MRF

Given a distribution Pg with factors ® = {®1(D;), ... ®x(Dy)}
(i.e. Po =[], ®i(D;)) and an MRF (G, P), we say that Pe
factorizes on G if and only if each D; (1 < i < k) is a clique
(complete subgraph) of G; in other words P = Pg.

@ each factor ®; is calles a clique potential

@ without lost of generality, we consider cliques as maximal
cliques (i.e. complete subgraph that cannot be extended
to a clique by adding adjacent nodes)
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Conditional Independence and Factorization Markov Random Fields

Probabilistic
Graphical
Models

A product of factors

Luigi Portinale

b [ 2 ]0507=035

a'|

a' | p2|c [0801-008

a'| 5[ ¢ [0802-016
b ol [’ 0.5 2| o' [ [01:05=005
b o7 a | b | c®|0107=007
82| ¢l azllb2’c'l 0-0.1=0
b2| 2|02 2| b |2 ] 002=-0

2| b |l 0305=015

Markov Random

Y1b | 0307=021

Fields

a
@ | b | c 0901009
@] 2] c? |09:02=018

Luigi Portinale (UPO) Probabilistic Graphical Models March 7-10, 2017

33 /59



Probabilistic
Graphical
Models

Luigi Portinale

Markov Random
Fields

Conditional Independence and Factorization Markov Random Fields

Let P be a distribution over V' and G the graph of an MRF
with nodes V/; if P factorizes over G, then G is an I-map for P.

@ the separation criterion is sound wrt conditional independencies

in P

Hammersley-Clifford Theorem

If P is a positive distribution over V and G is the graph of an
MRF with nodes V/, if G is an I-map for P, then P factorizes
over G.

@ conditional independencies represented in the graph allows the
factorization of the distribution (but only if it is positive!)

a positive distribution P factorizes over a graph G if and
only if G is an I-map for P
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Conditional Independence and Factorization Markov Random Fields

Weak Completeness

If X and Y are not separated given Z in a graph G of an MRF,
then X and Y are dependent given Z in some distribution P
that factorizes over G.

@ the above property does not hold in general for any
possibile distribution that factorizes over G

As for BN, for almost all the distributions P that factorizes
over G, we have that Z(P) = Z(G)
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MREF: Local Independence Criteria

Pairwise independence

Given an MRF with graph G = (V, E), we define the pairwise

independency property as
Zp(G) = {(XLY|V - {X,Y}): (X =Y ¢ E)}

@ Any two non-adjacent variables are conditionally independent
given all other variables.

Markov Blanket Independence

The Markov Blanket MBg(X) of a node X in a graph G is the
set of all neighbors of X in G; we define the local independency
property as

T)(6) = {(XLV — {X} — MBa(X)|MBG(X)) : X € V'}

@ A node is conditionally independent of all the rest of the nodes
given its immediate neighbors.
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properties

@ pairwise independence is strictly weaker than local
independence that is strictly weaker than global
independence

o if P I,(G) then P E Z,(G)
o if P EZ(G) then P E Z)(G)

@ in case of positive distribution we also have that if
Markov Random P = ZP(G) then P E I(G)

Fields

In case of positive distributions all the properties are equivalentJ
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BN and MRF:
Common
Notions on
Independence
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@ A generic I-map cannot be so useful e.g., a complete
graph (either undirected or a DAG) does not imply any
independence, thus is an |I-map for any distribution

e Recall: an |I-map is such that is there is a
(d)separation, then it corresponds to a conditional
independence; if there is no such a (d)separation (as in
a complete graph) than the definition is satisfied.

BN and MRF:
Common
Notions on
Independence

Luigi Portinale (UPO) Probabilistic Graphical Models March 7-10, 2017 39 /59



Conditional Independence and Factorization BN and MRF: Common Notions on Independence

Probabilistic
Graphical
Models

Luigi Portinale

Minimal I-map

An |-map is minimal if the removal of even a single edge
renders it not an I-map

P(B|A = ap) = P(BIA = a1)
Both are I-maps, but the second is not

minimal.

BN and MRF: o
Common

Notions on

Independence

L.
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it poina- I BN: Minimal I-map Construction

@ Fix an ordering Xi ... Xp;

o for each i

o select m(X;) the minimal set {Xj ... X;_1} such that
(XlJ_{X,' ooo X,',l} - 7T(X,)|’/T(X,))

MRF: Minimal I-map Construction

For positive distributions, the simplest way is to exploit
pairwise independence.

@ Given a a distribution P over a set of variable X, add an
G edge between any pair X, Y € X such that

Notions on

hdependance PEXLY|X —{X,Y)}) (ie., «(XLY|X — {X,Y}))

Similar construction can be defined for MB independence
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BN: Uniqueness of minimal I-map

In a BN there is no unique minimal I-maps (different orderings
of the variables applied to the construction procedure may
produce different minimal |-maps)

o ® oG
010 Ok
© ©

Order: E,B,A,C,R Order: C,R, A E,B

Suppose left graph encodes exactly the probabilitic dependencies of our
target distribution (we see later it is a P-map)

(ELB) (ELB|R) (ELC|A) (BLR) (BLR|A, E) (BLR|C,E)
(BLR|A, C,E) (BLC|A) (ALR|E) (CLRIE) etc...
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MRF: Uniqueness of minimal I-map

Let P be a positive distribution and G be the graph
constructed on the variables of P by adding an edge for all
X, Y satisfying the pairwise independence property, then G is
the unique minimal I-map of P

The same uniqueness result holds if you use the MB
independence property.

Y e Y A BN has no unique minimal I-map for its distribution.

Common

Notions on . - . . . . .
Independence An MRF has a unique minimal I-map for its distribution
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It is easy to see that if we add edges following the pairwise

BN and VRF: independence property, then we end up with this network (e.g.,

Emm when considering the pair of nodes E, B, we test if
(ELBJ|R, A, C); since it turns out to be false, then we add an

edge between E and B)
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A graph G is a P-map (Perfect Map) for a distribution P if
Z(G) =Z(P)

BN and MRF:
Common
Notions on
Independence
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A graph G is a P-map (Perfect Map) for a distribution P if
Z(G) =Z(P)

Unfortunately P-maps may not exist!

BN and MRF:
Common
Notions on
Independence
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A graph G is a P-map (Perfect Map) for a distribution P if
Z(G) =Z(P)

Unfortunately P-maps may not exist!

Is there a BN that is a perfect map for a given MRF? (answer:
NO, diamond network)

BN and MRF:
Common
Notions on
Independence
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A graph G is a P-map (Perfect Map) for a distribution P if
Z(G) =Z(P)

Unfortunately P-maps may not exist!

Question n.1

Is there a BN that is a perfect map for a given MRF? (answer:
NO, diamond network)

Question n.2

| \

Is there an MRF that is a perfect map for a given BN? (answer:
NO, v-structure)
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Notions on
Independence

(BLC|A); not an
I-map

Luigi Portinale (UPO)

(A)
o e
O

(BLC); not an
I-map

Probabilistic Graphical Models

BN and MRF: Common Notions on Independence

ALDI|B,C); (BLC|A,D)

BN and MRF: : :
Common

(ALD|B, C);
Z(G) Cc Z(P)
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(ALB); ~(ALB|C)

BN and MRF:
Common

Notions on
Independence

(ALB|C) ~(ALB|C); ~(ALB)
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Uniqueness of a P-map

A P-map if it exists, it is not genarally unique. Multiple graphs
can encode precisely the same independence assumptions.

@ They both encode —(ALB) and are perfect map for such
property.
@ however, if multiple P-maps exist, they are l-equivalent

I-equivalence

Two graph G; and G; are l-equivalent iff Z(G1) = Z(Gy) (i.e.,
they represent the same independence assumptions)
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Conversion between BN and MRF

vl From BN to MRF
Models

@ We can build an MRF such that Z(MRF) C Z(BN)

@ We cannot just remove arrows at the arcs, since we would add
independencies when a v-structure is present

Luigi Portinale

@ Solution: remove arrows and then moralize (i.e., connect nodes
having a common child, meaning every node is then connected to its
Markov Blanket). Assign each CPT to one clique potential that
contains it.

Conversion @ @ @ @
between BN
and MRF @ @

(XaLXs|X1) ~(XsLX5|X1)
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@ We can build a BN such that Z(BN) C Z( MRF)

@ We cannot just add arrows at the arcs, since we would add
independencies when a v-structure is present

Conversion
between BN
and MRF
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@ Solution: Fix an order of the nodes, then add each node
along with its minimal parent set according to the
independencies defined in the MRF

Conversion
between BN
and MRF

(X1LXs|Xa, Xs5) (X1 LX6] X2, Xs)
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Conversion between BN and MRF

When can BN and MRF model the same
distribution?

Chordal Graph

An undirected graph G is chordal or triangulated iff any loop of
length greater than 3 has a chord. A chord in a loop is an edge
connecting two non-consecutive nodes in the loop.

A directed graph is said to be chordal iff the underlying

undirected graph is chordal.

NON CHORDAL CHORDAL CHORDAL
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Let G be the graph of a chordal MRF, then it exist a BN
whose graph H is such that Z(G) = Z(G)

Type of PGM

Probabilistic Models

Graphical Models

Factorization

Directed Undirected

Conversion
between BN
and MRF

Factor Graphs
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Factor Graphs

@ Factor graphs are a representation that makes explicit how
the factorization takes place on a graph (relevant for
MRF).

Factor Graph

A factor graph (FG) F is an undirected bi-partite graph where
nodes are of type variables (circles) and factors (squares); an
edge is present between a variable and a factor node iff the
variable is contained in the scope of the factor. A distribution
P factorizes over F if it can be represented as a set of factors
in this form. |
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basc

Max cliques factorization Pairwise factorization

Factor Graphs
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Factor Graphs

Peobabiistic @ Remember: given a set of factors we can induce an MRF
Models by just adding an edge between variables which are in the

Luigi Portinale scope of the same factor

@ However, given an MRF different factorizations are
possible (see previous slide)

o We CANNOT read the factorization from the graph

@ Factor Graphs make explicit the factorization
Example: ®1(A, B, C),$»(B, C, D)

However also the following can be factorizations from such a
BBl craph: ©1(A, B, C), (B, D), 3(C, D);
¢1(A, B)a (DZ(A’ C)a (D3(B, C)a ¢4(B7 D)7 <]>5(C7 D)v etc ...
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Factor Graphs

P,

o,

&3

cbl(A? B7 C)7 CDZ(B; D)7 ¢3(C; D)

Probabilistic Graphical Models
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