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Probability Space

A probability space is a triple (Ω,F ,P) where

a sample space Ω which is the set of possible outcomes of
interest

a σ-algebra F ⊆ 2Ω of events

a probability function P : F → [0, 1]

Given a set X , a σ-algebra of X is a collection of subsets of X
containing X , closed under complementation and closed under
(countable) union.
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Probability Axioms (Kolmogorov)

The probability function in a probability space statisfies the
following axioms:

1 ∀E ∈ F , P(E ) ≥ 0

2 P(Ω) = 1

3 let E1,E2, . . . a (possibly infinite) sequence of disjoint
(mutually exclusive) events P(∪∞i=1Ei ) =

∑∞
i=1 P(Ei )

Some consequences:

P(∅) = 0

if X ⊆ Y , then P(X ) ≤ P(Y )

P(X ∪ Y ) = P(X ) + P(Y )− P(X ∩ Y )
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Conditional Probability

The probability of an event X to occur, given that event Y has
occurred is given by

P(X |Y ) =
P(X ∩ Y )

P(Y )
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Law of Total Probability

Let H1 . . .Hn be a set of exhaustive (i.e.
∑n

i=1 P(Hi ) = 1) and
mutually exclusive events (hypotheses) and E a generic event.

P(E ) =
n∑

i=1

P(Hi )P(E |Hi )

Example

Let R be the event today’s raining and U the event my friend
Joe’s carrying an umbrella.

P(U) = P(R)P(U|R) + P(R)P(U|R)
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Random Variable: definition

Random Variable

A Random Variable is a function X : Ω→ K from an atomic
event on a probability space (Ω,F ,P) to a given range K

X (ω) = κ for ω ∈ Ω and κ ∈ K (1)

e.g. Roll of a die

Even : {1, 2, 3, 4, 5, 6} → {true, false}

Even(2) = Even(4) = Even(6) = true

Even(1) = Even(3) = Even(5) = false
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Probability Distribution on Random Variables

Probability Distribution over Random Variables

P(X = κ) =
∑

{ω:X (ω)=κ}

P(ω)

P(Even = true) = P(2) + P(4) + P(6) =
1

6
+

1

6
+

1

6
=

1

2

P(Even = false) = P(1) + P(3) + P(5) =
1

6
+

1

6
+

1

6
=

1

2

P(Even) =

(
true 0.5
false 0.5

)
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Probabilistic Models with Random Variables

A probabilistic model can be built from a set of
random variables X1,X2, . . .Xn;

The sample space is Ω = X1 × X2 × . . .× Xn

A : {a1, a2};B : {b1, b2}
Ω = {(a1, b1), (a1, b2), (a2, b1), (a2, b2)}

P(A,B) =


P(a1, b1)
P(a1, b2)
P(a2, b1)
P(a2, b2)

 Joint probability of A and B

P(A) =

(
P(a1, b1) + P(a1, b2)
P(a2, b1) + P(a2, b2)

)
Marginal probability of A

P(B) =

(
P(a1, b1) + P(a2, b1)
P(a1, b2) + P(a2, b2)

)
Marginal probability of B
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Joint Probability

Given a set of r.v. X1, . . .Xn their joint probability is a function
P : X1 × . . .× Xn → [0, 1] such that

0 ≤ P(X1 = x1, . . .Xn = xn) ≤ 1∑
x1...xn

P(X1 = x1, . . .Xn = xn) = 1

Marginal Probability

The marginal probability of Xi is given by

P(Xi = xi ) =
∑

xk (k 6=i)

P(X1 = x1, . . .Xi = xi , . . .Xn = xn)
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Important

Given the joint probability of a set X = X1, . . .Xn of r.v., any
probability of the model can be computed. Let Q ⊂ X be a set
of query variables and E ⊂ X − Q be a set of evidence
variables:

P(Q|E ) =

∑
X−(Q∪E) P(X1, . . .Xn)∑

X−E P(X1, . . .Xn)
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Independence of Random Variables

Definition of independence

Two random variables X and Y are independent given a set of
random variables E (X⊥Y |E )iff

P(X ,Y |E ) = P(X |E )P(Y |E )

Given a set of marginal probability of independent variables is it
possible to obtain their joint probability (this is not possible if
variables are not independent)
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Bayes Theorem

Given a set of mutually exclusive and exhaustive hypotheses
h1, . . . hn and an evidence e, for every hi (1 ≤ i ≤ n):

P(hi |e) =
P(hi )P(e|hi )

P(e)
=

P(hi )P(e|hi )∑n
j=1 P(hj)P(e|hj)

P(hi |e) is the posterior probability of the hypothesis;

P(hi ) is the prior probability of the hypothesis;

P(e|hi ) is the likelihood of the evidence;∑n
j=1 P(hj)P(e|hj) is the marginal likelihood of the evidence (a

normalization factor)

P(H) =

(
P(h)
P(h)

)
H E

P(E |H) =

(
P(ē|h̄) P(ē|h)
P(e|h̄) P(e|h)

)
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How to reason with Bayes
Example: a medical test (HIV)

T+=positive test; I=AIDS infection

False positive rate: 1.5%; no false negative
P(T+|I ) = 1 P(T+|I ) = 0.015

Question: if a patient is positive to the test, what is the
probability he/she is infected?

P(I |T+) =??

Common mistake

Since the false positives occur with probability 1.5%, then the
probability of infection if tested positive is 1− 0.015 = 0.985
(98.5%)
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The value depends on the size of infected population

P(I |T+) =
P(I )P(T+|I )

P(I )P(T+|I ) + P(Ī )P(T+|Ī )

The posterior probability strongly depends on the prior in this
case.

AIDS frequency in Italy: 0.4%
AIDS frequency in South Africa: 18.1%

P(I |T+) = 0.004×1
0.004×1+0.996×0.015 ≈ 21.1% ITALY

P(I |T+) = 0.181×1
0.181×1+0.819×0.015 ≈ 93.6% SOUTH AFRICA
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Finding a positive result in a repeated test:

P(I |T+
1 ,T

+
2 ) ∝ P(I |T+

1 )P(T+
2 |I ,T

+
1 )

If we assume that each test result is independent from previous
tests given the hypothesis, we have P(T+

2 |I ,T
+
1 ) = P(T+

2 |I )
and P(T+

2 |Ī ,T
+
1 ) = P(T+

2 |Ī ); then we can simply apply Bayes
rule using the previous posterior P(I |T+

1 ) as the new prior.

P(I |T+
1 ,T

+
2 ) ≈ 94.7% ITALY

P(I |T+
1 ,T

+
2 ) ≈ 99.9% SOUTH AFRICA

Luigi Portinale (UPO) Random Variables March 7-10, 2017 16 / 23



Random
Variables

Luigi Portinale

Introduction

Probabilistic
Model

Independence
of Random
Variables

Bayes
Theorem

Bayes Theorem

Naive Bayes

Given a set of mutually exclusive and exhaustive hypotheses
h1, . . . hn and a set of evidences e1 . . . em such that (ej⊥ek |hi )
for (j 6= k), (1 ≤ j , k ≤ m) and (1 ≤ i ≤ n):

P(hi |e1, . . . em) =
P(hi )

∏m
j=1 P(ej |hi )∑n

l=1 P(hl)
∏m

j=1 P(ej |hl)

If evidences are conditionally independent given the hypotheses,
one can provide a linear number of parameters
(P(ej |hi )(j = 1..m)) instead of an exponential one
(P(e1, . . . em|hi ) for every combination of values of e1 . . . em).
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Naive Bayes Graphical Representation

H

E1 E2
. . . . . . Em

Parameters:

P(H) =

(
P(h̄)
P(h)

)
P(Ej |H) =

(
P(ēj |h̄) P(ēj |h)
P(ej |h̄) P(ej |h)

)
(j = 1 . . .m)

Luigi Portinale (UPO) Random Variables March 7-10, 2017 18 / 23



Random
Variables

Luigi Portinale

Introduction

Probabilistic
Model

Independence
of Random
Variables

Bayes
Theorem

Bayes Theorem

Naive Bayes Graphical Representation

H

E1 E2
. . . . . . Em

Parameters:

P(H) =

(
P(h̄)
P(h)

)
P(Ej |H) =

(
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What is the prior’s influence?
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