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Abstract

Peer-to-peer (P2P) systems are characterized by decentralized control, large-scale and extreme dy-
namism of their environment. Developing applications that can cope with these characteristics requires
a paradigm shift that puts adaptation, resilience and self-organization as primary concerns. Complex
adaptive systems (CAS), commonly used to explain the behavior of many biological and social systems,
could be an appropriate response to these requirements. In order to pursue these ideas, this paper presents
Messor, a decentralized load-balancing algorithm based on techniques such as multi-agent systems drawn
from CAS. A novel P2P grid computing system has been designed using the Messor algorithm, allowing
arbitrary users to initiate computational tasks.
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1 Introduction

1 Introduction
Informally, peer-to-peer (P2P) systems are distributed systems based on the concept of resource
sharing by direct exchange between peer nodes (i.e., nodes having the same role and equal re-
sponsibility). Exchanged resources include content, as in popular P2P file sharing applications
[26, 13, 15], and storage capacity or CPU cycles, as in computational and storage grid systems [1,
23, 14].

Distributed computing was intended to be synonymous with P2P computing long before the
term was invented, but this initial desire was subverted by the advent of client-server computing
popularized by the World Wide Web. The modern use of the term P2P and distributed computing
as intended by its pioneers, however, differ in several important aspects. First, P2P applications
reach out to harness the outer edges of the Internet and consequently involve scales that were
previously unimaginable. Second, P2P by definition, excludes any form of centralized structure,
requiring control to be completely decentralized. Finally, and most importantly, the environ-
ments in which P2P applications are deployed exhibit extreme dynamism in structure and load.
The topology of the system typically changes rapidly due to nodes voluntarily coming and go-
ing or due to involuntary events such as crashes and partitions. The load in the system may
also shift rapidly from one region to another, for example, as certain files become “hot” in a file
sharing system; or the computing needs of a node suddenly increase in a distributed computing
system.

In order to deal with the scale and dynamism that characterize P2P systems, a paradigm shift
is required that includes self-organization, adaptation and resilience as fundamental properties.
We believe that complex adaptive systems (CAS), commonly used to explain the behavior of cer-
tain biological and social systems, can be the basis of a new programming paradigm for P2P
applications. In the CAS framework, a system consists of a large number of relatively simple
autonomous computing units, or agents. CAS typically exhibit what is called emergent behavior:
agents, taken individually, may be easily understood, while the behavior of the system as a whole
defies simple explanation. In other words, the interactions among agents, in spite of their sim-
plicity, can give rise to richer and more complex patterns than those generated by single agents
in isolation.

As an instance of CAS drawn from nature, consider an ant colony. Several species of ants, in
particular those belonging to the Messor Sancta [5] species, are known to group objects in their
environment (e.g., dead corpses) into piles so as to clean up their nests. Observing this behavior,
one could be mislead into thinking that the cleanup operation is being coordinated by some
“leader” ants. Resnick [22] describes an artificial ant colony exhibiting this very same behavior in
a simulated environment. Resnick’s artificial ant follows three simple rules: (i) wanders around
randomly, until it encounters an object; (ii) if it was carrying an object, it drops the object and
continues to wander randomly; (iii) if it was not carrying an object, it picks the object up and
continues to wander. Despite their simplicity, a colony of these “unintelligent” ants is able to
group objects into large clusters, independent of their initial distribution.

What renders CAS particularly attractive from a P2P perspective is the fact that global prop-
erties like adaptation, self-organization and resilience are achieved without explicitly embedding
them into the individual agents. In the above example, there are no rules specific to initial con-
ditions, unforeseen scenarios, variations in the environment or presence of failures. Yet, given
large enough colonies, the global behavior is surprisingly adaptive and resilient.

In order to pursue these ideas, we have developed Anthill [3], a novel framework for P2P ap-
plication development based on ideas such as multi-agent systems and evolutionary program-
ming borrowed from CAS [27, 19]. The goals of Anthill are to provide an environment that
simplifies the design and deployment of P2P systems based on these paradigms, and to provide
a “testbed” for studying and experimenting with CAS-based P2P systems in order to understand
their properties and evaluate their performance. An Anthill system is composed of a collection
of interconnected nests. Each nest is a peer entity that makes its storage and computational re-
sources available to swarms of ants – autonomous agents that travel across the network trying to
satisfy user requests. During their life, ants interact with services provided by visited nests, such
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2 Anthill

as storage management and ant scheduling.
Details of the design and implementation of Anthill can be found in a companion paper [3].

After having developed a prototype of Anthill, we are now in the process of testing the viabil-
ity of our ideas regarding P2P as CAS by developing common P2P applications like file sharing
[20] and grid computing over Anthill. In this paper, we present one of such application, called
Messor. Messor is a grid computing system aimed at supporting the concurrent execution of
highly-parallel, time-intensive computations, in which the workload may be decomposed into
a large number of independent jobs. The computational power offered by a network of Anthill
nests is exploited by Messor by assigning a set of jobs comprising a computation to a dispersed
set of nests. To determine how to balance the load among the computing nodes, Messor use an
algorithm inspired by the behavior of the artificial ant described above: Messor ants drop objects
they are carrying only after having wandered about randomly “for a while” without encounter-
ing object concentrations. Colonies of such Messor ants try to disperse objects (more specifically,
jobs) uniformly over their environment, rather than clustering them into piles.

Several computations can be profitably supported by Messor [1, 8, 2]. For example, in the
Seti@Home project [1], the enormous amount of radio signals registered by radio telescopes are
subdivided into a large number of data sets, that can be independently analyzed in the search
for evidence of extra-terrestrial intelligence; Distributed.net [8] is an umbrella for several dis-
tributed computing projects, including cryptography challenges in which brute-force attacks are
performed by subdividing key spaces into independent portions; the Anthrax Project [2] is an ef-
fort designed to help scientists to find a treatment for the Anthrax toxin, by performing screening
analysis of large sets of molecules.

All these projects are based on a master-slave architecture, in which only the master node is
enabled to generate and assign new jobs. Slave machines are relegated to a role of mere executors,
thus in some sense betraying the peer-to-peer philosophy. Messor is completely decentralized,
allowing every node in the system to generate new jobs and submit them to the network. An
application designed in this way may be interesting for groups of entities that want to share their
resources in order to exploit the resulting computing power cost effectively.

The rest of this paper is organized as follows. Section 2 gives a brief overview of the Anthill
framework. In Section 3 we provide an informal system model and specification for Messor
followed by an architecture description and the details of the Messor load-balancing algorithm.
Section 4 present preliminary simulation results, and Section 5 concludes the paper.

2 Anthill
Anthill uses terminology derived from the ant colony metaphor. An Anthill system is composed
of a self-organizing overlay network of interconnected nests, as illustrated in Figure 1. Each nest
is a middleware layer capable of hosting resources and performing computations. The network
is characterized by the absence of any fixed structure, as nests come and go and discover each
other on top of a communication substrate. Nests interact with local instances of one or more ap-
plications and provide them with a set of services. Applications are the interface between the user
and the P2P network, while services have a distributed nature and are based on the collaboration
among nests. An example application may be a file-sharing system, while a service could be a
distributed indexing service used by the file-sharing application to locate files.

An application performs requests and listens for replies through its local nest. Requests and
replies constitute the interface between applications and services. When a nest receives a request
from the local application, an appropriate service for handling the request is selected from the set
of available services. This set is dynamic, as new services may be installed by the user. Services
are implemented by means of ants, autonomous agents able to travel across the nest network. In
response to a request, one or more ants are generated and assigned to a particular task. Ants may
explore the network and interact with the nests that they visit in order to accomplish their goal.
Anthill does not specify which services a nest should provide, nor impose any particular format
on requests. The provision of services and the interpretation of requests are delegated to ants.
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2.1 Nests
Figure 2 illustrates the architecture of a nest that is composed of three logical modules: ant sched-
uler, communication layer and resource managers. The ant scheduler module multiplexes the nest
computation resource among visiting ants. It is also responsible for enforcing nest security by
providing a “sandbox” for ants in order to limit the resources available to ants and prohibit ants
from performing potentially dangerous actions (e.g., local file access).

The communication layer is responsible for network topology (neighbor) management and for
ant movement between nests. In the network, each node has a unique identifier. In order to com-
municate with a remote node, its identifier must be known. The set of remote nests known to a
node are called neighbors of that node. Note that the concept of neighborhood does not involve
any distance metrics, since such metrics are application dependent and is more appropriately
chosen by developers. The collection of neighbor sets defines the nest network that might be
highly dynamic. For example, the communication layer may discover a new neighbor, or it may
forget about a known neighbor if it is considered unreachable. Both the discovery and the re-
moval processes may be either mediated by ants, or performed directly by the communication
layer. In the former case, ants may report about new remote nodes they visited, or may fail to
move to a neighbor because of a communication problem. In the latter case, the exact implemen-
tation of discovery and removal depends on the underlying communication substrate.

Nests offer their resources to visiting ants through one or more resource managers. Example
resources could be files in a file-sharing system or CPU cycles in a computational grid, while
the respective resource managers could be a disk-based storage manager or a job scheduler. Re-
source managers typically enforce a set of policies for managing the (inherently limited) resource.
For example, a least-recently-used (LRU) policy may be used to discard items managed by a file
manager when space is needed for new files. Each service installed by a nest is associated with
a set of resource managers. For example, the nest in Figure 2 provides two distinct services: a
file-sharing service based on a distributed index for file retrieval, in which a routing table is used
by ants in making routing decisions, a file manager is used for maintaining shared files and a
URL manager contains the distributed index; and a computational grid service, in which a job
manager executes jobs assigned to it.

2.2 Ants
Ants are generated by nests in response to user requests; each ant tries to satisfy the request for
which it has been generated. An ant will move from nest to nest until it fulfills its task, after which
(if the task requires this) it may return back to the originating nest. Ants that cannot satisfy their
task within a time-to-live (TTL) parameter are terminated. When moving, the ant carries its state,
that may contain the request, results or other ant specific data. The ant algorithm is contained in a
run() method, that is invoked at each visited nest. The ant code may be transmitted together with
the ant state, if needed; appropriate code caching mechanisms are used to avoid to download the
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same algorithm more than once, and to update it when new versions are available.
Ants do not communicate directly with each other; instead, they communicate indirectly by

leaving information related to the service they are implementing in the appropriate resource man-
ager found in the visited nests. For example, an ant implementing a distributed lookup service
may leave routing information that helps subsequent ants to direct themselves toward the region
of the network that more likely contains the searched key. This form of indirect communication,
used also by real ants, is known as stigmergy [11].

The behavior of an ant is determined by its current state, its interaction with resource man-
agers and its algorithm, that may be non-deterministic. For example, an ant may probabilistically
decide not to follow what is believed to be the best route for accomplishing a task, and choose to
explore alternative regions of the network.

2.3 The Anthill Framework
A Java prototype of the Anthill runtime environment [24] has been developed, based on JXTA [12],
an open-source P2P project promoted by Sun Microsystems. JXTA is aimed at establishing a pro-
gramming platform for P2P systems by identifying a small set of basic facilities necessary to
support P2P applications and providing them as building blocks for higher-level services. The
benefits of basing our implementation on JXTA are several. For example, JXTA allows the use of
different transport layers for communication, including TCP/IP and HTTP, and deals with issues
related to firewalls and NAT.

In addition to the runtime environment, Anthill includes a simulation environment to help
developers analyze and evaluate the behavior of their P2P systems. Simulating different P2P ap-
plications require developing appropriate ant algorithms and a corresponding request generator
characterizing user interactions with the application. Each simulation study is specified using
XML by defining a collection of component classes and a set of parameters for component ini-
tialization. For example, component classes to be specified include the simulated nest network,
the request generator to be used, and the ant algorithm to be simulated. Initialization parame-
ters include the duration of the simulation, the network size, the failure probability, the number
of requests to be generated, and the type and capacity of the resource managers to be used by
ants. This flexible configuration mechanism enable developers to build simulations by assem-
bling a collection of pre-defined and customized component classes, thus simplifying the process
of evaluating ant algorithms.

Unlike other toolkits for multi-agent simulation [18], Anthill uses a single ant implemen-
tation in both the simulation and actual run-time environments, thus avoiding the cost of re-
implementing ant algorithms before deploying them. This important feature has been achieved
by a careful design of the Anthill API and by providing two distinct implementations of it for
simulation and deployment.

3 Load Balancing in Messor
In this section, we present the Messor application and the services on which it relies. Messor is
aimed at supporting the concurrent execution of highly-parallel, time-intensive computations, in
which the workload can be decomposed into a large number of independent jobs.

3.1 System Model and Messor Specification
Messor nests may fail by halting whereby they stop prematurely to execute their algorithm.
Halted nests may subsequently perform a recovery action, after which they lose any information
stored in volatile memory, while they regain access to all data maintained in stable storage. We
say that a nests is crashed if it halts and never perform a recovery action later. We say that a nest
is correct if it is not crashed. All nests in the system may communicate directly with each other
by using an underlying communication layer. Communication between nests may be disrupted
by the presence of partitionings, that subdivide the network into a set of disjoint partitions. Any
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two nests belonging to the same partition may communicate reliably, while two nests in distinct
partitions cannot communicate. Partitionings may be temporary due to subsequent repairs.

A Messor system is composed of a collection of interconnected Anthill nests configured to
run the Messor software. Every such nest can submit jobs to the nest network, where each job
is composed of some input data and the algorithm to be computed over these data. Jobs are
scheduled and executed by the nest on which the job resides, by invoking the job algorithm. We
say that a job is completed when its associated algorithm has been executed to completion. A
completed job outputs a result, i.e. some data obtained from the job computation.

At each nest, Messor offers a very simple API to its users, enabling them to submit new jobs
to be computed and collecting results once the jobs have been computed. The originator nest
of a job is the nest where the job has been submitted. Once submitted, jobs may remain in the
originator, or may be transferred to other nests in order to exploit their unused computational
power. When a job is completed, the result is sent back to the originator. Once there, the user
is either notified of the job result, or the result is stored locally; in the latter case, the user may
periodically poll the nest to obtain the collected results. Messor guarantees that all jobs submitted
to a correct originator will eventually be completed and their results delivered to the originator
itself. Although this property may be satisfied by simply letting the correct originator compute
all jobs, Messor attempts to disperse the load uniformly among cooperating nodes.

3.2 Messor Architecture
The architecture of a node supporting the Messor application is shown in Figure 3. Messor nodes
are composed of two main layers:

� the Messor Application Layer is responsible for interacting with the local user by accepting
requests and collecting computed results on her behalf; furthermore, it is also responsible
for keeping track of job assignments, in order to re-insert in the system, jobs assigned to
nodes that may have crashed.

� the Messor Service Layer is responsible for job execution and load balancing.

The Application Layer receives jobs from the user, and delivers them as job requests to the
Request Router contained in the nest. This module analyze the request and routes it to the
appropriate service among those installed in the nest. In the case of Messor, job requests are
delivered to the Messor Service Layer.

In order to achieve its goals, the Application Layer maintains a database of jobs originated
by the local user and their status with respect to the computation. The status may corresponds
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3 Load Balancing in Messor

to the computed results, if available, or to the identifier of the nest to which the job has been
assigned. Results computed by remote nests are downloaded by the Application Layer out-of-
band, i.e. outside the ant communication mechanism offered by nests, for efficiency reasons. A
lease mechanism is used to keep track of operational nodes, in order to identify crashed nodes
and opportunely re-insert jobs assigned to them.

The Service Layer exploits the ant communication and scheduling facilities provided by nests.
Two main resource managers are employed: the Load Storage contains information about the
estimated load of remote nests, while the Job Manager is responsible for executing the jobs as-
signed to the local nest. The Load Storage implementation is memory-based; it is the main data
structure maintained by visiting ants, and its utilization is explained in the next section. The Job
Manager maintains a database of jobs to be computed by the local nest, implemented as a queue,
and acts as a scheduler that selects the next job from the queue and executes it. Once computed,
the Job Manager is responsible for uploading the result to the Application Layer of the job orig-
inator. Jobs are inserted in the job queue either after the Messor Service Layer have received a
local request through the Request Router, or by downloading them from other nests. The down-
load process is triggered by Messor ants, that are responsible for load balancing, while the actual
download is performed out-of-band, without the mediation of ants.

3.3 The Messor Ant Algorithm
The most interesting component of Messor is its ant algorithm. In order to understand the basic
idea behind Messor, consider the following variation of the artificial ant algorithm described in
the introduction: (i) when an ant is not carrying any object, it wanders about randomly until it
encounters an object and picks it up; (ii) when an ant is carrying an object, the ant drops it only af-
ter having wandered about randomly “for a while” without encountering other objects. Colonies
of such ants try to disperse objects uniformly over their environment rather than clustering them
into piles.

The algorithm of Messor ants is inspired by the rules described above. The environment in
which Messor ants live is given by the network of nests. The objects to pick-up and drop-off
correspond to the actual jobs, existing within the nest network. During its life-time, a Messor ant
may assume two different states: SearchMax and SearchMin. While in SearchMax state, the ant
wanders about in the network until it finds an “overloaded” nest; at that point, the ant records
the identifier of this nest and switch to the SearchMin state. While in SearchMin state, the ant
wanders about looking for an “underloaded” nest. When such a nest is found, the ant requests
the local Job Manager to transfer jobs from the overloaded nest to the underloaded one, and
then switches back to the SearchMax state again; and the process repeats. The transfer process is
performed by direct downloading between the two nests; this to avoid carrying potentially large
amounts of data representing jobs from one node to another while wandering about, searching
for underloaded nodes.

The load of a nest is defined as the number of jobs currently in the job queue of that nest; alter-
natively, if information about the potential computing power needed to perform jobs is available,
the load of a nest may be defined based on this information. The concepts of overloaded and
underloaded nests are relative to the average load of the nests recently visited by an ant. This
definition enable ants to make decisions about job transfers between nests with unbalanced loads
on the basis of local information only, i.e. without global knowledge.

The SearchMax and SearchMin walks are not performed completely at random. When wan-
dering, ants collect information about the load of the last visited nests. This information is then
stored in the Load Storage component in each nest, and is used by subsequent ants to drive their
SearchMax and SearchMin phases: at each step, the ant randomly selects the next node to visit
among those that are believed to be more overloaded (in SearchMax) or underloaded (in Search-
Min). In this way, ants move faster towards those regions of the network in which they are more
interested. To avoid that the system become biased toward a subset of nests (those believed to be
more over- or underloaded), ants may occasionally, based on an exploration probability, select the
next nest using a uniform distribution, enabling the exploration of the entire network.

The Messor algorithm is shown in Figure 4. The state of each ant is represented by the set of
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3 Load Balancing in Messor

integer state = MAX;
Queue visits = new Queue(N);
integer maxLoad, minLoad;
NestId maxNest, minNest;

method doSearchMax()
�

if ((minLoad/maxLoad) � TargetRatio[MAX]
and not tossCoin(KeepSearchProb[MAX]))

�

state = MIN;
doSearchMin();�
else
goNextNest();�

method doSearchMin()
�

if ((minLoad/maxLoad) � TargetRatio[MIN]
and not tossCoin(KeepSearchProb[MIN]))

�

state = MAX;
mng.forceTransfer(maxNest);
clearMaxMin();
doSearchMax();�
else
goNextNest();�

method run(AntView view)
�

JobManager mng =
view.getManager(JOBMANAGER);

LoadStorage strg =
view.getManager(LOADSTORAGE);

initMaxMin(mng.getLoad(), view.getId());
if (state == MAX)

doSearchMax();
elseif (state == MIN)

doSearchMin();�

method goNextNest()
�

if (tossCoin(ExplorationProb[state]))
�

list = strg.getNeighborList(view);
nextNest= uniformRandom(list);�
else

�

list = strg.getOrderedList(state, view);
nextNest= normalRandom(list, Dev[state]);�

strg.addLoads(visits);
visits.add(mng.getLoad(), view.getId());
view.move(nextNest);�

Figure 4. Pseudo-code description of the algorithm

variables listed in the preamble. The current state (SearchMax vs SearchMin) of the ant is stored
in variable state. A circular queue, visits contains nest identifiers and load information of the last
N visited nests; this information is used to update the load information stored in Load Storages.
Variables maxLoad and maxNest (minLoad, minNest) contain the load and the identifier of the
nest with maximum (minimum) load among those recently visited.

Whenever an ant reaches a nest, its run() method is executed. The AntView parameter passed
to run() is a proxy object used by ants to communicate with the nest. The first action of run()
is to obtain references to the local Job Manager and Load Storage; then, variables maxLoad,
minLoad, maxNest and minNest are initialized by the initMaxMin() method (not shown in the
figure), simply by substituting, the load value and the identifier of the nest with maximum or
minimum load. Finally, method run invokes methods doSearchMax() or doSearchMin(), depending
on its current state.

The first step of method doSearchMax() is to decide whether to keep traveling through the
network, searching for nodes with higher loads, or to switch to the SearchMin state. An ant will
explore the network until the ratio between the maximum and the minimum load values stored
in the ant state reaches a target value (represented by TargetRatio). Furthermore, each ant has
a probability KeepSearchProb to keep searching even when the target ratio has been reached,
providing a way for ants to continue their search for overloaded nests.

If the ant decides to keep searching, method goNextNest() is invoked. This method selects
the next nest and moves there by invoking method move() on the AntView. The selection of the
next nest depends on whether the ant decides to explore the network completely at random, or
to direct itself towards a region of the network that is expected to be more overloaded. This
decision is made by tossing a coin with probability ExplorationProb. If the decision is not to
explore, the next nest is selected according to a normal distribution among the nests contained in
the local Load Storage that are believed to be more overloaded. Before moving to the next nest,
the ant updates the local Load Storage with its current content of visits, and then updates the
visits variable with the load value and the identifier of its current nest.

Method doSearchMin is similar to doSearchMax; the only difference is when the ant decides
to switch again to the SearchMax state, in which case the balancing operation (mediated by the
involved Job Manager) is started and the variables are re-initialized.
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Figure 5. Load distribution after 0, 5, 10, 15, 20, 50 iterations.

4 Performance Evaluation
In this section, we present preliminary results for Messor, obtained through the Anthill simulator.
Further details can be found in a companion paper [21]. Figure 5 illustrate how the load balancing
process performed by Messor evolves over time. The results were obtained in a network of 100
idle nests, initially connected to form a ring (for visualization reasons). Initially, 10,000 jobs are
generated in a single node. The different histograms depict the load observed in all the nests
(x-axis) after 0, 5, 10, 15, 20, and 50 iterations of the algorithm. At each iteration, a set of 20 ants
perform a single step, i.e. executes its run method and moves to the next nest. In each iteration,
a node is limited to at most 200 job transfers to other nodes. As the figure illustrate, only 15-20
iterations are required to transfer jobs to all other nodes in the network, and after 50 iterations,
the load is perfectly balanced. The first iterations are spent exploring the neighborhood in the
ring network. After a few iterations, new connections are created and used to transfer jobs to
remote parts of the network.

5 Discussion and Conclusions
We have argued that techniques borrowed from CAS could form the basis for a new paradigm
for building P2P systems that are adaptive, resilient and self-organizing. To prove the viability of
this idea, we have used Anthill to develope a P2P load-balancing algorithm that exhibit the above
properties. Messor ants adapt their behavior to the load conditions, wandering about randomly
when the load is uniformly balanced and moving rapidly towards regions of the network with
highly unbalanced loads when these exist. The system is resilient to failures, as jobs assigned
to crashed nodes are simply re-inserted in the network by the nest that generated them. And
finally, Messor is self-organizing, as new nests may join the network, and their computing power
is rapidly exploited to carry on the computation, as soon as ants discover the nest and start to
assign it jobs transferred from other nests.

Our work may be compared with existing architectures for distributed computing. Several
distributed computing projects [1, 8] are based on the master-slave paradigm, in which a well-
known centralized master is responsible for supplying slave machines with jobs. This kind of
approach is often called hybrid P2P, since although Seti@Home and Distributed.net is capable to
take advantage of the huge amount of computing resources available in the Internet, its design is
centralized. In Messor, every node of the network is capable of producing new jobs and introduce
them in the network for computation.

Messor may be compared with so-called grid computing projects [10], such as Globus [9]
and Legion [7]. The goals of Messor are more simplistic than those of these projects, that present
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complex architectures, capable to organize computations based on the memory, storage and com-
puting requirements of jobs, as well as on the relationships between jobs. Nevertheless, Messor
is interesting because, unlike these projects, presents a completely decentralized architecture.

The agent cloning approach [25], also facilitate load-balancing through the use of matchmak-
ing agents to advertise capabilities of e.g., underloaded agents. This allows overloaded agents
to find underloaded once to which they may clone (migrate) themselves. Using matchmaking
agents is inappropriate for P2P and grid computing systems, since it impose a certain degree of
centralization.

Many systems already exist for achieving dynamic load distribution, in particular process
migration systems [17] like MOSIX, Sprite, Mach and LSF. However, none of these apply a CAS
based approach to this problem, and many of them employ a centralized load-balancing algo-
rithm, making them unsuitable for deployment in grid computing applications. The MOSIX [4]
system use a decentralized and probabilistic load balancing algorithm similar to the one adopted
by Messor. However, MOSIX requires a prior knowledge of the distributed sytstems, while Mes-
sor is a self-configuring P2P system. Moreover, MOSIX is a kernel level process migration system,
and thus unsuitable in heterogenous environments.

Anthill share its goals with project DIET (Decentralised Information Ecosystem Technolo-
gies) [16, 6], aimed at the development of a robust, adaptable and scalable software platform for
multi-agent systems applied to information processing.

We conclude by highlighting the fact that Messor is still a prototype. Many important features
needed by distributed computing systems have not been implemented yet. For example, we have
not considered issues related to security, apart from enclosing visiting ants in “sandboxes” that
limit the set of actions performed by them. Mechanisms to authenticate users and to keep account
over the number of jobs submitted and computed by nests are needed; these mechanisms may
also prove useful as a defense against denial-of-service attacks. Although important, we believe
that these lacks are hortogonal to the Messor algorithm presented in this paper, whose novelty re-
sides in the way in which the load of the system is balanced. In this sense, the preliminary results
obtained by the Messor simulations are interesting. Nevertheless, Further studies are needed to
improve our understanding of the behavior of Messor ants. In particular, we are interested in
obtaining an evaluation of the number of ants needed to manage a network. We plan to imple-
ment a mechanism to bound the number of ants present in the system simultaneously, by adding
a module at each nest that kills ants when they are in excess, and creates new ants when the nest
has not been visited recently. This module will also have an adaptive behavior, increasing the
number of ants when the load is highly unbalanced.
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