
Synchronized Hyperedge Replacement for
Heterogeneous Systems�

Ivan Lanese and Emilio Tuosto

Dipartimento di Informatica, Largo Bruno Pontecorvo 3,
56127 Pisa – Italy

Abstract. We present a framework for modelling heterogeneous dis-
tributed systems using graph transformations in the Synchronized Hy-
peredge Replacement approach, which describes complex evolutions by
synchronizing local rules. In order to deal with heterogeneity, we consider
different synchronization algebras for different communication channels.
The main technical point is the interaction between synchronization al-
gebras and name mobility in the π-calculus style. The power of our ap-
proach is shown through a few examples.

1 Introduction

Nowadays, Internet is becoming more and more integrated with non IP-based
networks and the so-called overlay networks, which combine different kinds of
networks (e.g., ATM, wireless etc.), are beginning to appear in the scene. Overlay
networks are changing the nature of Internet, indeed new protocols and commu-
nication policies are required in order to allow applications (such as web services)
to interact across different kinds of networks.

Doubtless, applications should consider these changes of perspective in or-
der to take advantage of the new technological possibilities offered by overlay
networks. Indeed, not only this evolution of Internet has impact on the commu-
nication infrastructure, but it also influences the level of the applications and the
middlewares they rely on. For instance, in some cases it would help to have point-
to-point communications while in others broadcast is preferable. Of course, this
kind of situation may be present also in the usual practice of concurrent pro-
gramming. A typical example is when a server first acquires data over which
it computes and then must send the results to several waiting clients. Classi-
cal languages for concurrent/distributed programming offer a limited number of
communication policies while models usually restrict on a single synchronization
mechanism. For example, the π-calculus [13, 15] adopts point-to-point communi-
cation, hence, broadcast communications, if desired, must be encoded. Classical
formalisms, however, cannot uniformly deal with dynamical/unpredictable vari-
ations of the synchronization policies.

� I. Lanese has been supported by EU-FET project AGILE IST-2001-32747. E. Tu-
osto has been supported by EU-FET project PROFUNDIS IST-2001-33100.

J.-M. Jacquet and G.P. Picco (Eds.): COORDINATION 2005, LNCS 3454, pp. 220–235, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Synchronized Hyperedge Replacement for Heterogeneous Systems 221

The Synchronized Hyperedge Replacement approach [1, 3] (SHR, for short) is
a uniform graph transformation framework for dealing with many facets of wide
area network applications [7, 16, 8, 2, 6, 11, 5]. Systems are hypergraphs, namely
graphs where each hyperedge connects an arbitrary number of nodes, compu-
tations correspond to rewrite hypergraphs by applying productions which are
rules of the form p : L(x) −→ G where L(x) is an hyperedge and G an hyper-
graph. Informally, applying production p to a graph means to replace an instance
of L with G in the graph. The replacements are coordinated in SHR through
the requirements that p imposes to the attachment nodes of L, namely, in or-
der to replace L with G, it is necessary that the components connected to the
attachment nodes of L in the graph synchronize (according to a given synchro-
nization policy) with the requirements imposed by p. Intuitively, this implies
that synchronizing corresponds to resolving a distributed constraint satisfaction
problem as pointed out in [14]. The SHR approach has the advantage, w.r.t.
other graphical frameworks, such as double push-out [4] and bigraphs [10], of
allowing a distributed implementation since productions have a local effect and
synchronization can be performed using a distributed algorithm.

A first abstraction w.r.t. synchronization mechanisms has been done in [12],
where SHR has been equipped with a general notion of synchronization alge-
bra with mobility (SAM, for short). Synchronization algebras [17] abstractly
define the basic properties of synchronization policies by distilling the axioms
capturing them. Therefore, the programmer can define his own synchronization
mechanism and exploit SHR for representing systems and their computations.
However, the proposal of [12] lacks the possibility of representing different SAMs
in a single rewriting system. The main contribution of this work is to solve this
problem.

Following [9], the SHR mechanism used here, allows mobility by means of
node fusions. Our extension adds to fusion the peculiarity of changing the syn-
chronization policy of a given node. In particular, SAMs form a commutative
monoid which is programmer-defined. Moreover, whenever x is the node result-
ing from merging y and z, the SAM associated to x is obtained by composing
the SAMs associated to y and z via the monoidal operation. Even though this
might have no counterpart at the level of the communication infrastructure,
this mechanism may result extremely useful at the level of the applications.
For instance, the synchronization policy of a new channel can be dynamically
determined as the composition of different constraints imposed by interacting
components.

Structure of the Paper. §2 gives some background on graphs. §3 discusses syn-
chronization algebras with mobility and labelled graphs. The following sections
§4 and §5 present productions and transitions for SHR, respectively via an in-
formal example and with rigorous mathematical definitions. Another example is
presented in §6. Finally, §7 presents conclusions and traces for future work.

222 I. Lanese and E. Tuosto

2 Background

Before describing hypergraphs, some notations are given.
Given a vector v, |v| is its length and v[i] is its i-th element.
We denote with mgu(E) an idempotent substitution resulting from comput-

ing the most general unifier on the set of equations E. The transitive closure of
E is E+.

We use � for disjoint set-union and, in A � B, [1, n] (resp. [2, n]) is the el-
ement that corresponds to n ∈ A (resp. n ∈ B). We denote with Intn the set
{1, . . . , n} (where Int0

def= ∅) while idn is the identity function on it. Given two
functions f : A → C and g : B → D we denote with [f, g] : A � B → C � D
the function that applies f to the elements of A and g to the ones of B. The
standard composition of functions is denoted by ◦. Given a function f , f |S (resp.
f |\S) is the function obtained by restricting f to S (resp. to dom(f) \ S) while
merge(f) yields the set of equalities {x = y|f(x) = f(y)}. Finally, when set
operations (e.g., ∪) are used on functions, it is implicitly assumed that these are
represented as sets of pairs.

We want to model systems using hypergraphs, a generalization of graphs
where hyperedges may connect any number of nodes. For simplicity, we use
graph (resp. edge) instead of hypergraph (resp. hyperedge). We assume a set
LE of labels and a function rank : LE → ω that assigns a rank to each L ∈ LE.
An edge labelled by L is an atomic item with rank(L) ordered tentacles. A set of
nodes, together with a set of edges, forms a graph if each edge is connected, by its
tentacles, to its attachment nodes. A graph is connected to its environment by
an interface which is a subset of its nodes. Nodes in the interface are called free
nodes, while other nodes are said bound. We consider graphs up to isomorphisms
that preserve free nodes, labels of edges, and connections between edges and
nodes.

We use a textual representation for graphs as (syntactic) judgements which
is more suitable for defining transformations [9]. In this representation nodes
correspond to names, free nodes to free names and edges to basic terms of the
form L(x1, . . . , xn), where xi are arbitrary names and L ∈ LE has rank n. The
constant nil represents a graph without edges, the parallel composition operator
| builds large graphs from smaller ones and the ν operator binds nodes.

Definition 1 (Graphs as judgements). Let N be a fixed infinite set of names.
A judgement is a pair of the form Γ � G where:

1. Γ ⊆ N is a finite set of names (the free nodes of the graph);

2. G is a term generated by the grammar
G ::= L(x) | G|G | ν y G | nil
where x is a vector of names, L is an edge label with rank(L) = |x| and y is
a name.

Synchronized Hyperedge Replacement for Heterogeneous Systems 223

Table 1. Structural congruence for graph terms

(ax1) G1|(G2|G3) ≡ (G1|G2)|G3 (ax2) G1|G2 ≡ G2|G1 (ax3) G|nil ≡ G

(ax4) ν x ν y G ≡ ν y ν x G (ax5) ν x G ≡ G if x /∈ fn(G)

(ax6) ν x G ≡ ν y G{y/x} if y /∈ fn(G)

(ax7) ν x (G1|G2) ≡ (ν x G1)|G2 if x /∈ fn(G2)

The restriction operator ν is a binder (similar to the binder of λ-calculus).
We denote with fn(−) the function that yields the set fn(G) of free names in a
term G. We demand that fn(G) ⊆ Γ .

Graph terms are considered up to the axioms of structural congruence in Ta-
ble 1: (ax1), (ax2) and (ax3) define respectively the associativity, commutativity
and identity over nil for operation |. Axioms (ax4) and (ax5) state that nodes
of a graph can be hidden only once and in any order. Thanks to axiom (ax4)
we can write ν Z where Z = {x1, . . . , xn} instead of ν x1 . . . ν xn. Axiom (ax6)
defines α-conversion of bound names in a graph. Axiom (ax7) defines the inter-
action between restriction and parallel composition. Note that function fn(−)
is well-defined on equivalence classes. As far as judgements are concerned, we
define Γ � G ≡ Γ ′ � G′ iff Γ = Γ ′ and G ≡ G′.

Theorem 1 (Soundness of the Representation [7]). Judgements up to
structural congruence are isomorphic to graphs up to isomorphisms.

In order to explain the formal definitions, we describe here a sample scenario
from the Internet realm: it will also be exploited later as a running example.

Some clients C1, . . . , Cm can invoke a service offered by a remote server S
provided that they are authorized. A possible solution might be to interpose an
authority Au between S and the clients. Both S and the clients trust Au, and
clients get access to S only after they have been authenticated by Au.

Au

��

◦
u

S

•

���������

���������x

C1 · · · Ci · · · Cm

x � (ν u)
(

Au(x, u) | S(u) |
C1(x) | · · · | Ci(x) | · · · | Cm(x)

)
.

The picture and the judgement above represent clients connected to Au on a
“public” node x. The server S is also connected to the authority Au, but this
time on a “private” (i.e., restricted) node, graphically represented as an empty
bullet. Notice that Au has an arrowed tentacle. In general, hypergraphs are not
oriented, here this graphical convention is only used for representing the order
of the tentacles in edges having rank h > 1. Namely, the arrowed tentacle is the
first one while the others are numbered clock-wise.

224 I. Lanese and E. Tuosto

3 Synchronization Algebras with Mobility

In this section we introduce synchronization algebras with mobility (SAM, for
short), an extension of synchronization algebras [17] able to deal with name
mobility in the style of name-passing calculi. We extend graphs by labelling
nodes with SAMs that will be exploited to choose the policies for synchronizing
rewriting rules.

Definition 2 (Synchronization Algebra with Mobility). Let Act be a set
of actions containing a distinguished element ε and at least an action a
= ε.
A SAM on Act, < N,Act, ar, ε, F in,ActCmp >, is identified by its name N
and it includes a function ar : Act → ω such that ar(ε) = 0, a subset Fin
of final actions containing ε and a relation ActCmp for action composition. In
particular, ActCmp is a set of triples of the form (a, b, (c,Mb)) where a, b, c ∈ Act
and Mb is a partial function from Intar(a) � Intar(b) to {1, 2, . . . } such that:

1. c = ε ⇔ a = b = ε;
2. Mb is surjective on Intar(c);
3. (b, a, (c,Mb′)) ∈ ActCmp, with Mb′([1, n]) = Mb([2, n]) and Mb′([2, n]) =

Mb([1, n]) for each n;
4. (c, d, (e,Mb′)) ∈ ActCmp ⇒ ∃(b, d, (f,Mb′′)) ∈ ActCmp, (a, f, (e,Mb′′′)) ∈

ActCmp and in that case the composition of Mb and Mb′ gives the same
mapping and the same fusions of the composition of Mb′′ and Mb′′′.

The requirements for condition 4 can be written as:

Mb1 |Intar(e) = Mb2 |Intar(e)

(merge(Mb) ∪ merge(Mb1))+ = (merge(Mb′′) ∪ merge(Mb2))+.

where Mb1 = Mb′ ◦[Mb |Intar(c) , idar(d)] and Mb2 = Mb′′′ ◦[idar(a),Mb′′ |Intar(f)].
We define the functions factset, factfin and factcmp that given a SAM A

compute respectively its set of actions Act, its set of final actions Fin and its
composition relation ActCmp.

Intuitively, ar(a) is the number of nodes that are communicated with a, ε
stands for “no-action”, Fin contains the set of actions that represent complete
synchronizations and thus can be executed also on restricted nodes. Notice that
ε is always considered complete. Finally, ActCmp defines action synchronization
and name communication. More precisely, the triples of the form (a, b, (c,Mb))
define the allowed synchronizations when actions a and b interact: each triple is
an allowed behaviour, and if no such triple exists the actions are not compatible,
i.e. they cannot synchronize. In particular c is the result of the synchronization
and Mb describes how the parameters of a and b are mapped to the parameters of
c. If many parameters are mapped to the same position, the corresponding nodes
are merged and the resulting node is attached to action c. Only the parameters up
to ar(c) are actually communicated, the others are used for performing additional
fusions without showing the result in the final action.

Synchronized Hyperedge Replacement for Heterogeneous Systems 225

Condition 1, present in normal synchronization algebras, amounts to say
that the effect of a synchronization cannot be “no action”. Condition 2 guar-
antees that each node attached to the composed action can be computed, that
is it corresponds to a non empty set of nodes from component actions. Finally,
conditions 3 and 4 state that action synchronization and mobility patterns are
commutative and associative.

We inherit the characterization of mobility from [12] so that general mobility
patterns can be modelled. Since this work aims at formalizing heterogeneous
systems, we tailor the examples to show the use of multiple SAMs, while main-
taining them as simple as possible. For an application of the full generality of the
mobility patterns, we refer to [12]. The main difference w.r.t. the SAMs in [12]
is that we allow nondeterminism, namely, instead of being fixed, the result of
synchronizing two actions is nondeterministically chosen from a set of allowed be-
haviours specified by the synchronization relation ActCmp. This allows to model
some more policies, for instance, in a SAM with priorities, when two messages
with the same priority interact, one of them is nondeterministically discarded.
Also, SAMs are named so that we can distinguish among those describing the
same interactions. This can be useful when SAM composition does not depend
only on their synchronization policy.

We present here two simple examples of SAMs, namely the one for Milner
synchronization and the one for broadcast. Both of them rely on a mobility
pattern that implements message passing, i.e. it merges the corresponding pa-
rameters. We define the function message passing MPn,m from Intn � Intm to
Intmax(n,m) as follows: the element i of both the starting sets (when it exists) is
mapped to the element i in the codomain.

When defining SAMs we suppose that ActCmp contains just the tuples given
explicitly, plus the ones derivable from commutativity.

Example 1 (Milner SAM). Given the set of actions Act = {τ, ε} ∪
⋃

i∈I{ai, ai}
where ar(ai) = ar(ai) and ar(τ) = 0, the Milner SAM over Act is as follows:

- (a, ε, (a,MPar(a),0)) ∈ ActCmp for each a ∈ Act,
(a, a, (τ,MPar(a),ar(a))) ∈ ActCmp for each a ∈

⋃
i∈I{ai};

- Fin = {τ, ε}.

Milner synchronization represents message passing à la π-calculus, with one
process executing input a and the other one executing output a.

Example 2 (Broadcast SAM). Given the set of actions Act = {ε} ∪
⋃

i∈I{ai, ai}
where ar(ai) = ar(ai), the broadcast SAM over Act is as follows:

- (a, a, (a,MPar(a),ar(a))) ∈ ActCmp for each a ∈
⋃

i∈I{ai},
(a, a, (a,MPar(a),ar(a))) ∈ ActCmp for each a ∈

⋃
i∈I{ai},

(ε, ε, (ε,MP0,0)) ∈ ActCmp;
- Fin = {ε} ∪

⋃
i∈I{ai}.

This SAM implements broadcast, where one process performs an output a
and all the others have to perform an input a. Notice that, if one wants to have

226 I. Lanese and E. Tuosto

weak broadcast, where some process may not synchronize with the output, it is
enough to add the triples (a, ε, (a,MPar(a),0)) for each a ∈ Act to ActCmp.

We always consider a set Alg containing all the SAMs of interest. This set is
assumed to be a commutative monoid w.r.t. an operator � of algebra composi-
tion. Names of SAMs are assumed to be unique in Alg.

We can now extend graphs by labelling nodes with SAMs. We concentrate
on the representation as syntactic judgements.

Definition 3 (Labelled Graphs). Assuming A ∈ Alg, we define a labelled
graph as a pair of the form Γ � G where:

1. Γ is a finite function mapping nodes to SAMs, written as sequence of pairs
n : A where n ∈ N ;

2. G is a term generated by the grammar
G ::= L(x) | G|G | ν y : A.G | nil
where x is a vector of names, L is an edge label with rank(L) = |x| and y is
a name.

In ν y : A.G, ν binds y in G while recording the label A.
When defining the interfaces, Γ, x : A denotes the set obtained by adding

x : A to Γ , assuming x /∈ dom(Γ) and Γ1, Γ2 denotes the union of Γ1 and Γ2,
assuming dom(Γ1) ∩ dom(Γ2) = ∅.

The relation of structural congruence on graphs is the same that we defined in
§2, with α-conversion preserving the labelling SAMs. Now graph isomorphisms
also preserve SAMs that label nodes. Theorem 1 holds also with the new defini-
tions.

4 SHR via an Example

Productions are the basic rules of SHR describing how edges can be rewritten.
This section gives a flavour of productions and synchronization before the formal
definitions which are in the following section. In particular, it highlights how
multiple SAMs can model issues of distributed applications in a simpler way
w.r.t. previous approaches.

A production takes the form x : A � L(x) Λ−→ Γ � G where

– x : A abbreviates x1 : A1, . . . , x|x| : A|x| and x : A � L(x) is an edge such
that all its attachment nodes are distinct,

– Γ � G is a labelled graph and
– Λ is a synchronization function mapping nodes in x to pairs (a,y) where

a ∈ Act is the performed action and y contains the communicated nodes.

Roughly, such a production states that, in a given graph, an edge labelled L can
be replaced by G provided that its attachment nodes x are labelled by A and
it can synchronize through actions specified by Λ with the productions of the
edges sharing the attachment nodes in x.

Synchronized Hyperedge Replacement for Heterogeneous Systems 227

We present the productions for our running example, i.e., the ones expressing
the behaviours of Au, S and a generic client Ci. For the sake of simplicity, we
consider the Milner SAM on actions {req} ∪

⋃
i∈Intm

{authi} (see Example 1)
and call it Mil .

First consider a generic client Ci:

x : Mil � Ci(x)
(x,authi,〈y〉)−−−−−−−−→ x : Mil , y : Mil � C ′

i(y) (1)

y : Mil � C ′
i(y)

(y,req,〈〉)−−−−−−→ y : Mil � C ′
i(y). (2)

Production 1 models the authentication phase where Ci is attached to a Mil node
and asks Au for the access to the service S. If the authentication takes place,
Ci connects to the server through y, the name which will be instantiated with
the server “address” during the synchronization with Au. The right-hand-side of
production 1 expresses that the client is connected to the server and can make
its requests. Notice that the synchronization between Au and Ci takes place only
if Ci is able to provide some information that allows Au to “recognize” Ci as
a legal user, which is abstracted with authi. Production 2 simply states that a
request is sent to the server. For simplicity, we assume that the server does not
give back any answer.

Productions for Au simply have to accept authorized clients and give them
the server address:

x : Mil , u : Mil � Au(x, u)
(x,authi,〈u〉)−−−−−−−−→ x : Mil , u : Mil � Au(x, u), (3)

where i ranges over the indexes of valid clients.
Finally, the server simply accepts requests from clients:

u : Mil � S(u)
(u,req,〈〉)−−−−−−→ u : Mil � S′(u),

where S′ is used to model the server when it is busy. It becomes again available
via the production

u : Mil � S′(u)
(u,ε,〈〉)−−−−→ u : Mil � S(u),

which does not require any synchronization since it corresponds to an internal
transition of the server.

Consider that we want to extend our example by making each request to be
served by many servers at once. For instance, assume that the request is a search
query on the web that clients want to submit to different search engines. This
extension can be easily obtained by interposing an edge Bn between Au and the
n servers. This system can be represented by the following figure:

228 I. Lanese and E. Tuosto

◦z1 S1

Au

��

◦
u

Bn
�� ◦

...

Si

...

•x ◦

...
zn Sn

...

C1 · · · Ci · · · Cm

Bn will simply acquire the requests from clients and forward them to each

server. This behaviour is formally stated by the following production:

u : Mil , z : Mil � Bn(u, z)

(u, req, 〈〉),
(z, req, 〈〉)

−−−−−−−−−→ u : Mil , z : Mil � Bn(u, z).

where z : Mil shortens z1 : Mil , . . . , zn : Mil while with (z, req, 〈〉) we denote
(z1, req, 〈〉), . . . , (zn, req, 〈〉).

This solution has a number of advantages:

– the introduction of Bn is completely transparent to the other components,
hence we do not have to change the productions for Au, C or S,

– Bn triggers all the servers in parallel.

Nevertheless, there also are some drawbacks:

– if one of the servers crashes or autonomously disconnects from Bn, then Bn

is blocked,
– if Bn crashes then all the servers are isolated,
– adding (resp. removing) a server implies to replace Bn with Bn+1 (resp.

Bn−1),
– the request is dangling if one of the servers does not accept it.

All these drawbacks are resolved by using weak broadcast synchronizations be-
tween the clients and the servers. Instead of introducing edges Bn, we can simply
modify productions (1) and (3) as follows:

x : Mil � Ci(x)
(x,authi,〈y〉)−−−−−−−−→ x : Mil , y : Bdc � C ′

i(y) (4)

x : Mil , u : Bdc � Au(x, u)
(x,authi,〈u〉)−−−−−−−−→ x : Mil , u : Bdc � Au(x, u),

where Bdc is the weak broadcast SAM on the action {req} (see Example 2).
Notice that Au and Ci must accord on the label of the second attachment node
of Au. Notice also that now only request actions can be executed on node u.

Synchronized Hyperedge Replacement for Heterogeneous Systems 229

5 The Mathematics of Heterogeneous SHR

We present now the formal definitions of productions and transitions. In addi-
tion to what shown in Section 4, now the label of a transition also contains an
idempotent substitution π that allows to merge nodes in the interface by map-
ping each of them into a standard representative of its equivalence class. Even
though not used in this work, we include π since we extend the SHR approach
from [5] where it has been exploited.

Definition 4 (SHR Transition). A SHR transition is a relation of the form:

Γ � G
Λ,π−−→ Φ � G′

where Γ � G and Φ � G′ are labelled graphs, Λ : dom(Γ) → (Act × N ∗) is
a total function and π : dom(Γ) → dom(Γ) is an idempotent substitution. If
Λ(x) = (a,y) then |y| = ar(a). We define actΛ(x) = a, nΛ(x) = y and

– n(Λ) = {z|∃x.z ∈ nΛ(x)} set of exposed names;
– ΓΛ = n(Λ) \ dom(Γ) set of exposed fresh names.

We require dom(Φ) = π(dom(Γ)) ∪ ΓΛ, namely free nodes are never erased (⊇)
and new nodes are bound unless exposed (⊆). The SAMs associated to new nodes
in Φ (nodes in ΓΛ) can be freely chosen. Instead, for each x ∈ π(dom(Γ)), the
associated algebra A is A1 � . . . � An where {A1, . . . , An} are the labels of the
nodes in Γ mapped to x by π. Notice that A is well-defined since SAMs form a
commutative monoid.

We want to be able to specify productions that can be applied to nodes with
different labels, while keeping some control on them. Hence, we introduce types:

Definition 5 (Types). A type t is any non empty set of SAMs.

Definition 6 (Productions). A production is an SHR transition of the form

x1 : A1, . . . , xn : An � L(x1, . . . , xn)
Λ,π−−→ Φ � G where x1, . . . , xn are all distinct

and A1, . . . , An are SAMs.
A production schema is a generalized production that has types instead of

SAMs as labels for nodes.

Productions can be derived from production schemas by α-converting the nodes
in {x1, . . . , xn} ∪ dom(Φ) and/or by specializing each type ti into a particular
SAM Ai ∈ ti, provided that for any xi, actΛ(xi) ∈ factset(Ai) and that the
result is a correct transition (namely, nodes in Φ that are the result of a fusion
have the label computed by composing the labels of the merged nodes). We
suppose to have for each edge label L of arity n a special idle production schema
x : Alg � L(x)

Λε,id−−−→ x : Alg � L(x) where Λε(xi) = (ε, 〈〉) for each i ∈ Int|x|.
Transitions for SHR are derived by composing productions using the inference

rules in the following definition.

230 I. Lanese and E. Tuosto

Definition 7 (Heterogeneous SHR). A heterogeneous SHR rewriting sys-
tem consists of a triple (Alg,P, Γ � G), where Alg is the set of SAMs, P is a
set of productions and Γ � G is the initial labelled graph.

The set of transitions of (Alg,P, Γ � G) is the smallest set obtained by apply-
ing the inference rules below starting from the productions in P. The computa-
tions of (Alg,P, Γ � G) are sequences of transitions Γi � Gi

Λi,πi−−−→ Φi � G′
i, for

i ∈ ω, such that Γ0 � G0 = Γ � G and, for each i > 0, Γi � Gi is Φi−1 � G′
i−1.

(res)
Γ, x : A � G

Λ,π−−→ Φ � G′ actΛ(x) ∈ factfin(A) (xπ = yπ ∧ x 	= y) ⇒ xπ 	= x

Γ � ν x : A.G
Λ|\{x},π|\{x}−−−−−−−−−→ Φ′ � ν Z G′

where Z = Φ \ Φ′.

(new)
Γ � G

Λ,π−−→ Φ � G′ x /∈ dom(Γ) ∪ dom(Φ) A ∈ Alg

Γ, x : A � G
Λ∪{(x,ε,〈〉)},π−−−−−−−−−→ Φ, x : A � G′

(par)

Γ1 � G1
Λ1,π1−−−−→ Φ1 � G′

1 Γ2 � G2
Λ2,π2−−−−→ Φ2 � G′

2

(dom(Γ1) ∪ n(Λ1)) ∩ (dom(Γ2) ∪ n(Λ2)) = ∅

Γ1, Γ2 � G1|G2
Λ1∪Λ2,π1∪π2−−−−−−−−−→ Φ1, Φ2 � G′

1|G′
2

(merge)

Γ, x : A, y : A � G
Λ∪{(x,a1,v1),(y,a2,v2)},π−−−−−−−−−−−−−−−−−→ Φ � G′

(a1, a2, (c,Mb)) ∈ factcmp(A)

Γ, x : A � Gσ
Λ′,π′

−−−→ Φ′ � ν Z G′σρ

where:

– σ = {x/y};
– E = {vi1 [j1] = vi2 [j2]|Mb([i1, j1]) = Mb([i2, j2])};
– ρ = mgu({(E ∪ merge(π))σ}) where we choose node names in dom(Γ)∪{x}

as representatives whenever possible;
– w[i] = (vj [k])σρ if Mb([j, k]) = i, i ∈ Intar(c);

– Λ′(z) =
{

(c,w) if z = x
(actΛ(z), (nΛ(z))σρ) for each z ∈ dom(Γ)

– π′ = ρ|dom(Γ)∪{x};
– dom(Z) = dom(Φ)σρ \ dom(Φ′);
– the label of each node x ∈ dom(Z)∪dom(Φ′) is computed as follows: x is the

representative according to ρ of an equivalence class {x1, . . . , xn} of nodes
which have in Φ labels A1, . . . , An. Then the label of x is A1 � . . . � An.

Rule (res) binds nodes, allowing only complete actions (w.r.t. their SAMs)
to take place on them. According to the last condition of (res), the bound node
must not be the representative of the equivalence class induced by π when the
class is not trivial. Nodes extruded just on the bound node must be bound after
the transition, and thus they are in Z (the labels are preserved).

Synchronized Hyperedge Replacement for Heterogeneous Systems 231

Rule (new) allows to add an isolated node x to the interface; initially, on x
only the trivial action ε can be done.

Rule (par) performs the union of two transitions provided that they have
disjoint sets of free names (accounting also for newly generated names).

Rule (merge) is the rule for synchronization. It allows to compute the effect
of merging two nodes x and y with synchronizations (a1,v1) and (a2,v2) respec-
tively on them, provided that they are labelled with the same SAM A, which
will label also the resulting node. The synchronization is allowed iff there exists
a triple (a1, a2, (c,Mb)) ∈ factcmp(A). In this case set E is computed, which
accounts for merging names that are mapped to the same position by Mb (note
that merges are performed even if the resulting representative is not attached to
action c). We then compute ρ by means of an mgu on E ∪merge(π) after having
fused nodes according to σ. Notice that merge(π) accounts for the node fusions
due to π and that ρ also chooses a representative for each equivalence class. If at
least one of the members of the class is in dom(Γ)∪{x}, then one of them must
be chosen (otherwise undesired renamings of nodes may happen). After that, the
new vector w is generated by choosing for each position the representative of the
corresponding equivalence class. We can then compute the new synchronization
function Λ′, which takes into account the performed merges. Merges on nodes in
the interface are traced by π′. Nodes that are no longer extruded (because the
synchronization discards them) are bound. The SAMs associated to nodes are
preserved from the premise for nodes that are not merged, and are computed us-
ing the operator of composition of SAMs otherwise. The result does not depend
on the structure of the derivation, as witnessed by the following proposition:

Proposition 1. Given a transition Γ � G
Λ,π−−→ Φ � G′, the labels in Φ of nodes

in dom(Φ) ∩ dom(Γ) depend only on Γ and π.

Proof. By induction on the structure of the derivation.

Example 3 (Dynamically computing SAMs). Consider the example of § 4. Us-
ing weak broadcast communications between clients and servers is “statically”
determined by the productions of A and Ci which also couple the behaviour of
these components. Indeed, if Mil �Bdc = Bdc, then rule (merge) ensures that the
synchronization of productions (4) and (3) yields the expected result, namely,
the attachment node of servers uses a weak broadcast SAM, since Ci requests it
to do so.

6 A Further Example

We consider a scenario where multiple processes/hosts are connected through
links with different features. Mainly, we consider two characteristics: the maxi-
mum packet size, which can be either 4kb or 16kb, and the presence/lack of some
error-detecting mechanism e.g., the CRC algorithm. Before starting the real com-
munication, two processes create a logical communication channel between them.

232 I. Lanese and E. Tuosto

This channel supports 16kb packets and/or error-detecting capabilities only if
all the underlying channels do.

We model this scenario using eight SAMs obtained by mixing three distinct
features, namely:

– packet sizes (4kb/16kb),
– error-detecting mechanism (yes/no),
– control or communication link.

The first two items correspond to the aforementioned characteristics of links,
while the last one specifies whether the link is used for exchanging control mes-
sages or for data. For simplicity we suppose that control messages are short and
thus can be encoded using some error-correcting code. Hence, control messages
are always correctly delivered. Since all the combinations of the three features
are possible, we conventionally name the SAMs by means of expressions like
CTR4 or COM

√
16 that respectively denote a control link without error-detecting

mechanism and with 4kb maximum packet size and a communication link with
error-detecting mechanism and 16kb maximum packet size.

The control SAMs provide essentially normal Milner communication (where
we drop the distinction between action and coaction) for control messages. The
SAMs for communication without error-detecting mechanism provide faulty Mil-
ner synchronization, i.e., the result of a synchronization can be either τ or err. In
the former case, name passing is performed while no name passing is performed
in the latter. Note that, in these SAMs, the processes cannot detect the result of
synchronizations (unless they perform additional interactions). Communication
actions can be of two kinds, in4 for packets of 4kb and in16 for packets of 16kb.
Corresponding output actions are provided. The same τ and err actions are used
in both the cases. Both the kinds of synchronization are allowed by the SAM
16kb, while just the 4kb-size packets are allowed for SAMs 4kb. Finally, error-
detecting SAMs allow two different kinds of input, in

√
s which synchronizes giving

τ and ins which synchronizes giving a detected error, where s ∈ {4kb, 16kb}.
To clarify all that we will now formally define the SAM COM

√
16:

– N = COM
√
16;

– Act = {in
√
4 , in4, out4, in

√
16, in16, out16, τ, err, ε};

– for simplicity we suppose that all actions but τ , err and ε have arity 1 while
these three have arity 0;

– Fin = {τ, err, ε};
– (in

√
4 , out4, (τ,MP1,1)) ∈ ActCmp,

(in4, out4, (err,MP0,0)) ∈ ActCmp,
(in

√
16, out16, (τ,MP1,1)) ∈ ActCmp,

(in16, out16, (err,MP0,0)) ∈ ActCmp,
(ε, ε, (ε,MP0,0)) ∈ ActCmp.

We can now define the function of algebra composition. We will define a
partial order on our SAMs, and the greatest lower bound will be our composition

Synchronized Hyperedge Replacement for Heterogeneous Systems 233

operator. The order is defined component-wise on the three features of SAMs
over which the following orders are considered: 16kb > 4kb, the presence of an
error-detecting mechanism is greater than its absence and CTR > COM . Note
that the set of SAMs with the resulting operation forms a commutative monoid.

We consider as types all the singletons, the universal type Alg and the type
CT that contains the four control SAMs.

For simplicity we consider that our system contains two kinds of subsystems:
end systems x � Idle(x) and routers x, y, z � R(x, y, z). End systems can start a
communication with the production schema:

x : CT � Idle(x)
(x,connect,〈y〉)−−−−−−−−−−→ x : CT, y : COM

√
16 � Active(x, y) (5)

After connecting to another system, an Idle process becomes Active, i.e. able to
send/receive data over the links built toward other systems. For lack of space,
we do not formally model their behaviour.

We now show the productions for routers. We write just a meta-rule, with
type meta-variables t1 and t2 to be instantiated with each singleton containing a
control SAM. Furthermore the production must be written for each permutation
of attachment nodes.

x : t1, y : t2, z : CT � R(x, y, z)
(x,connect,〈w〉),(y,connect,〈w〉)−−−−−−−−−−−−−−−−−−−−→

x : t1, y : t2, z : CT,w : (COM
√
16 � t1 � t2) � R(x, y, z)

(6)

We can now show some examples. Let us consider as starting graph:

� (ν x1 : CTR
√
16, x2, x3 : CTR16, x4 : CTR4, x5, x6 : CTR

√
4).

(Idle(x1)|R(x1, x2, x4)|R(x2, x3, x5)|Idle(x3)|R(x4, x5, x6)|Idle(x6)),

where x1, . . . , xn : A shortens x1 : A, . . . , xn : A.
For instance, we can build a communication channel between Idle(x1) and

Idle(x3) using productions (5) and (6). The algebra for the resulting connection
is COM16, obtained via COM

√
16 � COM16 � COM16. In that case we obtain the

graph:

� (ν x1 : CTR
√
16, x2, x3 : CTR16, x4 : CTR4, x5, x6 : CTR

√
4 , y : COM16)

(Active(x1, y)|R(x1, x2, x4)|R(x2, x3, x5)|Active(x3, y)|R(x4, x5, x6)|Idle(x6))

Similarly we can build a connection between Idle(x1) and Idle(x6), but this
time the resulting channel will use the algebra COM4. When either of these
connections has been established, communication can happen using that channel.
Notice that the label of the channel is computed from the constraints imposed
by interacting routers.

7 Conclusions

We have presented a framework for modelling heterogeneous distributed systems
using SHR. In addition to standard SHR properties, namely the ability to build

234 I. Lanese and E. Tuosto

a compositional description of system behaviour, our extension allows to deal
with systems where different kinds of communication/synchronization policies
coexist, as usually happens in WANs and overlay networks. From the technical
point of view the main points are the labelling of nodes with SAMs and the
management of these labels when nodes are communicated and merged, which
is obtained by requiring a commutative monoid structure on the set of SAMs.

As future work we plan to analyze the behavioural properties of SHR systems
by defining a suitable bisimulation which is a congruence w.r.t. composition of
graphs. We also want to develop a framework that merges the advantages of
SHR and bigraphs, thus allowing a compositional description of systems with
both a communication and a location structure. Another important point is to
build an implementation of SHR systems, both for modelling system evolution
(and also performing behavioural analysis using model-checking) and for pro-
gramming real systems. In this second case SHR must be integrated with a
standard programming language such as Java or C++, thus enabling to write
normal code for computation and using some flavour of SHR (probably in a more
process-calculi like style) for coordination.

References

1. I. Castellani and U. Montanari. Graph Grammars for Distributed Systems. In
H. Ehrig, M. Nagl, and G. Rozenberg, editors, Proc. 2nd Int. Workshop on Graph-
Grammars and Their Application to Computer Science, volume 153 of LNCS, pages
20–38. Springer, 1983.

2. R. De Nicola, G. Ferrari, U. Montanari, R. Pugliese, and E. Tuosto. A Formal
Basis for Reasoning on Programmable QoS. In N. Dershowitz, editor, International
Symposium on Verification – Theory and Practice – Honoring Zohar Manna’s 64th
Birthday, volume 2772 of LNCS, pages 436 – 479. Springer, 2003.

3. P. Degano and U. Montanari. A model of distributed systems based on graph
rewriting. JACM, 34:411–449, 1987.

4. H. Ehrig, M. Pfender, and H. J. Schneider. Graph grammars: an algebraic ap-
proach. In Proceedings IEEE Conference on Automata and Switching Theory,
pages 167–180, 1973.

5. G. Ferrari, U. Montanari, and E. Tuosto. A LTS Semantics of Ambients via Graph
Synchronization with Mobility. In ICTCS, volume 2202 of LNCS. Springer, 2001.

6. G. Ferrari, U. Montanari, and E. Tuosto. Graph-based Models of Internetworking
Systems. In T. Aichernig, Bernhard K. Maibaum, editor, Formal Methods at the
Crossroads: from Panaces to Foundational Support, volume 2757 of LNCS, pages
242 – 266. Springer, 2003.

7. D. Hirsch. Graph Transformation Models for Software Architec-
ture Styles. PhD thesis, Departamento de Computación, UBA, 2003.
http://www.di.unipi.it/̃ dhirsch.

8. D. Hirsch, P. Inverardi, and U. Montanari. Reconfiguration of Software Architec-
ture Styles with Name Mobility. In A. Porto and G.-C. Roman, editors, Coordi-
nation 2000, volume 1906 of LNCS, pages 148–163. Springer, 2000.

9. D. Hirsch and U. Montanari. Synchronized hyperedge replacement with name
mobility: A graphical calculus for name mobility. In CONCUR, volume 2154 of
LNCS, pages 121–136, Aalborg, Denmark, 2001. Springer.

Synchronized Hyperedge Replacement for Heterogeneous Systems 235

10. O. Jensen and R. Milner. Bigraphs and transitions. SIGPLAN Not., 38(1):38–49,
2003.

11. I. Lanese and U. Montanari. Software architectures, global computing and graph
transformation via logic programming. In L. Ribeiro, editor, Proc SBES’2002 -
16th Brazilian Symposium on Software Engineering, pages 11–35. Anais, 2002.

12. I. Lanese and U. Montanari. Synchronization algebras with mobility for graph
transformations. In Proc. FGUC’04 – Foundations of Global Ubiquitous Comput-
ing, ENTCS, 2004. To appear.

13. R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, I and II.
Inf. and Comp., 100(1):1–40,41–77, September 1992.

14. U. Montanari and F. Rossi. Graph rewriting and constraint solving for modelling
distributed systems with synchronization. In P. Ciancarini and C. Hankin, editors,
Proceedings of the First International Conference COORDINATION ’96, Cesena,
Italy, volume 1061 of LNCS. Springer, April 1996.

15. D. Sangiorgi and D. Walker. The π-Calculus: a Theory of Mobile Processes. Cam-
bridge University Press, 2002.

16. E. Tuosto. Non-Functional Aspects of Wide Area Network Programming. PhD
thesis, Dipartimento di Informatica, Università di Pisa, May 2003. TD-8/03.

17. G. Winskel. Synchronization trees. TCS, 34:33–82, May 1985.

	Introduction
	Background
	Synchronization Algebras with Mobility
	SHR via an Example
	The Mathematics of Heterogeneous SHR
	A Further Example
	Conclusions

