
Safe Run-time Adaptation of Distributed Applications
A Choreography-driven Approach

Mila Dalla Preda1, Ivan Lanese2, Jacopo Mauro2, Maurizio Gabbrielli2, and Saverio
Giallorenzo2

1 Dipartimento di Informatica - Univ. of Verona
2 Dipartimento di Informatica - Univ. of Bologna / INRIA

Abstract. Proving that distributed applications are well-behaved, e.g. are dead-
lock free, is a complex problem. The problem becomes even harder if those appli-
cations dynamically adapt to face needs which were unexpected when the appli-
cation was deployed or even started. We present a framework where the adaptive
application is specified by a global description, called an Adaptive Interaction-
Oriented Choreography (AIOC), which is deadlock free by construction. Adap-
tation is enacted by rules, defined and applied at run-time, which replace a region
of the AIOC, involving potentially multiple participants, with a new AIOC frag-
ment. We automatically derive from the AIOC a distributed prototype implement-
ing it. We prove that, under static and efficiently verifiable syntactic conditions on
the AIOC and on the adaptation rules, the distributed prototype is compliant with
the behavior specified by the AIOC, for all the possible, dynamically changing,
environment conditions and sets of adaptation rules.

1 Introduction

Nowadays, applications are distributed, and composed by different entities which en-
gage in complex protocols to reach a common goal. For instance, in the Price Inquiry
Scenario of an online purchase, a buyer and a seller exchange messages according to a
given pattern. We can describe the code for buyer and seller with a Process-Oriented
Choregraphy (POC):

Buyer Description Seller Description
prod = getInput();
priceReq : prod to seller;
offer : price from seller

priceReq : prods from buyer;
prices = priceB(prods);
offer : prices to buyer

The buyer locally executes the input (using function getInput) of the name of a product
(s)he is interested in into local variable prod. Then (s)he sends a price request to the
seller on channel priceReq, with the product name as a parameter. Finally, (s)he waits
on channel offer for a price, and stores it in local variable price. Symmetrically, the
seller waits for a price request from the buyer , computes the price prices of the product
using function priceB, and answers by sending the computed price to the buyer.

In such a simple scenario, with only two participants and a unique possible message
sequence, one can check that the application is well-behaved. In particular, each send
has a matching receive, and the application is deadlock free. Note that one would obtain

a deadlock by, e.g., swapping the send and the receive inside the buyer. Ensuring well-
behavedness becomes much more difficult for a complex application, even more if it
involves more than two participants.

Now, assume that, while the application is running, the seller direction decides to
stimulate business by defining new business rules. For instance, a fidelity summer card
may be distributed to buyers, allowing them to get a 10% discount on their summer pur-
chases. Such changes in business rules are standard in current economics, nevertheless
updating the application to implement such a simple change raises many problems:

– which adapted code should be executed by each participant so to implement the
required business rule?

– how to integrate the adapted code into the current one?
– when to activate the adapted code?
– how to ensure that the changes in the code of the two participants are coordinated?
– assuming the old application was well-behaved, how to ensure that the adapted one

is well-behaved too?

Note that the good behavior of the application depends on the interactions between the
two participants: it may well be the case that if a participant is updated and the other
one is not, the resulting application will deadlock.

Answering the questions above at the level of POC is difficult.
We will answer them by exploiting a more abstract description of the applica-

tion, called an Interaction-Oriented Choreography (IOC). We will then show that the
POC description of the application can be automatically derived from the IOC via a
behavior-preserving projection operation. This approach to software development is
called choreography-driven design, and has been successfully applied to ensure the
good behavior of distributed applications [5, 6, 22]. The main aim of this paper is ex-
tending choreography-driven design to cope with unexpected adaptation needs such as
the one above, while preserving its main property, namely that the behavior of the pro-
jected POC coincides with the behavior of the IOC. To emphasize that our descriptions
include adaptation we speak about adaptive IOC (AIOC) and adaptive POC (APOC).

An IOC description of the Price Inquiry Scenario above is:
prod@buyer = getInput();
priceReq : buyer(prod) → seller(prods);
prices@seller = priceB(prods);
offer : seller(prices) → buyer(price)

Here, the buyer reads from the user the product name prod. Then, the buyer engages
in a communication with the seller: (s)he sends the name of the product to the seller,
which stores it in a local variable prods. The seller computes the price of the product,
and sends it to the buyer, that stores it in a local variable price. At the IOC level the
expected development of the interaction is much more clear than at the POC level,
since communications are syntactically explicit. However, the IOC is less suitable to
generate or check the code of single participants, to ensure that they indeed follow the
expected protocol. For these reasons, having a behavior-preserving projection to derive
the POC from the IOC is a key ingredient of the approach.

Integration of adaptation into choreography-driven design requires to introduce adap-
tation mechanisms both at the level of AIOC and of APOC, and to extend the projec-
tion to cope with the new mechanisms. Mainly, one has to ensure that the projection is
behavior-preserving.

2

Adaptive Price Inquiry Scenario Summer Card Adaptation Rule

prod@buyer = getInput();
priceReq : buyer(prod) → seller(prods);
scope price-inquiry@seller {
prices@seller = priceB(prods);
offer : seller(prices) → buyer(price)

} prop { N.offers = 0}

rule price-inquiry
where 06.21.2013 < E.date and
E.date < 09.21.2013 and N.offers == 0
specifies
cardReq : seller(void) → buyer(_);
cardId@buyer = getInput();
card : buyer(cardId) → seller(buyerId);
if valid(buyerId)@seller {

prices@seller = priceB(prods) * 0.9
} else { prices@seller = priceB(prods) };
offer : seller(prices) → buyer(price)

Fig. 1. Adaptive Price Inquiry Scenario.

A main issue here is to find mechanisms to specify adaptation able to cope with
adaptation needs which were not expected when the application has been deployed or
even started. This is fundamental since it is not possible to foresee in advance all the
possible adaptation needs, even less the possible solutions to them. For instance, in the
Price Inquiry Scenario, it is not possible to know in advance all the offer modalities and
conditions the sales direction may want to propose.

To deal with unexpected updates, we present two mechanisms: (i) a mechanism of
scope, used inside AIOCs and APOCs to specify which code may be adapted, and,
(ii) a set of rules specifying when the code should be adapted and incorporating the
new code. The approach is able to cope with unforeseen adaptation needs since the
set of adaptation rules is dynamic, i.e. can be changed at any moment to face a new
adaptation need. Ensuring that these unpredictable changes of the set of rules do not
break the approach, and the fact that the projection is behavior preserving, is the main
technical challenge we had to face.

Fig. 1 shows an AIOC making adaptable the Price Inquiry Scenario (on the left), and
an adaptation rule enabling the Summer Card update (on the right). The AIOC includes
a scope with label price-inquiry which specifies that the communication between the
seller and the buyer may be adapted. The Summer Card rule is applicable to such
a scope since it matches the scope label. In order to check whether adaptation will
improve the distributed application, one has to check whether the applicability condition
of the rule, defined by clause where, is satisfied. This condition may take into account the
state of the application, the non functional properties of the scope, and the environment
conditions. In the example, the non-functional property N.offers = 0 indicates that no
offer is currently active. Similarly, the environment variable E.date contains the current
date. The annotation @seller after the name of the scope specifies that the seller is in
charge of acting as a coordinator for the adaptation step.

The body of the rule specifies the protocol to be followed when the summer card
offer is active. First, the seller asks the card id to the buyer. The buyer inputs the id,
stores it into the variable cardId and sends this information to the seller. If the summer
card id is valid then the discount is applied, otherwise the standard price is computed.

A graphical view of an adaptation step is in Fig. 2. The upper-left corner of the dia-
gram shows an AIOC, where a scope with label `, represented as a black box, is avail-
able.

3

l

 →

l

AIOC

APOC

 →

proj proj
adapt

adapt

Fig. 2. Our approach, graphically.

From the AIOC, one can automatically derive
the APOC in the lower-left corner using the
behavior-preserving projection. In the APOC,
three different participants feature a scope with
label `: their interactions implement the behav-
ior specified by the AIOC scope. Assume to
have an adaptation rule applicable to scopes
with label `, specifying that, at the AIOC level,
the scope with label ` becomes a gray circle. We

want to apply the same rule to the running APOC so that the result of:

1. adapting the AIOC and then derive the adapted APOC by projection, or
2. directly adapt the APOC

is the same. In other words, the diagram commutes. The same result holds also for
normal, non adaptation, steps. As a consequence, the behavior of the APOC, under all
possible sets of adaptation rules, proceed as prescribed by the abstract adaptive model
given by the AIOC. As a corollary, the APOC is well-behaved.

Summarizing, this paper provides the following contributions:

– the definition of an abstract AIOC language to specify adaptive distributed applica-
tions;

– the definition and implementation of a more concrete APOC language;
– the definition of a behavior-preserving projection function to automatically derive

an APOC from an AIOC;
– the proof that an APOC derived from an AIOC is compliant with the AIOC under

all possible sets of adaptation rules and all possible execution environments.

As a result we ensure that adaptive distributed applications derived from AIOCs are
correct by design.

Structure of the paper: Section 2 and Section 3 present the syntax and semantics of
AIOCs and APOCs, respectively. Section 4 presents the correctness result. Section 5
describes AIOCJ, our prototype implementation. The paper ends with discussion and
related works in Section 6. Full proofs of the results are collected in Appendix, and
additional material is available in the companion technical report [10].

2 Adaptive Interaction-Oriented Choreography (AIOC)

This section defines the architectural model of the distributed adaptive applications we
consider, and the syntax and semantics of the AIOC language specifying them.

We consider applications composed by participants deployed on different localities,
each executing its own code and accessing its own local state, and interacting via syn-
chronous message passing.1 Adaptation is performed by an adaptation middleware that
includes one or more, possibly distributed, adaptation servers, which are repositories of

1 Asynchronous message passing can also be considered, but this makes the technicalities more
difficult without changing the main features of the approach.

4

adaptation rules. The running application may interact with the adaptation middleware
to look for applicable adaptation rules. The effect of an adaptation rule is to replace a
scope with a new AIOC answering the adaptation need. Applicability may depend on
the execution environment (including, possibly, user desires), on the application state,
and on the non-functional properties of the scope.

The main novelty of our languages is thus to provide scopes and adaptation rules,
thus enabling adaptation.

Our languages rely on a set Roles , ranged over by r, s, . . . , to identify the partic-
ipants (also called roles, or localities) in the choreography. Roles exchange messages
over channels, also called operations. We distinguish two kinds of operations: public
operations, ranged over by o, and private operations, ranged over by o∗. We use o?

to range over both public and private operations. Public operations represent relevant
communications inside the application, and we ensure that both the AIOC and the cor-
responding APOC perform the same public operations, in the same order. Vice versa,
private operations are just used for synchronization purposes, and additional private
communications may be introduced when moving from the AIOC level to the APOC
level. We also assume a set of scope labels, ranged over by l, li, . . . , allowing adaptation
rules to specify the scopes they can target. We denote with Expr the set of expressions,
ranged over by e. We deliberately do not give a formal definition of expressions, and
of their typing, since our results do not depend on it. We only require that expressions
include at least values, belonging to a set Val ranged over by v, . . . , and variables, be-
longing to a set Var ranged over by x, y, . . . , and that it is always possible to evaluate
a given expression (e.g., a default value is given as a result if evaluation is not possi-
ble or causes an error). Finally, we assume a subset of expressions containing boolean
expressions, ranged over by b, whose evaluation always yields either true or false.

The syntax of AIOC processes, ranged over by I, I ′, . . ., is defined as follows:

I ::= o? : r1(e)→ r2(x) | I; I ′ | I|I ′ | x@r = e | 1 | 0 |
if b@r {I} else {I ′} | while b@r {I} | scope l@r {I} prop {∆}

Interaction o? : r1(e) → r2(x) means that role r1 sends a message on operation o? to
role r2 (we assume r1 6= r2). The sent value is obtained by evaluating e in the local
state of r1 and it is then stored in variable x in r2. Processes I; I ′ and I|I ′ denote
sequential and parallel composition of I and I ′, respectively. Assignment x@r = e
evaluates expression e in the local state of r and assigns the resulting value to its local
variable x. Conditional if b@r {I} else {I ′} and iteration while b@r {I} are guarded
by the evaluation of boolean expression b in the local state of r. The empty process
1 defines an AIOC that can only terminate. 0 represents a deadlocked AIOC. This is
needed for the definition of the operational semantics, but we expect the programmer
not to use it when specifying AIOC processes. In particular, we call initial an AIOC
process where 0 never occurs. The construct scope l@r {I} prop {∆} delimits a region
I of the AIOC process that may be adapted in the future.

Indeed, the designer needs to foresee whether a code region would need adaptation,
to allow it to expose an interface towards the adaptation middleware, thus enabling
adaptation. On the other hand, the designer does not need to know in advance under
which conditions adaptation should be performed, nor the code that will answer the
forthcoming adaptation need. While there are no general rules defining when a code

5

1 priceOk@buyer = False; continue@buyer = True;
2 while (not(priceOk) and continue)@buyer {

3 prod@buyer = getInput(); priceReq : buyer(prod) → seller(prods);
4 scope price-inquiry@seller {

5 prices@seller = priceB(prods); offer : seller(prices) → buyer(price)

6 } prop { N.offers = 0};
7 priceOk@buyer = getInput();
8 if (not(priceOk))@buyer {continue@buyer = getInput()} };
9 if (priceOk)@buyer {

10 payReq : seller(payDesc(prices)) → bank(desc);
11 scope payment@bank {

12 paymentOK@bank = True; pay : buyer(payAuth(price)) → bank(auth);
13 ... / / code f o r t h e payment
14 } prop { N.securityLevel = 1 };
15 if (paymentOK)@bank {

16 confirm : bank(void) → seller(_) | confirm : bank(void) → buyer(_)

17 } else { abort : bank(void) → buyer(_) } }

Fig. 3. AIOC for Buying Scenario.

region should be adaptable, a few typical cases are described below. An AIOC re-
gion dealing with business rules should normally be adaptable, since business rules
frequently change. Also, an AIOC region critical for performance or security reasons
should be adaptable, to enable future improvements of performances or security proper-
ties. In scope l@r {I} prop {∆}, role r coordinates the adaptation procedure by inter-
acting with the adaptation middleware to check whether adaptation is needed, and with
the other roles inside the scope to enact the adaptation procedure. Also, l is the label
of the scope, to be matched by a corresponding label in the adaptation rule.2 Function
∆ : DName → Val describes the non-functional properties of the current code, such
as version number or latency. E.g., ∆(VersionNumber) = 3.5 means that version 3.5
is currently installed. These properties can be checked when applying an adaptation
rule, to avoid applying obsolete rules. Assigning correct non-functional properties to
the scopes is a responsibility of the designer.

Fig. 3 gives an example of AIOC process, extending the one discussed in the Intro-
duction to a more realistic setting: a buyer orders a product from a seller, paying via
a bank. The buyer starts the protocol by iteratively repeating the Price Inquiry Scenario
from the Introduction, until either the seller offer is fine (priceOk), or the buyer is not
interested any more in buying the product (not continue). These decisions are taken by
interacting with the user at buyer via function getInput (abstracting away all the details
related to user interaction). If the seller offer is fine, the seller sends to the bank the
payment details. The buyer then authorizes the payment via operation pay. We omit
the details related to the local execution of the payment at the bank. Since the payment
may be critical for security purposes, the related communication is enclosed in a scope
payment, thus allowing, later on, the introduction of a more refined protocol. The scope
has a non-functional property N.securityLevel with value 1, with the intended mean-

2 More sophisticated ways to match scopes and rules can be studied, but this is orthogonal to the
main issues tackled in the paper, thus we leave this point for future work.

6

ing that the scope only provides basic security. After the scope successfully terminates,
the protocol ends with the bank acknowledging the payment to the seller and buyer in
parallel. If the payment was not successful the failure is notified to the buyer only.

Adaptation is specified by adaptation rules, defined below.

Definition 1 (Adaptation rules). An adaptation rule is a term rule lwhere C specifies I,
where l is the label of the scopes to which the rule applies, C is a boolean predicate that
specifies the applicability condition to be satisfied, and I is the AIOC process that will
replace the scope in case the adaptation is performed.

The predicate C may refer to the execution environment E of the application, to the non-
functional properties ∆ of the considered scope, and to the local state Σr of the role r
coordinating the adaptation. An environment E is a function from environment names
to values: E : EName → Val , while a local state Σr is a function from variables to
values: Σr : Var → Val . To avoid confusion, the sets Var , EName , and the set of
non-functional property names DName are mutually disjoint. As for expressions, we
do not explicitly define the syntax of predicates in C, since our results do not rely on
it. We only require the existence of a decidable predicate Σr, E,∆ ` C to establish
whether the applicability condition C is satisfied by a local state Σr, an environment
E and a set of non-functional properties ∆. We denote as R a set of adaptation rules.
We require that adaptation rules (as well as AIOCs) satisfy a well-formedness condition
called connectedness, defined in Section 4.

An example of adaptation rule is in the Introduction, and additional examples can
be found in the companion technical report [10] or on the web site [1].

AIOC processes do not execute in isolation: they are equipped with a global state
Σ, an environment E and a set of adaptation rules R (at this level of abstraction, we do
not need to consider if they are distributed among different adaptation servers or not).

Definition 2 (AIOC systems). An AIOC system is a quadruple 〈Σ,E,R, I〉, denoting
an AIOC process I equipped with a global state Σ, an environment E and a set of
adaptation rules R.

A global state Σ is a map that defines the value v of each variable x in a given role
r, namely Σ : Roles × Var → Val . The local state of role r verifies ∀x ∈ Var :
Σ(r, x) = Σr(x). Expressions are always evaluated by a given role r, i.e. considering
local state Σr. We denote the evaluation of expression e in local state Σr as [[e]]Σr . We
assume [[e]]Σr is always defined, and that for each boolean expression b, [[b]]Σr is either
true or false. We assume a function roles(I) that computes the roles of an AIOC
process I. We can now define the semantics of AIOC systems.

Definition 3 (AIOC systems semantics). The semantics of AIOC systems is defined as
the smallest labeled transition system (LTS) closed under the rules in Table 1, where
symmetric rules for parallel composition have been omitted.

The rules in the top part of the table model the evolution of AIOC processes, while
the rules in the bottom part lift the transitions to AIOC systems. When computing,
AIOC processes may make assumptions on the state Σ, the environment E and the set
of rules R (to check whether a rule is applicable), or on the state Σ only (to evaluate an
expression). Since this information is not available at the process level, the assumptions
(ranged over by A) are stored in the label and checked at the system level.

7

AIOC processes
(INTERACTION)

[[e]]Σr1
= v

o? : r1(e)→ r2(x)
Σ,o?:r1(v)→r2(x)−−−−−−−−−−−→ x@r2 = v

(ASSIGN)
[[e]]Σr = v

x@r = e
Σ,[v/x,r]−−−−−−→ 1

(END)

1
√
−→ 0

(SEQUENCE)

I µ−→ I′ µ 6=
√

I;J µ−→ I′;J

(SEQ-END)

I
√
−→ I′ J µ−→ J ′

I;J µ−→ J ′

(PARALLEL)

I µ−→ I′ µ 6=
√

I ‖ J µ−→ I′ ‖ J

(PAR-END)

I
√
−→ I′ J

√
−→ J ′

I ‖ J
√
−→ I′ ‖ J ′

(IF-THEN)
[[b]]Σr = true

if b@r {I} else {I′} Σ,τ−−→ I

(IF-ELSE)
[[b]]Σr = false

if b@r {I} else {I′} Σ,τ−−→ I′
(WHILE-UNFOLD)

[[b]]Σr = true

while b@r {I} Σ,τ−−→ I; while b@r {I}

(WHILE-EXIT)
[[b]]Σr = false

while b@r {I} Σ,τ−−→ 1
(ADAPT)
rule l where C specifies I′ ∈ R Σr, E,∆ ` C ∧ roles(I′) ⊆ roles(I)

scope l@r {I} prop {∆} Σ,E,R,[l,C] 7→I′−−−−−−−−−−→ I′
(NOADAPT)
∀rule l where C specifies I′ ∈ R . Σr, E,∆ 6` C ∨ roles(I′) 6⊆ roles(I)

scope l@r {I} prop {∆} Σ,E,R,[no-adapt]−−−−−−−−−−−→ I

AIOC systems
(EXEC)

I A,α−−→ I′ α 6= [v/x, r] A = Σ ∨A = Σ,E,R

〈Σ,E,R, I〉 α−→ 〈Σ,E,R, I′〉

(EXEC-TICK)

I
√
−→ I′

〈Σ,E,R, I〉
√
−→ 〈Σ,E,R, I′〉

(EXEC-ASSIGN)

I Σ,[v/x,r]−−−−−−→ I′

〈Σ,E,R, I〉 τ−→ 〈Σ[v/x, r], E,R, I′〉

(EXT-UPDATE)

〈Σ,E,R, I〉 E′,R′−−−−→ 〈Σ,E′,R′, I〉

Table 1. AIOC semantics.

Concerning actions, o? : r1(v) → r2(x) denotes an interaction where r1 sends to
r2 a value v on operation o?. Value v will be stored in x by r2. Label [v/x, r] denotes
an assignment of value v to local variable x of role r, while τ denotes a silent action
(generated, e.g., by guard evaluation). Label [l, C] 7→ I ′ traces the application of an
adaptation rule, while [no-adapt] traces the begin of a scope that does not perform
adaptation. Label

√
denotes process termination.

We use µ to range over labels. To define labels, and, in particular, to deal with
assumptions on information known only at the system level, we preferred simplicity and
uniformity over minimality. E.g., when evaluating e one could only trace the variables
occurring in e. This would lead however to a slightly more complex semantics.

8

The rules dealing with standard computation should be clear from the description of
labels, and are described in the companion technical report [10]. Thus, we concentrate
here on the rules describing adaptation. Rule ADAPT models the application of an adap-
tation rule that matches the scope label l, whose applicability condition C is satisfied,
and that involves only roles occurring in the scope. As a result, scope l@r {I} prop {∆}
is replaced by the AIOC process I ′ in the body of the rule. One could have required the
scope to remain after adaptation, thus allowing further adaptations. However, our choice
is more general, since we can always let I ′ be a scope with the same label l. Note that
the set of roles in an adaptation rule have to be a subset of the roles participating to
the scope. This limitation is due to technical reasons, which will be clearer after having
seen the semantics of the APOC. Intuitively, a role not involved in the scope provides
no adaptation interface specifying where to insert the new code. We considered two
possibilities for mitigating this drawback. First, roles not occurring in the scope could
be declared as possibly relevant for future adaptations of the scope, so that information
enabling their adaptation is generated. This possibility is part of the current implemen-
tation, and extending the theory to cope with it is straightforward. Second, new roles
not occurring at all in the AIOC could be added dynamically, by inserting at the APOC
level an action to create a new role executing a given process. Integrating this feature
requires more work, and we leave it as a future extension.

If no rule inside R can be applied to the scope, rule NOADAPT removes the scope
boundaries and starts the execution of the body of the scope. Allowing a scope to start
only if no rule applies may not always appear realistic, but it is less strong than it
seems, since R can be changed at any moment to simulate the unavailability of some
rules (rule EXT-UPDATE). Furthermore, allowing adaptation to be skipped even if an
applicable rule exists would not change our results, provided that the corresponding
change is made also to the APOC semantics.

Let us consider the rules to lift the transitions of AIOC processes to AIOC systems.
Rule EXEC deals with most of the actions, and it checks the assumption A before re-
moving it from the label. Rule EXEC-TICK deals with

√
. Rule EXEC-ASSIGN deals

with the label generated by assignments. Beyond checking the assumption on the state,
it updates the state by assigning the computed value v to the desired variable x of role
r. Then, the label becomes τ . Rule EXT-UPDATE is not used for lifting actions of the
process level, but it specifies that the environment E and the set of rules R may arbi-
trarily change at any time, since they are not under the control of the system. Notably,
the new environment E′ and the new set of rules R′ are visible in the label. This allows
us to ensure that the changes to the environment and to the set of rules are applied at
the same time both in the AIOC and in the APOC. More fine grained ways of changing
the environment and the set of rules, e.g. removing or adding one rule or setting one
environment name, can be obtained as particular cases of this rule.

We define AIOC traces, where all the performed actions are observed, and weak
AIOC traces, where interactions on private operations and silent actions are not visible.

Definition 4 (AIOC traces). A (strong) trace of an AIOC system 〈Σ1, E1,R1, I1〉 is a
sequence (finite or infinite) of labels µ1, µ2, . . . such that there is a sequence of AIOC
system transitions 〈Σ1, E1,R1, I1〉

µ1−→ 〈Σ2, E2,R2, I2〉
µ2−→

A weak trace of an AIOC system 〈Σ1, E1,R1, I1〉 is a sequence of labels µ1, µ2, . . .

9

obtained by removing all the labels corresponding to private communications, i.e. of
the form o∗ : a(v)→ b(x), and the silent labels τ from a trace of 〈Σ1, E1,R1, I1〉.

3 Adaptive Process-Oriented Choreography (APOC)

This section describes the syntax and operational semantics of APOCs. APOCs include
processes, ranged over by P , P ′, . . ., describing the behavior of participants. (P, Γ)r
denotes an APOC role named r, executing process P with a local state Γ . Networks,
ranged over by N , N ′, . . ., are parallel compositions of APOC roles with different
names. APOC systems, ranged over by S, are APOC networks equipped with an envi-
ronment E and a set of adaptation rules R, namely a triple 〈E,R,N〉.

P : : = o? : x from r | o? : e to r | o∗ : X to r | P ;P ′ | P | P ′ | x = e | 1 | 0 |
if b {P} else {P ′} | while b {P} | n : scope l@r {P} prop {∆} roles {S} |
n : scope l@r {P}

X : : = no | P N : : =(P, Γ)r | N ‖ N ′ S : : = 〈E,R,N〉

Processes include input action o? : x from r on a specific operation o? (either public or
private) of a message from role r to be stored in variable x, output action o? : e to r of
an expression e to be sent to role r, and higher-order output action o∗ : X to r of the
higher-order argument X to be sent to role r. Here X may be either an APOC process
P , which is the new code for a scope in r, or a flag no, notifying that no adaptation
is needed. P ;P ′ and P | P ′ denote the sequential and parallel composition of P and
P ′, respectively. Processes also feature assignment x = e of expression e to variable x,
the process 1 that can only successfully terminate, and the deadlocked process 0. We
also have conditionals if b {P} else {P ′} and cycles while b {P}. Finally, we have
two constructs for scopes. Scope n : scope l@r {P} prop {∆} roles {S} may occur
only inside role r, and acts as coordinator to perform (or not perform) adaptation. The
shorter version n : scope l@r {P} is enough when the role is not the coordinator for
this scope. In fact, only the coordinator needs to know the non-functional properties ∆
of the scope and the set S of involved roles. Note that scopes are prefixed by an index n:
the distributed execution of the corresponding AIOC constructs requires to coordinate
different roles, and unique indexes are needed to avoid interference between different
scopes in the same role with the same label.

3.1 Projection

Before defining the semantics of APOCs, we need to define the projection of an AIOC
process onto APOC processes. Indeed, this is needed to apply an adaptation rule at
the APOC level. The projection exploits some auxiliary communications to coordinate
the different roles, e.g., ensuring that in a conditional they all select the same branch.
To define these auxiliary communications and avoid interferences, it is convenient to
annotate AIOC main constructs with unique indexes.

Definition 5 (Well-annotated AIOC). Annotated AIOC processes are obtained by in-
dexing every interaction, assignment, scope, if and while in an AIOC process with a

10

π(1, s) = 1 π(0, s) = 0 π(I; I′, s) = π(I, s);π(I′, s) π(I ‖ I′, s) = π(I, s) | π(I′, s)

π(n : o? : r1(e)→ r1(x), s) =

 o? : e to r2 if s = r1
o? : x from r1 if s = r2
1 otherwise

π(n : x@r = e, s) =

{
x = e if s = r
1 otherwise

π(n : if b@r {I} else {I′}, s) =

when s = r :
if b {(Πr′∈roles(I)∪roles(I′)r{r}o∗n : true to r′);π(I, s)}
else {(Πr′∈roles(I)∪roles(I′)r{r}o∗n : false to r′);π(I′, s)}
when s ∈ roles(I) ∪ roles(I′) r {r} :
o∗n : xn from r; if xn {π(I, s)} else {π(I′, s)}
otherwise : 1

π(n : while b@r {I}, s) =

when s = r :
while b {(Πr′∈roles(I)r{r}o∗n : true to r′);π(I, s);
Πr′∈roles(I)r{r}o

∗
n : from r′};Πr′∈roles(I)r{r}o∗n : false to r′

when s ∈ roles(I) r {r} :
o∗n : xn from r; while xn {π(I, s); o∗n : ok to r; o∗n : xn from r}
otherwise : 1

π(n : scope l@r {I} prop {∆}, s) =

when s = r :
n : scope l@r {π(I, s)} prop {∆} roles {roles(I)}
when s ∈ roles(I) r {r} : n : scope l@r {π(I, s)}
otherwise : 1

Table 2. Process-projection function π.

natural number n ∈ N. This results in the following grammar:

I ::= n : o? : r1(e)→ r2(x) | I; I ′ | I|I ′ | n : x@r = e | n : while b@r {I} |
n : if b@r {I} else {I ′} | 1 | 0 | n : scope l@r {I} prop {∆}

An AIOC process is well-annotated if all its indexes are distinct.

We now define the process-projection function that derives APOC processes from AIOC
processes. If the AIOC process is not annotated, we add indexes to make it well-
annotated. Given an annotated AIOC process I and a role s, the projected APOC
process π(I, s) is defined by structural induction on I in Table 2. In most of the
cases the projection is trivial. For instance, the projection of an interaction is an out-
put on the sender role, an input on the receiver, and 1 on any other role. For a con-
ditional n : if b@r {I} else {I ′}, role r locally evaluates the condition and then
sends its value to the other roles using auxiliary communications. Similarly, in a cy-
cle n : while b@r {I} role r communicates the evaluation of the condition to the
other roles. Also, after a cycle has terminated it waits for the other roles to terminate,
and then starts a new cycle. In both the conditional and the cycle, indexes are used to
choose names for auxiliary operations: the choice is coherent among the different roles,
and interference between different cycles or conditionals is avoided.

In the companion technical report [10] one can find the APOC processes obtained
by projecting the AIOC for the Buying scenario on buyer, seller and bank.

11

(IN)

o? : x from r
o?(x←v)@r−−−−−−−→ x = v

(OUT)
[[e]]Γ = v

o? : e to r
Γ,o?〈v〉@r−−−−−−→ 1

(OUT-ADAPT)

o? : X to r
o?〈X〉@r−−−−−−→ 1

(ONE)

1
√
−→ 0

(ASSIGN)
[[e]]Γ = v

x = e
Γ,[v/x]−−−−→ 1

(SEQUENCE)

P
δ−→ P ′ δ 6=

√

P ;Q
δ−→ P ′;Q

(SEQ-END)

P
√
−→ P ′ Q

δ−→ Q′

P ;Q
δ−→ Q′

(PARALLEL)

P
δ−→ P ′ δ 6=

√

P | Q δ−→ P ′ | Q

(PAR-END)

P
√
−→ P ′ Q

√
−→ Q′

P | Q
√
−→ P ′ | Q′

(IF-THEN)
[[b]]Γ = true

if b {P} else {P ′} Γ,τ−−→ P

(IF-ELSE)
[[b]]Γ = false

if b {P} else {P ′} Γ,τ−−→ P ′

(WHILE-UNFOLD)
[[b]]Γ = true

while b {P} Γ,τ−−→ P ; k : while e {P}

(WHILE-EXIT)
[[b]]Γ = false

while b {P} Γ,τ−−→ 1
(LEAD-ADAPT)
rule l where C specifies I ∈ R Γ,E,∆ ` C I′ = freshIndex(I, n) roles(I) ⊆ S

n : scope l@r {P} prop {∆} roles {S} Γ,E,R,[l,C] 7→I−−−−−−−−−→
Πri∈S\{r}o

∗
l,n : π(I′, ri) to ri;π(I′, r);Πri∈S\{r}o

∗
l,n : from ri

(LEAD-NOADAPT)
∀ rule l where C specifies I ∈ R . Γ, E,∆ 6` C ∨ roles(I) 6⊆ S

n : scope l@r {P} prop {∆} roles {S} Γ,E,R,[no-adapt]−−−−−−−−−−−→
Πri∈S\{r}o

∗
l,n : no to ri;P ;Πri∈S\{r}o

∗
l,n : from ri

(ADAPT)

n : scope l@r {P}
o∗l,n(←P ′)@r
−−−−−−−−−→ P ′; o∗l,n : ok to r

(NOADAPT)

n : scope l@r {P}
o∗l,n(←no)@r
−−−−−−−−−→ P ; o∗l,n : ok to r

Table 3. APOC processes semantics.

We now define the projection proj(I, Σ) to derive an APOC network from an AIOC
process I and a global state Σ. The function proj is based on the process-projection π.
We denote with ‖i∈I Ni the parallel composition of networks Ni for each i ∈ I .

Definition 6 (Projection). The projection of an AIOC process I with global state Σ is
the APOC network defined by proj(I, Σ) =‖s∈roles(I) (π(I, s), Σs)s

3.2 APOC semantics

Definition 7 (APOC systems semantics). The semantics for of APOC systems is de-
fined as the smallest LTS closed under the rules in Tables 3 and 4. Symmetric rules for
parallel composition have been omitted.

Table 3 defines the transitions of APOC processes. As for the AIOCs, information
not available at process level is guessed, and checked when the desired level is reached.

12

Assumptions may include the local state Γ , the environment E and the set of rules
R (to check rule applicability), or the local state Γ only (to evaluate an expression).
Concerning actions, o?〈v〉@r defines the output from role r on operation o? of value v.
Label o?(x ← v)@r denotes the input on o? that receives value v from r and stores it
into variable x (the value v is guessed). Assignment label [v/x] traces the substitution
to be applied to the local state. Silent action τ is produced, e.g., by the evaluation of
a boolean expression. Label o?〈X〉@r denotes the higher-order output on operation o?

of X from role r. Here X is either a process P or a flag no. Label o∗l,k : X from r is
the corresponding input, waiting for a process P or a flag no on operation o∗l,k. Label
[l, C] 7→ I ′ denotes the application of the adaptation rule l where C specifies I ′. Label
[no-adapt] specifies that no adaptation is needed. Label

√
denotes termination. We

use δ to range over labels at the level of APOC processes, β at the level of APOC roles,
χ at the level of APOC networks, and χ and η at the level of APOC systems.

As for AIOCs, the rules dealing with standard computation should be clear from the
description of labels, and are described in the companion technical report [10]. Thus,
we concentrate here on the rules describing adaptation. Rule LEAD-ADAPT concerns
the role r coordinating the adaptation of a scope. Role r checks whether an applica-
ble rule exists, by evaluating the applicability condition and verifying that only roles
involved in the scope are needed. If adaptation is needed, r transforms the AIOC I
into I ′ using function freshIndex(I, n). This has a double aim. On the one hand, it
changes the indexes n of scopes into fresh indexes, to avoid clashes with indexes in the
target APOC. On the other hand, it renames all the operations by adding to them the
index n of the scope. We assume to this end to extend the set of operations, without
changing the semantics. We write the new operations as n · o?, where o? is an old one.
Note that complementary input and output are still complementary after the transfor-
mation. In case of adaptation, r generates the processes to be executed by the roles in S
using the process-projection function π. The processes are sent via higher-order com-
munications to the participants that should execute them. Then, r starts its own updated
code, i.e., π(I ′, r). Finally, auxiliary communications are used to synchronize the end
of the execution of the adapted process (here denotes an unused variable to store the
synchronization message ok). The auxiliary communications are needed to ensure that
the update is performed in a coordinated way, i.e. the roles agree on when the scope
is started and terminated, and on whether adaptation is performed or not. Rule LEAD-
NOADAPT instead defines the behavior of the coordinator role r when no adaptation
rule is applicable: in this case r sends a message containing a flag no to each other
involved role, notifying them that no adaptation has to be performed. End of scope
synchronization is as above. Rules ADAPT and NOADAPT define the behavior of adap-
tation scopes for the other roles. The scope waits for a message from the coordinator
role. If the message content is no, the current body of the scope is executed. If it is a
process P ′, P ′ itself is executed instead of the scope.

Then, in Table 4, we have the rules that lift the APOC process actions to APOC
roles, networks, and systems. Rule LIFT deals with τ labels and adaptation labels. The
guess on the local state Γ is checked, and Γ is removed from the label. Rule LIFT-
ASSIGN deals with assignment: the guess on Γ is checked, and the state is changed to
keep into account the performed assignment. The label becomes a τ . Rule LIFT-TICK
deals with termination. Rules LIFT-COMM and LIFT-OUT deal with input and output

13

APOC roles
(LIFT)

P
Γ,β−−→ P ′ β = τ ∨ β = E,R, [no-adapt] ∨ β = E,R, [l, C] 7→ I′

(P, Γ)r
β−→ (P ′, Γ)r

(LIFT-ASSIGN)

P
Γ,[v/x]−−−−→ P ′

(P, Γ)r
τ−→ (P ′, Γ [v/x])r

(LIFT-TICK)

P
√
−→ P ′

(P, Γ)r
√
−→ (P ′, Γ)r

(LIFT-OUT)

P
Γ,o?〈v〉@r1−−−−−−−→ P ′

(P, Γ)r2
β:r2−−−→ (P ′, Γ)r2

(LIFT-COMM)

P
β−→ P ′ β = o?(x← v)@r1 ∨ β = o∗l,k(← X)@r1 ∨ β = o?〈X〉@r1

(P, Γ)r2
β:r2−−−→ (P ′, Γ)r2

APOC networks
(SYNCH)

N o?〈v〉@r2:r1−−−−−−−−→ N ′ N ′′ o
?(x←v)@r1:r2−−−−−−−−−−→ N ′′′

N ‖ N ′′ o
?:r1(v)→r2(x)−−−−−−−−−−→ N ′ ‖ N ′′′

(EXT-PARALLEL)

N χ−→ N ′ χ 6=
√

N ‖ N ′′ χ−→ N ′ ‖ N ′′

(SYNCH-ADAPT)

N o?〈X〉@r2:r1−−−−−−−−→ N ′ N ′′ o
?(←X)@r1:r2−−−−−−−−−−→ N ′′′

N ‖ N ′′ o
?:r1(X)→r2()−−−−−−−−−−→ N ′ ‖ N ′′′

(EXT-PAR-END)

N
√
−→ N ′ N ′′

√
−→ N ′′′

N ‖ N ′′
√
−→ N ′ ‖ N ′′′

APOC systems
(EXEC)

N χ−→ N ′ χ ∈ {o? : r1(v)→ r2(x), o? : r1(X)→ r2(), τ,
√
}

〈E,R,N〉 χ−→ 〈E,R,N ′〉
(EXEC-ADAPT)

N E,R,η−−−−→ N ′ η = [l, C] 7→ I′ ∨ η = [no-adapt]

〈E,R,N〉 η−→ 〈E,R,N ′〉

(EXT-UPDATE)

〈E,R,N〉 E′,R′−−−−→ 〈E′,R′,N〉

Table 4. APOC semantics.

actions. The information on the participant doing the action is added to the label. Only
in rule LIFT-OUT the guess on the state has to be checked. At APOC networks level,
rule SYNCH synchronizes an output with the corresponding input, producing an inter-
action. Rule SYNCH-ADAPT is similar, but it deals with higher-order interactions. The
labels of these transitions store the information on the occurred communication: label
o? : r1(v)→ r2(x) denotes an interaction on operation o? from role r1 to role r2 where
the value v is sent by r1 and then stored by r2 in variable x. Label o? : r1(X)→ r2()
denotes a similar interaction, but concerning a higher-order value X . No receiver vari-
able is specified, since the received value becomes part of the code of the receiving
process. Rule EXT-PARALLEL allows a network inside a parallel composition to com-
pute. Rule EXT-PAR-END synchronizes the termination of parallel networks.

Transitions are lifted to APOC systems by rules EXEC and EXEC-ADAPT. In par-
ticular, rule EXEC-ADAPT checks the assumptions on the environment and on the set

14

of rules, and removes the corresponding information from the label. Notably, input and
output actions are not lifted: they are meant for internal communication, and are not
relevant when considering the whole system. Furthermore, there are no correspondent
labels in AIOCs. Finally, rule EXT-UPDATE allows the environment and the set of rules
to change arbitrarily.

Definition 8 (APOC traces). A (strong) trace of an APOC system 〈E1,R1,N1〉 is a
sequence (finite or infinite) of labels χ1, χ2, . . . such that there is a sequence of transi-
tions 〈E1,R1,N1〉

χ1−→ 〈E2,R2,N2〉
χ2−→

A weak trace of an APOC system 〈E1,R1,N1〉 is a sequence of labels χ1, χ2, . . . ob-
tained by removing all the labels corresponding to private communications, i.e. of the
form o∗ : a(v) → b(x) or o∗ : r1(X) → r2(), and the silent labels τ , from a trace of
〈E1,R1,N1〉. Furthermore, all the operations of the form n · o? are replaced by o?.

In the companion technical report [10] one can find a sample execution of the APOC
obtained by projecting the AIOC for the Buying scenario.

4 Correctness of the adaptation

In the previous sections we have presented AIOCs, APOCs, and described how to derive
an APOC from a given AIOC. This section presents the main technical result of the
paper, namely the correctness of the projection. Correctness here means that the weak
traces of the AIOC coincide with the weak traces of the projected APOC. Unfortunately,
this does not hold for arbitrary AIOCs, but only for AIOCs and adaptation rules which
are connected. We provide below a syntactic characterization of connectedness, and
we prove in Theorem 2 that projections of connected AIOCs, adapted using connected
AIOC rules, have the expected set of weak traces. To formally define the connectedness
conditions we introduce, in Table 5, the auxiliary functions transI and transF, that
given an AIOC process compute sets of pairs representing senders and receivers of
initial and final interactions. We represent one such pair as r1 → r2. Actions located
at r are represented as r → r. We also assume a function op that given an AIOC
process returns the set of signatures of its interactions, where the signature of interaction
o? : r1(e)→ r2(x) is o? : r1 → r2.

Definition 9 (Connectedness). An AIOC process I is connected if it satisfies:

connectedness for sequence: each sub term of the form I ′; I ′′ satisfies ∀r1 → r2 ∈
transF(I ′),∀s1 → s2 ∈ transI(I ′′) . {r1, r2} ∩ {s1, s2} 6= ∅;

connectedness for parallel: each sub term of the form I ′ ‖ I ′′ satisfies op(I ′) ∩
op(I ′′) = ∅.

If I is connected then rule l where C specifies I is a connected adaptation rule.

Intuitively, connectedness for sequence ensures that the APOC network obtained by
projecting a sequence I; I ′ executes first the actions in I, and then the ones in I ′.

Connectedness for parallel is needed to ensure that different interactions with the
same signature do not interfere (cfr. rule SYNCH in Table 4): we require that two such
interactions never occur in parallel AIOC processes.

Connectedness can be checked efficiently.

15

transI(o? : r1(e)→ r2(x)) = transF(o? : r1(e)→ r2(x)) = {r1 → r2}
transI(x@r = e) = transF(x@r = e) = {r → r}
transI(1) = transI(0) = transF(1) = transF(0) = ∅
transI(I ‖ I′) = transI(I) ∪ transI(I′) transF(I ‖ I′) = transF(I) ∪ transF(I′)

transI(I; I′) =

{
transI(I′) if transI(I) = ∅
transI(I) otherwise

transF(I; I′) =

{
transF(I) if transF(I′) = ∅
transF(I′) otherwise

transI(if b@r {I} else {I′}) = transI(while b@r {I}) = {r → r}

transF(if b@r {I} else {I′}) =

{
{r → r} if transF(I) ∪ transF(I′) = ∅
transF(I) ∪ transF(I′) otherwise

transF(while b@r {I}) =

{
{r → r} if transF(I) = ∅
transF(I) otherwise

transI(n : scope l@r {I} prop {∆}) = {r → r}

transF(n : scope l@r {I} prop {∆}) =

{
{r → r} if roles(I) ⊆ {r}⋃
r′∈roles(I)r{r}{r

′ → r} otherwise

Table 5. Auxiliary functions transI, transF.

Theorem 1 (Connectedness-check complexity). The connectedness of an AIOC pro-
cess I can be checked in time O(n2 log(n)), where n is the number of nodes in the
abstract syntax tree of I.

Proof. For reviewers’ convenience the proof is in the Appendix.

Definition 10 (Trace equivalence). An AIOC system 〈Σ,E,R, I〉 and an APOC sys-
tem 〈E,R,N〉 are (weak) trace equivalent iff their sets of (weak) traces coincide.

Theorem 2 (Correctness). For each initial, connected AIOC process I, each state Σ,
each environmentE, each set of initial, connected rules R, the AIOC system 〈Σ,E,R, I〉
and the APOC system 〈E,R,proj(I, Σ)〉 are weak trace equivalent if all the rules in
the sets of rules provided by the adaptation middleware are initial and connected.

Proof. For reviewers’ convenience the proof is in the Appendix.

Trace-based properties of the AIOC are inherited by the APOC. Examples include
deadlock-freedom and termination.

Definition 11 (Deadlock-freedom and termination). An internal AIOC (resp. APOC)
trace is obtained by removing transitions labeled E,R (for each E and R) from an
AIOC (resp. APOC) trace. An AIOC (resp. APOC) system is deadlock-free if all its
maximal finite internal traces have

√
as label of the last transition. An AIOC (resp.

APOC) system terminates if all its internal traces are finite.

By construction initial AIOCs are deadlock-free. Hence:

Corollary 1. For each initial, connected AIOC I, state Σ, set of adaptation rules R
and environment E, the APOC system 〈E,R,proj(I, Σ)〉 is deadlock-free.

APOCs inherit termination from terminating AIOCs. Note that for ensuring AIOC ter-
mination one should restrict the set of applicable adaptation rules.

16

Corollary 2. For each AIOC system 〈Σ,E,R, I〉 where I is connected, if the AIOC
system terminates then the APOC system 〈E,R,proj(I, Σ)〉 terminates.

Proof. It follows from the fact that only a finite number of auxiliary actions are added
when moving from AIOCs to APOCs.

5 Implementation

In order to validate our approach we implemented it, by combining and extending the
frameworks in [6, 16]. The implementation, called AIOCJ, is composed by:

– AIOCJ-ecl, an Eclipse [11] plug-in, allowing to edit AIOCs and adaptation rules, to
check connectedness, and to generate the code for each participant. In AIOCJ-ecl,
the AIOC description is extended with deployment information.

– AIOCJ-mid, a service-oriented adaptation middleware supporting the execution
and adaptation of applications generated by AIOCJ-ecl. AIOCJ-mid includes dis-
tributed adaptation servers, which can be activated and deactivated at run-time.
Furthermore, the set of rules of each adaptation server can be changed dynami-
cally. AIOCJ-mid also includes a service acting as environment.

AIOCJ-ecl is a Java application, based on Xtext [24]. The use of Xtext has two
main advantages. First, it provides for free features such as syntax highlighting and
code completion, helping the developer in writing AIOCs and adaptation rules. Sec-
ond, it generates an abstract syntax tree for AIOCs and adaptation rules, which we
used to check the connectedness and to generate the executable code corresponding to
the APOC level. The generated code is provided in Jolie [14, 19], a full-fledged, open
source, service-oriented language. We also used Jolie to implement the adaptation mid-
dleware. The use of Jolie has several advantages:

– Jolie constructs are similar to those of APOCs, thus allowing a straightforward
mapping from the APOC generated by the projection to the Jolie code. In particular,
Jolie features message-passing communication and a native parallel operator;

– Jolie supports some mechanisms, such as dynamic embedding, aggregation, and
redirection, suitable to implement APOC adaptation mechanisms and managing
the related communication patterns.

In principle, one could have implemented the APOC behavior and the adaptation mid-
dleware in more widely-used languages such as Java, Haskell, or C#, using reflection
(the possibility of examining and modifying at run-time the structure and behavior of a
program) to program adaptation mechanisms. However, for the kind of adaptation we
consider, using Jolie dynamic embedding, allowing a service to get new code and run
it as a sub-service, is simpler. Indeed, the projection generates a Jolie service for each
role. This service can be immediately deployed on the network. The execution of scopes
is delegated to sub-services. Adaptation is enacted by removing the current sub-service
and replacing it with a new one, obtained from the adaptation server. For simplicity, the
projection of the body of the rule on the different roles is pre-compiled when the code
for the rule is generated.

17

A main difficulty when implementing the APOC behavior concerns communica-
tions: indeed, Jolie provides asynchronous communications, while the APOC seman-
tics is synchronous. We solved this issue using a message handler implementing a syn-
chronous interaction as a request-response service invocation, namely a forward com-
munication followed by an acknowledgment notifying that the message has been re-
ceived by the target process. In the running application, each role and each scope inside
it feature their own message handler. However, a unique message handler for each role
is visible from the outside. This is done by using Jolie aggregation mechanism, which
allows a service to expose together the functionalities of two or more services. Messages
are then sent to the correct target by means of Jolie redirection, allowing to dynamically
find the target of a given message.

AIOCJ, including its documentation, the sources of the Buying scenario and the
related adaptation rules, and additional examples, is available on the web [1].

6 Related works and discussion

In this paper we presented an approach for rule-based adaptation of distributed applica-
tions. The distinctive trait of our approach is that the executable APOC is guaranteed to
behave well under all the run-time updates provided by all the possible sets of initial,
connected adaptation rules, for any environment condition. In particular, the APOC is
compliant with the AIOC specification and is deadlock free.

Our work is related to both works on choreographies/multiparty session types and
on adaptation. For this reason, we examined all the papers on session types considered
in [3] and all the papers on adaptation in [18], as well as many others. Nevertheless, for
space reasons, we discuss here only the works which are closest to ours.

Our approach differs from multiparty session types [5–7, 13] since our AIOC and
APOC languages provide executable code, not only types. Moreover, we are not aware
of any work on multiparty session types enabling adaptation. In this context, the works
closest to ours are [2], on dynamic software updates, and [9], on monitoring for self-
adaptive systems. However, in [2] dynamic software updates are simply applied on
demand, while here enactment of adaptation depends on the state of the environment
and of the running system. Furthermore, [2] targets concurrent systems which are not
distributed, thus it can rely on a global predicate on the structure of the system to ensure
that an update can be safely applied. In our case all initial, connected updates can be
safely applied, and local checks are used to understand whether they are beneficial or
not. Finally, the language in [2] is much more constrained than ours, e.g. requiring each
pair of participants to interact on a dedicated pair of channels, and assuming that all
the roles not involved in a choice behave the same in the two branches. The approach
in [9] is different too: it considers self-adaptive systems monitored by different global
descriptions. The description specifies also when the used monitor should change, and
the new monitor to be used is determined by an adaptation function. As a main differ-
ence, they have no notion of external adaptation middleware, and replace the whole type
of the system, not only part of it. Finally, their code does not change because processes
should be able to implement all the global descriptions since the very beginning.

The authors of [15] define rules for adapting the specification of the initial require-
ments for a choreography, thus keeping the requirements up-to-date in presence of run-

18

time changes. Our approach is in the opposite direction: we are not interested in up-
dating the system specification tracking system updates, but in specifying and ensuring
correctness of system adaptation itself.

Other formal approaches to adaptation represent choreographies as annotated finite
state automata. [21] uses choreographies to propagate protocol changes to the other
peers, while [23] presents a test to check whether a set of peers obtained from a chore-
ography can be reconfigured to match a second one. Differently from ours, these works
only provide change recommendations for adding and removing message sequences.

In [26], programs are represented by Finite Stare Machines and adaptation steps as
transitions among them. Modular model checking is used to verify properties specified
in Linear Temporal Logic, extended with an “adapt-operator” Our approach is differ-
ent, since we consider distributed applications, and we can ensure relevant correctness
properties (e.g., deadlock-freedom) by construction, without the need to use computa-
tionally heavy verification techniques.

Our work is quite different from most other approaches to adaptation, such as [4,
8, 12, 16, 20, 25], since they do not provide formal guarantees on the behavior of the
adapted system. Among them, one of the closest to ours is [16], which proposes a
rule-based adaptation in a style similar to ours. Indeed, [16] validates our architectural
approach, where code regions to be adapted are syntactically delimited, and the run-
ning system interacts with an adaptation middleware using adaptation rules to replace
those code regions at run-time. However, differently from ours, adaptable applications
in [16] are not distributed. Furthermore [16] does not provide guarantees on the (cor-
rect) behavior of the adapted system and has no concept corresponding to our AIOC
specification.

Our work is also related to distributed [20] and dynamic [25] Aspect-Oriented Pro-
gramming (AOP). Indeed, in [1] we show examples taken from them. In general, we
can deal with cross-cutting concerns like logging and authentication, typical of AOP,
viewing pointcuts as empty scopes and advices as adaptation rules. This allows us to
ensure deadlock freedom and similar properties which are not provided by AOP.

The approach presented in this paper can be refined in various directions, and we
plan to explore them in future work. A main trade-off in the technical development
concerns how to ensure that all the roles are aware of the evolution of the computation.
This can be done in three ways: using auxiliary communications generated either by the
projection (e.g., for if and while constructs) or by the semantics (e.g., for scopes), or
restricting the class of allowed AIOCs (as done for sequential composition using con-
nectedness for sequence). The last solution leaves more burden on the shoulders of the
programmer, but allows for optimizations on the number of auxiliary communications,
which is currently quite high. In this case, one can extend the techniques in [17] to trans-
form non-connected AIOCs into connected AIOCs to help the programmer, but this may
forbid some optimizations. Another aspect deserving more studies is the matching of
adaptation rules with scopes, which is now based only on labels. One can easily imag-
ine to use more refined techniques based on preconditions and postconditions specified
in a suitable assertion language, and even to exploit information provided by specific
ontologies in order to express more sophisticated matching policies.

19

References

1. http://www.cs.unibo.it/projects/jolie/aiocj.html.
2. G. Anderson and J. Rathke. Dynamic software update for message passing programs. In

APLAS, volume 7705 of LNCS, pages 207–222. Springer, 2012.
3. http://www.operationalsemantics.net/behaviouralwiki/doku.php?

id=wg1_2013_bibliography.
4. A. Bucchiarone, A. Marconi, M. Pistore, and H. Raik. Dynamic Adaptation of Fragment-

Based and Context-Aware Business Processes. In ICWS, pages 33–41. IEEE Press, 2012.
5. M. Carbone, K. Honda, and N. Yoshida. Structured communication-centered programming

for web services. ACM Trans. Program. Lang. Syst., 34(2):8, 2012.
6. M. Carbone and F. Montesi. Deadlock-Freedom-by-Design: Multiparty Asynchronous

Global Programming. In POPL, pages 263–274. ACM, 2013.
7. G. Castagna, M. Dezani-Ciancaglini, and L. Padovani. On global types and multi-party

session. Logical Methods in Computer Science, 8(1), 2012.
8. W.-K. Chen, M. A. Hiltunen, and R. D. Schlichting. Constructing Adaptive Software in

Distributed Systems. In ICDCS, volume 6084 of LNCS, pages 635–643. Springer, 2001.
9. M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Self-adaptive monitors for multiparty

sessions. Submitted.
10. M. Dalla Preda, I. Lanese, J. Mauro, M. Gabbrielli, and S. Giallorenzo. Safe run-time adap-

tation of distributed applications. http://www.cs.unibo.it/projects/jolie/
aioc.pdf.

11. http://www.eclipse.org/.
12. C. Ghezzi, M. Pradella, and G. Salvaneschi. An Evaluation of the Adaptation Capabilities in

Programming Languages. In SEAMS, pages 50–59. ACM, 2011.
13. K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types. In POPL,

pages 273–284. ACM Press, 2008.
14. http://www.jolie-lang.org/.
15. I. Jureta, S. Faulkner, and P. Thiran. Dynamic requirements specification for adaptable and

open service-oriented systems. In ICSOC, volume 4749 of LNCS, pages 270–282. Springer,
2007.

16. I. Lanese, A. Bucchiarone, and F. Montesi. A Framework for Rule-Based Dynamic Adapta-
tion. In TGC, volume 6084 of LNCS, pages 284–300. Springer, 2010.

17. I. Lanese, F. Montesi, and G. Zavattaro. Amending choreographies. In WWV, volume 123,
pages 34–48. EPTCS, 2013.

18. L. A. F. Leite et al. A systematic literature review of service choreography adaptation. Ser-
vice Oriented Computing and Applications, 2012.

19. F. Montesi, C. Guidi, and G. Zavattaro. Composing services with JOLIE. In Proc. of
ECOWS’07, pages 13–22. IEEE Press, 2007.

20. R. Pawlak et al. JAC: an aspect-based distributed dynamic framework. Softw., Pract. Exper.,
34(12):1119–1148, 2004.

21. S. Rinderle, A. Wombacher, and M. Reichert. Evolution of process choreographies in dychor.
In OTM Conferences (1), volume 4275 of LNCS, pages 273–290. Springer, 2006.

22. http://www.jboss.org/scribble.
23. A. Wombacher. Alignment of choreography changes in BPEL processes. In IEEE SCC,

pages 1–8. IEEE Press, 2009.
24. http://www.eclipse.org/Xtext/.
25. Z. Yang, B. H. C. Cheng, R. E. K. Stirewalt, J. Sowell, S. M. Sadjadi, and P. K. McKinley.

An aspect-oriented approach to dynamic adaptation. In WOSS, pages 85–92. ACM, 2002.
26. J. Zhang, H. Goldsby, and B. H. C. Cheng. Modular Verification of Dynamically Adaptive

Systems. In AOSD, pages 161–172. ACM, 2009.

20

A Proof of Theorem 1

In order to prove the bound on the complexity of the connectedness check we use the
lemma below, showing that the checks to verify the connectedness for sequence for a
single sequence operator can be performed in linear time on the size of the sets gener-
ated by transI and transF.

Lemma 1. Given S, S′ sets of multisets of two elements, checking if ∀s ∈ S . ∀s′ ∈
S′ . s ∩ s′ 6= ∅ can be done in O(n) steps, where n is the maximum of |S| and |S′|.

Proof. W.l.o.g. we can assume that |S| ≤ |S′|. If |S| ≤ 7 then the check can be per-
formed in O(n) by comparing all the elements in S with all the elements in S′. If
|S| > 7 then at least 4 distinct elements appear in the multisets in S since the maximum
number of multisets with cardinality 2 obtained by 3 distinct elements is 6. In this case
the following cases cover all the possibilities:

– there exist distinct elements a, b, c, d s.t. {a, b}, {a, c}, and {a, d} belong to S. In
this case for the check to succeed all the multisets in S′ must contain a, other-
wise the intersection of the multiset not containing a with one among the multi-
sets {a, b}, {a, c}, and {a, d} is empty. Similarly, since |S′| > 7, for the check to
succeed all the multisets in S must contain a. Hence, if {a, b}, {a, c}, and {a, d}
belong to S then the check succeeds iff a belongs to all the multisets in S and in
S′.

– there exist distinct elements a, b, c, d s.t. {a, b} and {c, d} belong to S. In this case
the check succeeds only if S′ is a subset of {{a, c}, {a, d}, {b, c}, {b, d}}. Since
|S′| > 7 the check can never succeed.

– there exist distinct elements a, b, c s.t. {a, a} and {b, c} belong to S. In this case the
check succeeds only if S′ is a subset of {{a, b}, {a, c}}. Since |S′| > 7 the check
can never succeed.

– there exist distinct elements a, b s.t. {a, a} and {b, b} belong to S. In this case the
check succeeds only if S′ is a subset of {{a, b}}. Since |S′| > 7 the check can
never succeed.

Summarizing, if |S| > 7 the check can succeed iff all the multisets in S and in S′ share
a common element. The existence of such an element can be verified in time O(n).

Theorem 1 (Connectedness-check complexity). The connectedness of an AIOC pro-
cess I can be checked in time O(n2 log(n)), where n is the number of nodes in the
abstract syntax tree of I.

Proof. To check the connectedness of I we first compute the values of the functions
transI, transF, and op for each node of the abstract syntax tree (AST). We then check
for each sequence operator whether connectedness for sequence holds and for each
parallel operator whether connectedness for parallel holds.

The functions transI and transF associate to each node a set of pairs of roles. As-
suming an implementation of the data set structure based on balanced trees (with point-
ers), transI and transF can be computed in constant time for interactions, assignments,
1, 0, and sequence constructs. For while and scope constructs computing transF(I ′)

21

requires the creation of balanced trees having an element for every role of I ′. Since the
roles are O(n), transF(I ′) can be computed in O(n log(n)). For parallel and if con-
structs a union of sets is needed. The union costs O(n log(n)) since each set generated
by transI and transF contains at maximum n elements.

The computation of op can be performed in O(1) except for the parallel, sequence,
and if operators, where the union of sets cost O(n log(n)). Since the AST contains n
nodes, the computation of the sets generated by transI, transF, and op can be per-
formed in O(n2 log(n)).

To check connectedness for sequence we have to verify that for each node I ′; I ′′ of
the AST we have that ∀r1 → r2 ∈ transF(I ′),∀s1 → s2 ∈ transI(I ′′) . {r1, r2} ∩
{s1, s2} 6= ∅. Since transF(I ′) and transI(I ′′) have O(n) elements, thanks to Lemma
1, checking if I ′; I ′′ is connected for sequence costs O(n). Since in the AST there are
less then n sequence operators, the check of the connectedness for sequence for the
entire AST costs O(n2).

To check connectedness for parallel we have to verify that for each node I ′ ‖ I ′′
of the AST we have that op(I ′) ∩ op(I ′′) = ∅. Since op(I ′) and op(I ′′) have O(n)
elements, checking if their intersection is empty costs O(n log(n)). Since in the AST
there are less then n parallel operators the check of the connectedness for parallel for
the entire AST costs O(n2 log(n)).

The complexity of checking the connectedness of the entire AST is therefore lim-
ited by the cost of computing functions transI, transF, and op, and of checking the
connectedness for parallel. All these activities have a complexity of O(n2 log(n)).

B Proof of Theorem 2

This section contains the proof of our main result, Theorem 2, including various auxil-
iary definitions and lemmas.

The proof strategy consists in defining a notion of bisimilarity (Definition 22) which
implies weak trace equivalence (Lemma 9) and then providing a suitable bisimulation
relating each well-annotated connected AIOC system with its projection. The proof that
this relation is indeed a bisimulation relies on the fact that the events in the AIOC (Def-
inition 14) and in the APOC (Definition 17) are related (Lemma 2).

Observe that annotated AIOCs trivially inherit the semantics of AIOCs, since in-
dexes are just decorations, with no effect on the behavior. Moreover, when applying
rule l where C specifies I one has to ensure that I is annotated with indexes never used
before in the process.

Definition 12 (Events). We use ε to range over events, and we write [ε]r to highlight
that event ε is performed by role r. An annotated AIOC I contains the following events:

Communication events: a sending event n : o?@r2 in role r1 and a receiving event
n : o?@r1 in role r2 for each interaction n : o? : r1(e) → r2(x); we also denote the
sending event as fn or [fn]r1 and the receiving event as tn or [tn]r2 ;

Assignment events: an assignment event εn in role r for each assignment n :
x@r = e;

22

Scope events: a scope initialization event ↑l,n and a scope termination event ↓l,n
for each scope n : scope l@r {I} prop {∆}. Both these events belong to all the roles
in roles(I);

If events: a guard if-event εn in role r for each construct n : if b@r {I} else {I ′};
While events: a guard while-event εn in role r for each construct n : while b@r {I}.
A sending and a receiving event with the same index n are called matching events.

We denote with ε̄ an event matching event ε.

Let Events(I) denote the set of events of the annotated AIOC I.

Definition 13 (Global index). Given an annotated AIOC process I, or an annotated
APOC network N (defined later on), for each annotated construct with index n we
define its global index ξ as follows:

– if the construct is not in the body of a while then ξ = n;
– if the innermost while construct that contains the considered construct has global

index ξ′ then the considered construct has global index ξ = ξ′ : n;

Definition 14 (AIOC dynamic events). Let DEvents(I) denote the set of dynamic
events of I. Given an annotated AIOC I, the set DEvents(I) is computed as in Defini-
tion 12 where global indexes replace indexes.

In the following, we will refer to elements in DEvents(I) simply as events. No mis-
understanding may occur since from now on when considering AIOC we always speak
about dynamic events.

The relation below roughly considers as events the actions in the AIOC, and defines
a causality relation accordingly.

Definition 15 (AIOC Causality relation). Let us consider an annotated AIOC I. A
causality relation ≤AIOC ⊆ DEvents(I) × DEvents(I) is a partial order among
events in I. We define ≤AIOC as the minimum partial order satisfying:

Sequentiality: Let I ′; I ′′ be a sub term of AIOC I. If ε′ is an event in I ′ and ε′′ is
an event in I ′′, then ε′ ≤AIOC ε′′.

Scope: Let n : scope l@r {I ′} prop {∆} be a sub term of AIOC I. If ε′ is an event
in I ′ then ↑l,ξ≤AIOC ε′ ≤AIOC↓l,ξ.

Synchronization: For each interaction the sending event precedes the receiving
event.

If: Let n : if b@r {I} else {I ′} be a sub term of AIOC I, let εn be the guard
if-event in role r, then for every event ε in I and for every event ε′ in I ′ we have
εn ≤AIOC ε and εn ≤AIOC ε′.

While: Let n : while b@r {I} be a sub term of AIOC I, let εn be the guard
while-event in role r, then for every event ε in I ′ we have εn ≤AIOC ε.

We now introduce some auxiliary definitions to reason on APOC networks.

Definition 16 (Annotated APOC). Annotated APOC networks are derived by a gram-
mar obtained by adding unique indexes n ∈ N also to communications, assignments,

23

while and if constructs; thus obtaining the following grammar:

P : : = n : o? : x from r | n : o? : e to r | n : o∗ : X to r |
P ;P ′ | P | P ′ | n : x = e | 1 | 0 |
n : if b {P} else {P ′} | n : while b {P} |
n : scope l@r {P} prop {∆} roles {S} |
n : scope l@r {P}

X : : = no | P
N : : = (P, Γ)r | N ‖ N ′

Annotated APOCs trivially inherit the semantics of APOCs, since indexes are just dec-
orations, with no effect on the behavior. However, one has to clarify how indexes are
generated for newly introduced processes. When applying rule l where C specifies I,
one has to generate indexes for constructs in the projection of I which are distinct, and
not used in the target system. Similarly, one should assign to the auxiliary communi-
cations introduced by rules LEAD-ADAPT and LEAD-NOADAPT indexes never used
elsewhere. Rule ADAPT instead should use the index of the corresponding communi-
cation introduced by rule LEAD-ADAPT. Note that the unfolding of the while leaves
the indexes unchanged. This explains the use of global indexes: after the unfolding in-
dexes are not unique any more, while global indexes are. Also, one can easily extend the
projection to a function from annotated AIOC processes to annotated APOC networks,
requiring that the input and output actions obtained by projecting interaction with index
n have both index n.

Definition 17 (APOC events). An annotated APOC networkN contains the following
events:

Communication events: a sending event ξ : o?@r2 in role r1 for each output n : o? :
e to r2 with global index ξ in role r1; and a receiving event ξ : o?@r1 in role r2 for
each input n : o? : e from r1 with global index ξ in role r2; we will also denote the
sending event as fξ or [fξ]r1 ; and the receiving event as tξ or [tξ]r2 .

Assignment events: an assignment event εξ in role r for each assignment n : x@r = e
with global index ξ;

Scope events: a scope initialization event ↑l,ξ and a scope termination event ↓l,ξ for
each n : scope l@r {P} prop {∆} roles {S} or n : scope l@r {P} with global
index ξ. Scope events with the same name coincide, and thus may belong to different
roles;

If events: a guard if-event εξ in role r for each construct n : if b@r {P} else {P ′}
with global index ξ;

While events: a guard while-event εξ in role r for each construct n : while b@r {P}
with global index ξ.

We denote with Events(N) the set of events of the networkN . A sending and a receiv-
ing event with the same global index ξ are called matching events. We denote with ε̄ an
event matching event ε. A communication event is either a sending event or a receiving
event. A communication event is unmatched if there is no event matching it.

24

Definition 18 (APOC causality relation). Let us consider an annotated APOC net-
work N . A causality relation ≤APOC ⊆ Events(N) × Events(N) is a partial order
among events in N . We define ≤ as the minimum partial order satisfying:

Sequentiality: Let P ′;P ′′ be a sub term of APOC network N . If ε′ is an event in
P ′ and ε′′ is an event in P ′′, both in the same role r, then ε′ ≤APOC ε′′.

Scope-coordinator: Let n : scope l@r {P} prop {∆} roles {S} be a sub term
of APOC N in role r with global index ξ. If ε′ is an event in P then ↑l,ξ≤APOC

ε′ ≤APOC↓l,ξ.
Scope-simple: Let n : scope l@r {P} be a sub term of APOC N in role r′ with

global index ξ. If ε′ is an event in P then ↑l,ξ≤APOC ε′ ≤APOC↓l,ξ.
Synchronization: For each pair of events ε and ε′, ε ≤ ε′ implies ε̄ ≤APOC ε′.
If: Let n : if b {P} else {P ′} be a sub term of APOC network N with global index

ξ, let εξ be the guard if-event in role r, then for every event ε in P and for every event
ε′ in P ′ we have εξ ≤APOC ε and εξ ≤APOC ε′.

While: Let n : while b {P} be a sub term of APOC networkN with global index ξ,
let εξ be the guard while-event in role r, then for every event ε in P we have εξ ≤APOC

ε.

Lemma 2. Given an AIOC process I, for each state Σ the APOC network proj(I, Σ)
obtained by projecting it is such that:

1. DEvents(I) ⊆ Events(proj(I, Σ));
2. ε1 ≤AIOC ε2 ⇒ ε1 ≤APOC ε2 ∨ ε1 ≤APOC ε̄2

Proof. 1. By definition of projection.
2. Let ε1 ≤AIOC ε2 then:

Sequentiality: Consider I = I ′; I ′′. If events are in the same role the implication
follows from the sequentiality of the ≤APOC .
Let us show that there exist an event ε′′ in an initial interaction of I ′′ such
that either ε′′ ≤APOC ε2 or ε′′ ≤APOC ε̄2. The proof is by induction on
the structure of I ′′. The only difficult case is sequential composition. Suppose
I ′′ = I1; I2. If ε2 ∈ DEvents(I1) the thesis follows from inductive hypothe-
sis. If ε2 ∈ DEvents(I2) then by induction there exists an event ε3 in an initial
interaction of I2 s.t. ε3 ≤APOC ε2 or ε3 ≤APOC ε̄2. By synchronization (Def-
inition 18) we have that ε̄3 ≤APOC ε2 or ε̄3 ≤APOC ε̄2. By connectedness
for sequence we have that ε3 or ε̄3 are in the same role of en event ε4 in I ′.
By sequentiality (Definition 18) we have that ε4 ≤APOC ε3 or ε4 ≤APOC ε̄3.
By synchronization we have that ε̄4 ≤APOC ε3 or ε̄4 ≤APOC ε̄3. The thesis
follows from the inductive hypothesis on ε4 and by transitivity of ≤APOC .
Let us also show that there exists a final event ε′′′ ∈ DEvents(I ′) such that
ε1 ≤APOC ε′′′ or ε1 ≤APOC ε̄′′′. The proof is by induction on the structure
of I ′. The only difficult case is sequential composition. Suppose I ′ = I1; I2
If ε1 ∈ DEvents(I2) the thesis follows from inductive hypothesis. If ε1 ∈
DEvents(I1) then the proof is similar to the one above, finding a final event in
I1 and applying sequentiality, synchronization, and transitivity.
The thesis follows from the two results above again by sequentiality, synchro-
nization, and transitivity.

25

Scope: it means that either (1) ε1 =↑l,n and ε2 is an event in the scope or (2)
ε1 =↑l,n and ε2 =↓l,n, or (3) ε1 is an event in the scope and ε2 =↓l,n. We
consider the first case since the third one is analogous and the second one fol-
lows by transitivity. If ε2 is in the coordinator then the thesis follows easily.
Otherwise it follows thanks to the auxiliary synchronizations with a reasoning
similar to the one for sequentiality.

Synchronization: it means that ε1 is a sending event and ε2 is the corresponding
receiving event, namely ε1 = ε2 . Thus, since ε2 ≤APOC ε2 then ε2 ≤APOC

ε2.
If: it means that ε1 is the evaluation of the guard and ε2 is in one of the two

branches. Thus, if ε2 is in the coordinator then the thesis follows easily. Other-
wise it follows thanks to the auxiliary synchronizations with a reasoning similar
to the one for sequentiality.

While: it means that ε1 is the evaluation of the guard and ε2 is in the body of the
while. Thus, if ε2 is in the coordinator then the thesis follows easily. Otherwise
it follows thanks to the auxiliary synchronizations with a reasoning similar to
the one for sequentiality.

Definition 19 (Conflicting events). Given an AIOC process I we say that two events
e, e′ ∈ DEvents(I) are conflicting if they belong to different branches of the same
if construct, i.e. there exists a subprocess if b {I ′} else {I ′′} of I such that e ∈
DEvents(I ′) ∧ e′ ∈ DEvents(I ′′) or e′ ∈ DEvents(I ′) ∧ e ∈ DEvents(I ′′).

Similarly, given an APOC networkN , we say that two events e, e′ ∈ Events(N) are
conflicting if they belong to different branches of the same if construct, i.e. there exists
a subprocess if b {P} else {P ′} of N such that e ∈ Events(P) ∧ e′ ∈ Events(P ′) or
e′ ∈ Events(P) ∧ e ∈ Events(P ′).

Definition 20 (Well-annotated APOC). An annotated APOC networkN is well-anno-
tated for its causality relation ≤APOC if the following conditions hold:

C1 for each global index ξ there are at most two communication events with global
index ξ and, in this case, they are matching events;

C2 if ε1 ≤APOC ε2 then ε2 can become enabled only after ε1 has been executed or
discarded;

C3 for each pair of non-conflicting sending events [fξ]r and [fξ′]r on the same oper-
ation o? with the same target s such that ξ 6= ξ′ we have [fξ]r ≤APOC [fξ′]r or
[fξ′]r ≤APOC [fξ]r;

C4 for each pair of non-conflicting receiving events [tξ]s and [tξ′]s on the same op-
eration o? with the same sender r such that ξ 6= ξ′ we have [tξ]s ≤ [tξ′]s or
[tξ′]s ≤ [tξ]s;

C5 if ε is an event inside a scope with name l and global index ξ then its matching
event ε (if it exists) is inside a scope with the same name and global index.

C6 if two events have the same index but different global indexes then one of them
is inside a while with global index ξ1, let us call it ε1, and the other, ε2, is not.
Furthermore, ε2 ≤APOC εξ1 where εξ1 is the guarding while-event of the while
with global index ξ1.

26

Adaptation, conditional choice and iteration at the AIOC level happen in one step,
while they correspond to many steps of the projected APOC. Thus, we define the func-
tion upd that bridges this gap. Function upd applies the missing APOC steps to com-
plete already started AIOC actions.

Definition 21 (upd function). Let N be an annotated APOC. The upd function is
defined as the composition of a function prop that propagates decisions from the co-
ordinator to other roles, and of a function sim that eliminates all the auxiliary closing
communications. Thus, upd(N) = sim(prop(N)). More specifically, prop(N) is ob-
tained from N by repeating the following operation while possible:

1. for each n : o∗m : true to r′ enabled, replace every o∗n : xn from r; while xn {P ; o∗n :
ok to r; o∗n : xn from r} not inside another while construct, withP ; o∗n : ok to r; o∗n :
xn from r; while xn {P ; o∗n : ok to r; o∗n : xn from r}; and replace n : o∗m :
true to r′ with 1.

2. for each n : o∗m : false to r′ enabled, replace every o∗ : xm from r; while xm {P ; o∗n :
ok to r; o∗ : xm from r} not inside another while construct, with 1; and replace
n : o∗m : false to r′ with 1.

3. for each while xm {P ; o∗n : ok to r; o∗ : xm from r} enabled not inside another
while construct, such that xm evaluates to true in the local state, replace it with
P ; o∗n : ok to r; o∗n : xn from r; while xn {P ; o∗n : ok to r; o∗n : xn from r}.

4. for each while xm {P ; o∗n : ok to r; o∗ : xm from r} enabled not inside another
while construct, such that xm evaluates to false in the local state, replace it with
1.

5. for each n : o∗m : true to r′ enabled, replace every o∗m : xm from r;m :
if xm {P ′} else {P ′′} not inside a while construct, with P ′; and replace n :
o∗m : true to r′ with 1.

6. for each n : o∗m : false to r′ enabled, replace every o∗m : xm from r;m :
if xm {P ′} else {P ′′} not inside a while construct, with P ′′; and replace n :
o∗m : false to r′ with 1.

7. for each m : if xm {P ′} else {P ′′} enabled such that xm evaluates to true in the
local state, replace it with P ′.

8. for each m : if xm {P ′} else {P ′′} enabled such that xm evaluates to false in
the local state, replace it with P ′′.

9. for each n : o∗l,m : P to s enabled, replace every m : scope l@r {P ′} in role s not
inside a while construct, with P , and replace n : o∗l,m : P to s with 1.

10. for each n : o∗l,m : no to s enabled, replace every m : scope l@r {P ′} in the role
s not inside a while construct, with P ′ and replace n : o∗l,m : P to s with 1.

sim(N) is obtained from N by repeating the following operation while possible:

– replace each n : o∗n : ok to r, n : o∗l,m : ok to r, n : o∗n : from r or
n : o∗l,m : from r not inside a while construct with 1.

– replace each operation occurrence of the form n · o? with o?.

Furthermore sim may apply 0 or more times the following operation:

– replace a sub term 1;P by P or a sub term 1 | P by P .

27

We denote with upd(N) the annotated APOC obtained from N .

The result below proves that in a well-annotated APOC only actions corresponding
to events minimal w.r.t. the causality relation ≤APOC may be enabled.

Lemma 3. If N is an APOC, ≤APOC its causality relation and ε is an event corre-
sponding to an action enabled in N then ε is minimal w.r.t. ≤APOC .

Proof. The proof is by contradiction. Suppose ε is enabled but not minimal, i.e. there
exists ε′ such that ε′ ≤APOC ε. If there is more than one such ε′ consider the one such
that the length of the derivation of ε′ ≤APOC ε is minimal. This derivation should have
length one, and following Definition 18 it may result from one of the following cases:

– Sequentiality: ε′ ≤APOC ε means that ε′ ∈ Events(P ′), ε ∈ Events(P ′′), and
P ′;P ′′ is a sub term of N . Because of the semantics of sequential composition ε
cannot be enabled.

– Scope: let n : scope l@r {P} prop {∆} roles {S} or n : scope l@r {P} be a
subprocess of N with global index ξ. We have the following cases:
• ε′ =↑l,ξ and ε ∈ Events(P), and this implies that ε cannot be enabled since

if ε′ is enabled then the rules ADAPT or NO-ADAPT for the evolution of the
scope have not been applied yet;

• ε′ =↑l,ξ and ε =↓l,ξ, and this implies that ε cannot be enabled since the scope
cannot be finalized before it has started;

• ε′ ∈ Events(P) and ε =↓l,ξ, this is impossible since if ε′ is enabled there
is no event ε because the events ↑l,ξ and ↓l,ξ disappear as soon as the rule
LEAD-ADAPT or LEAD-NOADAPT are performed.

– If: ε ≤APOC ε′ means that ε is the evaluation of the condition of the sub term
n : if xn {P ′} else {P ′′} and ε′ ∈ Events(P ′) ∪ Events(P ′′). Event ε′ cannot be
enabled because of the semantics of if.

– While: ε ≤APOC ε′ means that ε is the evaluation of the condition of the sub term
n : while xn {P} and ε′ ∈ Events(P). Event ε′ cannot be enabled because of the
semantics of while.

The following result shows that if an interaction is performed the two executed events
are matching events.

Lemma 4. If N is a well-annotated APOC and N o?:r1(v)→r2(x)−−−−−−−−−−→ N ′ then the two
executed events are matching events.

Proof. By definition of APOC semantics we have that the transitionN o?:r1(v)→r2(x)−−−−−−−−−−→
N ′ can be generated either by the SYNCH rule or by the SYNCH-ADAPT rule. In both
the cases we have that the two events are on the same operation and that r2 is the target
of the first event. Assume that they are not matching events. Then for the definition of
well-annotated APOC they are either conflicting or in the causality relation. In the first
case none of them can be enabled by Definition 18 since they are inside an if construct.
In the second case thanks to Lemma 3, at least one of them cannot be enabled since it
is not minimal. This is absurd, thus they have to be matching events.

28

We now prove that all the projections of connected well-annotated AIOCs are well-
annotated APOCs.

Lemma 5. Let I be a well-annotated connected AIOC process, and Σ a state. Then its
projection N = proj(I, Σ) is a well-annotated APOC network w.r.t. ≤APOC .

Proof. We have to prove that proj(I, Σ) satisfies the conditions of Definition 20 of
well-annotated APOC:

C1 For each global index ξ there are at most two communication events with global
index ξ and, in this case, they are matching events. The condition follows by the def-
inition of the projection function and the fact that, on projections of well-annotated
AIOCs, global indexes are in a bijection with indexes.

C2 If ε1 ≤APOC ε2 then ε2 can become enabled only after ε1 has been executed or
discarded. This condition follows from Lemma 3.

C3 For each pair of non-conflicting sending events [fξ]r and [fξ′]r on the same oper-
ation o? and with the same target such that ξ 6= ξ′ we have [fξ]r ≤APOC [fξ′]r or
[fξ′]r ≤APOC [fξ]r. Note that the two events are in the same role, thus w.l.o.g. we
can assume that they there exist two processes P, P ′ such that [fξ]r ∈ Events(P)
and [fξ′]r ∈ Events(P ′) and that one among P ;P ′, P |P ′, and if b {P} else {P ′}
is a subprocess of N .
Since I is connected for parallel, by Definition 9 and by definition of the projection
function the second case can never happen. Similarly, since the events are non-
conflicting by Definition 19 the third case can never happen. IfP ;P ′ is a subprocess
of N then by sequentiality (Definition 18) we have the thesis.

C4 Similar to the previous case.
C5 By definition of the projection function.
C6 Trivial, since by definition of well-annotated AIOC it never happens that there are

two events with the same index and different global indexes.

The next lemma shows that for every environment E and for every set of rules R
the APOC N and upd(N) have the same set of weak traces.

Lemma 6. Let N be an APOC. The following properties hold:

1. if upd(N)
α−→ N ′ thenN χ1−→ . . .

χk−−→ α−→ N ′′ where χi ∈ {o∗ : r1(v)→ r2(x), τ}
and upd(N ′′) = upd(N ′).

2. ifN χ−→ N ′ for χ ∈ {o? : r1(v)→ r2(x);
√

;E,R, [l, C] 7→ I;E,R, [no-adapt],

τ}, then we have that one of the following holds: (A) upd(N)
χ−→ N ′′ such that

upd(N ′) = upd(N ′′), or (B) upd(N) = upd(N ′) and χ ∈ {o∗ : r1(v) →
r2(x), τ};

Proof. 1. The upd function corresponds to perform weak actions, namely actions
with labels in {o∗ : r1(v) → r2(x), τ}. N may perform the enabled weak ac-
tions that correspond to the application of upd reducing toN ′′′. Then, α is enabled
also in N ′′′ and we have N ′′′ α−→ N ′′. At this point we have that N ′′ and N ′ may
differ only for weak actions removed by upd.

29

2. Either the transition with label χ corresponds to one of the transitions executed
by function upd or not. In the first case statement (B) holds trivially. Otherwise
transition labeled by χ is still enabled in upd(N) and the thesis follows.

We now prove a few properties of transitions with label
√

.

Lemma 7. If I
√
−→ then, for each role s ∈ roles(I), π(I, s)

√
−→ and vice versa.

Proof. By structural induction on I.

The next lemma shows that if two matching events are enabled in the projection of
an AIOC, then the corresponding interaction is enabled in the AIOC.

Lemma 8. Let I be an AIOC derived from a well-annotated connected AIOC and n :
o? : r1(e) → r2(x) be an interaction in I. If n : o? : e to r1 and n : o? : x from r2
are matching events and are both enabled in proj(I, Σ) then n : o? : r1(e)→ r2(x) is
enabled.

Proof. If I is well-annotated and connected then the proof is by structural induction on
I. The cases for 1, 0, scopes if and while constructs are trivial. For parallel composition
just consider that since the two events have the same global index then they are from
the same component, and the thesis follows by inductive hypothesis. Let us consider
sequential composition. Suppose I = I ′; I ′′. If n : o? : r1(e) → r2(x) ∈ I ′ then
the thesis follows by inductive hypothesis. Otherwise by inductive hypothesis n : o? :
r1(e)→ r2(x) is enabled in I ′′. Thus, r1 → r2 ∈ transI(I ′′). From connectedness for
sequence ∀s1 → s2 ∈ transF(I ′) then {r1, r2} ∩ {s1, s2} 6= ∅. This is not possible
since otherwise at least one of the events n : o? : e to r1 and n : o? : x from r2 would

not be enabled. Thus, the only possibility is transF(I ′) = ∅. This implies that I ′
√
−→.

Thus, n : o? : r1(e)→ r2(x) is enabled in I.
If I is not well-annotated and connected, then note that the only reason why it may

be not well-annotated is that some auxiliary interactions are missing. However, this may
at most enable more interactions, thus the thesis follows.

Definition 22 (Weak System Bisimilarity). A weak system bisimulation is a relation
R between AIOC systems and APOC systems such that if (〈Σ,E,R, I〉 , 〈E′,R′,N〉) ∈
R then:

– if 〈Σ,E,R, I〉 α−→ 〈Σ′′, E′′,R′′, I ′′〉 then

〈E′,R′,N〉 α1−→ . . .
αk−−→ α′−→ 〈E′′′,R′′′,N ′′′〉with ∀i ∈ [1..k], αi ∈ {o∗ : r1(v)→

r2(x), τ} and (〈Σ′′, E′′,R′′, I ′′〉 , 〈E′′′,R′′′,N ′′′〉) ∈ R and α′ = α or α′ =
n · o? : r1(v)→ r2(x) and α = o? : r1(v)→ r2(x);

– if 〈E′,R′,N〉 α′−→ 〈E′′′,R′′′,N ′′′〉 then one of the following two holds:

• 〈Σ,E,R, I〉 α−→ 〈Σ′′, E′′,R, I ′′〉 , with α′ = α or α′ = n · o? : r1(v) →
r2(x) and α = o? : r1(v) → r2(x) and it holds that (〈Σ′′, E′′,R′′, I ′′〉 ,
〈E′′′,R′′′,N ′′′〉) ∈ R;

30

• α′ ∈ {o∗ : r1(v) → r2(x), o∗ : r1(X) → r2(), τ} and it holds that
(〈Σ,E,R, I〉 , 〈E′′′,R′′′,N ′′)〉 ∈ R

Weak system bisimilarity ∼ is the largest weak system bisimulation.

The following result states that weak system bisimilarity implies weak trace equiv-
alence.

Lemma 9. Let 〈Σ,E,R, I〉 be an AIOC system and 〈E′,R′,N〉 be an APOC sys-
tem. If 〈Σ,E,R, I〉∼ 〈E′,R′,N〉 then the AIOC system 〈Σ,E,R, I〉 and the APOC
system 〈E′,R′,N〉 are weak trace equivalent.

Proof. Easy, by coinduction.

We can now prove our main theorem that states that given a connected well-annota-
ted AIOC process and a state Σ the APOC network obtained by its projection behaves
as expected.

Theorem 2. For each initial, connected AIOC process I, each state Σ, each environ-
ment E, each set of initial, connected rules R the AIOC system 〈Σ,E,R, I〉 and the
APOC system 〈E,R,proj(I, Σ)〉 are weak trace equivalent, provided that all the rules
in the sets of rules generated by the external updates are initial and connected.

Proof. We have to prove that the relation R below is a weak system bisimulation.

R =

 (〈Σ,E,R, I〉 , 〈E,R,N〉)

∣∣∣∣∣∣
DEvents(I) ⊆ Events(prop(N)), upd(N) = proj(I, Σ)
∀ε1, ε2 ∈ DEvents(I).
ε1 ≤AIOC ε2 ⇒ ε1 ≤APOC ε2 ∨ ε1 ≤APOC ε̄2,

where I is derived from a well-annotated connected AIOC and upd(N) is a well-

annotated APOC.
Let us show that (〈Σ,E,R, I〉 , 〈E,R,proj(I, Σ)〉)) ∈ R. Note that for each I

we have upd(proj(I, Σ)) = proj(I, Σ). From Lemma 5 proj(I, Σ) is well annotated,
thus upd(proj(I, Σ)) is well annotated.

Observe that prop is the identity on proj(I, Σ), thus from Lemma 2 we have that
the conditions on the events are satisfied.

We proceed by proving that R is a weak system bisimulation that, from Lemma 9,
implies weak trace equivalence.

The proof is by structural induction on the AIOC I. All the sub terms of a connected
AIOC are connected, thus the induction can be performed. We consider both challenges
from the AIOC (→) and from the APOC (←).

To prove that R is a weak system bisimulation it is enough to prove that for each
(〈Σ,E,R, I〉 , 〈E,R,N〉) where N = proj(I, Σ) then:

– if 〈Σ,E,R, I〉 α−→ 〈Σ′′, E′′,R′′, I ′′〉 then 〈E,R,N〉 α′−→ 〈E′′′,R′′′,N ′′′〉 with
(〈Σ′′, E′′,R′′, I ′′〉 , 〈E′′′,R′′′,N ′′′〉) ∈ R and α′ = α or α′ = n · o? : r1(v) →
r2(x) and α = o? : r1(v)→ r2(x);

31

– if 〈E,R,N〉 α′−→ 〈E′′′,R′′′,N ′′′〉 then 〈Σ,E,R, I〉 α−→ 〈Σ′′, E′′,R, I ′′〉 and
(〈Σ′′, E′′,R′′, I ′′〉 , 〈E′′′,R′′′,N ′′′〉) ∈ R and α′ = α or α′ = n · o? : r1(v) →
r2(x) and α = o? : r1(v)→ r2(x).

In fact, considerN with upd(N) = proj(I, Σ). If 〈Σ,E,R, I〉 α−→ 〈Σ′′, E′′,R′′, I ′′〉,
then by hypothesis upd(N)

α−→ N ′′. The thesis follows from Lemma 6 (case one). If
instead 〈E,R,N〉 α−→ 〈E′′′,R′′′,N ′′′〉 then thanks to Lemma 6 we have one of the fol-
lowing: (A) upd(N)

χ−→ N ′′ such that upd(N ′′′) = upd(N ′′), or (B) upd(N) =
upd(N ′) and χ ∈ {o∗ : r1(v) → r2(x), o∗ : r1(X) → r2(), τ}. In case (A)
〈E,R,upd(N)〉 α−→ 〈E′′,R′′,N ′′〉. Then we have 〈Σ,E,R, I〉 α−→ 〈Σ′′, E′′,R′′, I ′′〉
and (〈Σ′′, E′′,R′′, I ′′〉 , 〈E′′,R′′,N ′′〉) ∈ R. The thesis follows since upd(N ′′′) =
upd(N ′′). In case (B) the step is matched by the AIOC by staying idle, following the
second option in the definition of weak system bisimilarity.

The case for label
√

follows from Lemma 7. The case for labels Σ,R is trivial.
Let us consider the other labels. For shortening the notation we consider only AIOC
processes and APOC networks, since they are responsible of most of the system actions.
Note, however, that the label for assignments in AIOC processes is [v/x, r], while the
label is τ in APOC networks. The mismatch is solved at the system level, where both
labels become τ .

Case 1, 0 and n : x@r = e: trivial;
Case n : o? : r1(e)→ r2(x): trivial, by noting that the possible mismatch on the name

of operations, namely between n · o? and o?, is solved by the Definition of weak
system bisimilarity.

Case I; I ′: from the definition of the projection function we have thatN =‖r∈roles(I;I′)
(π(I, r);π(I ′, r), Σr)r.
→ Suppose that I; I ′ α−→ I ′′ with α ∈ {o? : r1(v) → r2(x), E,R, [l, C] 7→
I, E,R, [no-adapt], [v/x, r], τ}. There are two possibilities: either I α−→
I ′′′ and I ′′ = I ′′′; I ′ or I

√
−→ and I ′ α−→ I ′′. In the first case by induc-

tive hypothesis ‖r∈roles(I) (π(I, r), Σr)r
α−→ N ′′′ and upd(N ′′′) =‖r∈roles(I)

(π(I ′′′, r), Σ′r)r. Thus ‖r∈roles(I) (π(I, r);π(I ′, r), Σr)r
α−→ N and we have

upd(N) =‖r∈roles(I) (π(I ′′′, r);π(I ′, r), Σ′r)r. If roles(I ′) ⊆ roles(I) then
the thesis follows. Otherwise roles in roles(I ′) \ roles(I) are unchanged. Note
however that the projection of I on these roles is a term composed only by 1s,
which can be removed by upd.

If I
√
−→ and I ′ α−→ I ′′ then by inductive hypothesis proj(I ′, Σ)

α−→ N ′′
with upd(N ′′) = proj(I ′′, Σ′). The thesis follows since thanks to Lemma 7
proj(I; I ′, Σ)

α−→ N and upd(N) = proj(I ′′, Σ′).
Note that in both the cases conditions on events follow by inductive hypothesis.

← Suppose that

N =‖r∈roles(I;I′) (π(I, r);π(I ′, r), Σr)r
α−→‖r∈roles(I;I′) (Pr, Σ

′
r)r

with α ∈ {o? : r1(v) → r2(x), E,R, [l, C] 7→ I, E,R, [no-adapt], τ}. We
have a case analysis on α.

32

If α = o? : r1(v) → r2(x) then π(I; I ′, r1)
Σr1

,o?〈v〉@r2−−−−−−−−−→ Pr1 and also

π(I; I ′, r2)
o?(x←v)@r1−−−−−−−−→ Pr2 . The two events should have the same global

index thanks to Lemma 4. Thus, they are either both from I or both from I ′.
In the first case we have also

‖r∈roles(I;I′) (π(I, r), Σr)r
o?:r1(v)→r2(x)−−−−−−−−−−→‖r∈roles(I;I′) (P ′′r , Σ

′
r)r

with Pr = P ′′r ;π(I ′, r). Thus, by inductive hypothesis, I Σ,o?:r1(v)→r2(x)−−−−−−−−−−−→ I ′′
and upd(‖r∈roles I;I′ (P ′′r , Σr)r) is the projection of I ′′ with state Σ. Hence,

we have that I; I ′ Σ,o
?:r1(v)→r2(x)−−−−−−−−−−−→ I ′′; I ′.

In the second case, thanks to Lemma 8, we have that the interaction is en-

abled. Thus, I
√
−→ and I ′ Σ,o?:r1(v)→r2(x)−−−−−−−−−−−→ I ′′. Thanks to Lemma 7 then we

have π(I, r1)
√
−→ and π(I, r2)

√
−→. Thus, we have π(I ′, r1)

Σr1
,o?〈v〉@r2−−−−−−−−−→

Pr1 , π(I ′, r2)
o?(x←v)@r1−−−−−−−−→ Pr2 and proj(I ′, Σ)

o?:r1(v)→r2(x)−−−−−−−−−−→‖r∈roles(I′)
(Pr, Σr)r. The thesis follows by inductive hypothesis.
For the other possibilities of α, only the process of one role changes. Thus, the
thesis follows by induction.
Note that in all the above cases, conditions on events follow by inductive hy-
pothesis.

Case I ‖ I ′: from the definition of the projection function we haveN =‖r∈roles(I;I′)
(π(I, r) | π(I ′, r), Σr)r.

→ If I ‖ I ′ can perform an interaction then one of its two components can perform
the same interaction and the thesis follows by inductive hypothesis. Additional
roles not occurring in the term performing the transition are dealt with by func-
tion upd.

← We have a case analysis on α. If α = o? : r1(v) → r2(x) then an input
and an output on the same operation are enabled. Thanks to Lemma 4 they
have the same global index. Thus they are from the same component and the
thesis follows by inductive hypothesis. For the other possibilities of α, only
the process of one role changes. The thesis follows by induction. In all the
cases, roles not occurring in the term performing the transition are dealt with
by function upd.

Case n : if b@r {I} else {I ′}: from the definition of projection

N =‖s∈roles(I)∪roles(I′)r{r} (o∗n : xn from r;

if xn {π(I, s)} else {π(I ′, s)}, Σs)s ‖
(if b {Πr′∈roles(I)∪roles(I′)r{r}o

∗
n : true to r′;π(I, r)}, Σr)r

Let us consider the case when the condition is true (the other one is analogous).

33

→ The only possible transition from the AIOC is n : if b@r {I} else {I ′} Σ,τ−−→ I .
The APOC can match this transition by reducing to

N ′ =‖s∈roles(I)∪roles(I′)r{r} (o∗n : xn from r;

if xn {π(I, s)} else {π(I ′, s)}, Σs)s ‖
(Πr′∈roles(I)∪roles(I′)r{r}o

∗
n : true to r′;π(I, r), Σr)r

By applying function upd we get

upd(N ′) =‖s∈roles(I)∪roles(I′)r{r} (π(I, s), Σs)s ‖ (π(I, r), Σr)r

Concerning events, at the AIOC level events corresponding to the guard and to
the non-chosen branch are removed. The same holds at the APOC level, thus
conditions on the remaining events are inherited. This concludes the proof.

← The only possible transition from the APOC is the evaluation of the guard from
the coordinator. This reduces N to N ′ above and the thesis follows from the
same reasoning.

Case n : while b@r {I}: from the definition of projection

N =‖s∈roles(I)r{r} (o∗ : xn from r;

while xn {π(I, s); o∗n : ok to r; o∗n : xn from r}, Σs)s ‖
(while b {Πr′∈roles(I)r{r}o∗n : true to r′;π(I, r);

Πr′∈roles(I)r{r}o
∗
n : from r′};
Πr′∈roles(I)r{r}o

∗
n : false to r′, Σr)r

→ Let us consider the case when the condition is true. The only possible transition

from the AIOC is n : while b@r {I} Σ,τ−−→ I;n : while b@r {I}. The APOC
can match this transition by reducing to

N ′ =‖s∈roles(I)r{r} (o∗ : xn from r;

while xn {π(I, s); o∗n : ok to r; o∗n : xn from r}, Σs)s ‖
(Πr′∈roles(I)r{r}o

∗
n : true to r′;π(I, r);

Πr′∈roles(I)r{r}o
∗
n : from r′;

while b {Πr′∈roles(I)r{r}o∗n : true to r′;π(I, r);
Πr′∈roles(I)r{r}o

∗
n : from r′};
Πr′∈roles(I)r{r}o

∗
n : false to r′, Σr)r

By applying function upd we get

upd(N ′) =‖s∈roles(I)r{r} (π(I, s); o∗n : xn from r;

while xn {π(I, s); o∗n : ok to r; o∗n : xn from r}, Σs)s ‖
(π(I, r); while b {Πr′∈roles(I)r{r}o∗n : true to r′;π(I, r);

Πr′∈roles(I)r{r}o
∗
n : from r′};
Πr′∈roles(I)r{r}o

∗
n : false to r′, Σr)r

34

which is exactly the projection of I;n : while b@r {I}.
As far as events are concerned, in prop(N ′) we have all the needed events
since, in particular, we have already done the unfolding of the while in all the
roles. Concerning the ordering, at the AIOC level, we have two kinds of rela-
tions: (1) events in the unfolded process precede the guard event; (2) the guard
event precedes the events in the body. The first kind of relations is matched at
the APOC level thanks to the auxiliary synchronizations that close the unfolded
body (which are not removed by prop) using synchronization and sequentiality.
The second kind of relations is matched thanks to the auxiliary synchroniza-
tions that start the following iteration using synchronization, sequentiality and
while.
The case when the condition evaluates to false is simpler.

← The only possible transition from the APOC is the evaluation of the guard from
the coordinator. This reduces N to N ′ above and the thesis follows from the
same reasoning.

Case n : scope l@r {I} prop {∆}: from the definition of the projection
N =‖s∈roles(I)∪{r} (π(n : scope l@r {I} prop {∆}, s), Σs)s.
→ The only possible transitions are obtained by applying rules LEAD-ADAPT or

LEAD-NOADAPT to the coordinator scope. Let us consider the first case.

‖s∈roles(I)∪{r} (π(n : scope l@r {I} prop {∆}, s), Σs)s
E,R,[l,C]7→I′−−−−−−−−→‖s∈roles(I)∪{r} (Ps, Σs)s = N ′

For the coordinator we have that Pr is:

Πri∈roles(I)r{r}

o∗l,n : π(freshIndex(I ′, n), ri) to ri;π(freshIndex(I ′, n), r);

Πri∈roles(I)r{r}o
∗
l,n : from ri

For other roles Pri = n : scope l@r {P}. By applying the upd function we
get:

upd(N ′) = π(freshIndex(I ′, n), r) ‖
‖ri∈roles(I)r{r} π(freshIndex(I ′, n), ri)

This is exactly the projection of the AIOC obtained after applying the rule
ADAPT. The conditions on events are inherited. Observe that the closing event
of the scope is replaced by events corresponding to the auxiliary interactions
closing the scope. This allows us to preserve the causality dependencies also
when the scope is inserted in a bigger context.
The case of rule LEAD-NOADAPT is simpler.

← The only possible transition from the APOC is the one of the coordinator of the
scope checking whether adaptation is needed. This reducesN toN ′ above and
the thesis follows from the same reasoning.

35

