
On the computational power of Brane Calculi ?

Nadia Busi and Roberto Gorrieri

Dipartimento di Scienze dell’Informazione, Università di Bologna,

Mura A. Zamboni 7, I-40127 Bologna, Italy.

E-mail: {busi,gorrieri}@cs.unibo.it

Abstract. Brane calculi are a family of biologically inspired process
calculi proposed in [3] for modeling the interactions of dynamically nested
membranes.
In [3] a basic calculus for membranes interactions – called Phago/Exo/Pino
– is proposed, whose primitives are inspired by endocytosis and exocyto-
sis. An alternative basic calculus – called Mate/Bud/Drip and inspired
by membrane fusion and fission – is also outlined and shown to be en-
codable in Phago/Exo/Pino in [3].
In this paper we investigate and compare the expressiveness of such two
calculi w.r.t. their ability to act as computational devices.
We show that (a fragment of) the Phago/Exo/Pino calculus is Turing
powerful, by providing an encoding of Random Access Machines.
On the other hand, we show the impossibility to define a “faithful” en-
coding of Random Access Machines in the Mate/Bud/Drip calculus, by
providing a proof of the decidability of the existence of a divergent com-
putation in Mate/Bud/Drip.

1 Introduction

Brane calculi [3] are a family of process calculi proposed for modeling the be-
havior of biological membranes. The formal investigation of biological mem-
branes has been initiated by G. Păun [13], in the field of automata and formal
language theory, with the definition of P systems. In a process algebraic set-
ting, the notions of membranes and compartments are explicitly represented in
BioAmbients [16], a variant of Mobile Ambients [5] based on a set of biologi-
cally inspired primitives of interaction. Brane calculi represent an evolution of
BioAmbients: the main difference w.r.t. previous approaches consists in the fact
that the active entities reside on membranes, and not inside membranes. In this
paper we are interested in two basic instances of brane calculi proposed in [3]:
the Phago/Exo/Pino (PEP) and the Mate/Bud/Drip (MBD) calculi.

The interaction primitives of PEP are inspired by endocytosis (the process of
incorporating external material into a cell by engulfing it with the cell membrane)
and exocytosis (the reverse process). A relevant feature of such primitives is
bitonality, a property ensuring that there will never be a mixing of what is inside a
? Revised and full version of the extended abstract in Proc. Workshop on Computa-

tional Methods in Systems Biology, Edinburgh, April 2005.

membrane with what is outside, although external entities can be brought inside
if safely wrapped by another membrane. As endocytosis can engulf an arbitrary
number of membranes, it turns out to be a rather uncontrollable process. Hence,
it is replaced by two simpler operations: phagocytosis, that is engulfing of just one
external membrane, and pinocytosis, that is engulfing zero external membranes.

The primitives of MBD are inspired by membrane fusion (mate) and fission
(mito). Because membrane fission is an uncontrollable process that can split
a membrane at an arbitrary place, it is replaced by two simpler operations:
budding, that is splitting off one internal membrane, and dripping, that consists
in splitting off zero internal membranes. An encoding of the MBD primitives in
PEP is provided in [3]. Cardelli also observed that the reverse encoding does not
exist, if the encoding must preserve the nesting structure of membranes. The
reason is that in MBD the maximum nesting level of membranes cannot grow
during the computation, while this property does not hold for PEP.

The aim of this work is to investigate the expressiveness of PEP and MBD
as computational devices. We show that a fragment of PEP, namely, the cal-
culus comprising only the phago and exo primitives, is Turing powerful. The
proof is carried out by showing how to encode a Random Access Machine [17],
a well known Turing powerful formalism. As a consequence, universal termina-
tion turns out to be undecidable on PEP. As far as MBD is concerned, we show
that universal termination is a decidable property. The proof of the decidabil-
ity of universal termination is based on the theory of well-structured transition
systems [8]. The decidability of universal termination for MBD provides an ex-
pressiveness gap between MBD and PEP, as Random Access Machines can be
encoded in the second calculus, but not in the first calculus. As a corollary, we
get the impossibility to provide an encoding of PEP in MBD that preserves
universal termination of systems.

The paper is organized as follows: in Section 2 we present the syntax and the
semantics of the two calculi; Section 3 contains the encoding of Random Access
Machines in PEP, while the decidability of universal termination for MBD is
presented in Section 4. Section 5 reports some conclusive remarks.

2 Brane Calculi: Syntax and Semantics

In this section we recall the syntax and the semantics of Brane Calculi [3].
A system consists of nested membranes, and a process is associated to each
membrane.

Definition 1. The set of systems is defined by the following grammar:

P,Q ::= � | P ◦Q | !P | σLP M

The set of brane processes is defined by the following grammar:

σ, τ ::= 0 | σ|τ | !σ | a.σ

Variables a, b range over actions, that will be detailed later.

The term � represents the empty system; the parallel composition operator on
systems is ◦. The replication operator ! denotes the parallel composition of an
unbounded number of instances of a system. The term σL P M denotes the brane
that performs process σ and contains system P .

The term 0 denotes the empty process, whereas | is the parallel composition
of processes; with !σ we denote the parallel composition of an unbounded number
of instances of process σ. Term a.σ is a guarded process: after performing the
action a, the process behaves as σ.

We adopt the following abbreviations: with a we denote a.0, with L P M we
denote 0L P M, and with σL M we denote σL � M.

The structural congruence relation on systems and processes is defined as
follows:1

Definition 2. The structural congruence ≡ is the least congruence relation sat-
isfying the following axioms:

P ◦Q ≡ Q ◦ P σ | τ ≡ τ | σ
P ◦ (Q ◦R) ≡ (P ◦Q) ◦R σ | (τ | ρ) ≡ (σ | τ) | ρ
P ◦ � ≡ P σ | 0 ≡ σ

!� ≡ � !0 ≡ 0
!(P ◦Q) ≡!P◦!Q !(σ | τ) ≡!σ | !τ
!!P ≡!P !!σ ≡!σ
P◦!P ≡!P σ | !σ ≡!σ

0L � M ≡ �

Definition 3. The basic reaction rules are the following:

(par)
P → Q

P ◦R → Q ◦R
(brane)

P → Q

σL P M → σL Q M

(strucong)
P ′ ≡ P P → Q Q ≡ Q′

P ′ → Q′

Rules (par) and (brane) are the contextual rules that respectively permit to
a system to execute also if it is in parallel with another process or if it is in-
side a membrane, respectively. Rule (strucong) ensures that two structurally
congruent systems have the same reactions.

With →∗ we denote the reflexive and transitive closure of a relation →.
Given a reduction relation →, we say that a system P has a divergent compu-
tation (or infinite computation) if there exists an infinite sequence of systems
P0, P1, . . . , Pi, . . . such that P = P0 and ∀i ≥ 0 : Pi → Pi+1. We say that a sys-
tem P universally terminates if it has no divergent computations. We say that
1 With abuse of notation we use ≡ to denote both structural congruence on systems

and structural congruence on processes.

P is deterministic iff for all P ′, P ′′: if P → P ′ and P → P ′′ then P ′ ≡ P ′′. We
say that P has a terminating computation (or a deadlock) if there exists Q such
that P →∗ Q and Q 6→. A system P satisfies the universal termination property
if P has no divergent computations. A system P satisfies the existential termi-
nation property if P has a deadlock. Note that the existential termination and
the universal termination properties are equivalent on deterministic systems.

The system P ′ is a derivative of the system P if P →∗ P ′; the set of deriva-
tives of a system P is denoted by Deriv(P).

We use
∏

(resp. ©) to denote the parallel composition of a set of processes
(resp. systems), i.e.,

∏
i∈{1,...,n} σi = σ1 | . . . | σn and ©i∈{1,...,n}Pi = P1 ◦

. . . ◦ Pn. Moreover,
∏

i∈∅ σi = 0 and ©i∈∅Pi = �.

2.1 The Phago/Exo/Pino Calculus (PEP)

The first calculus we investigate is proposed in [3], and it is inspired by endocyto-
sis/exocytosis. Endocytosis is the process of incorporating external material into
a cell by “engulfing” it with the cell membrane, while exocytosis is the reverse
process. As endocytosis can engulf an arbitrary amount of material, giving rise
to an uncontrollable process, in [3] two more basic operations are used: phago-
cytosis, engulfing just one external membrane, and pinocytosis, engulfing zero
external membranes.

Definition 4. Let Name be a denumerable set of ambient names, ranged over
by n, m, The set of actions of PEP is defined by the following grammar:

a ::= C←
n | C←⊥

n(σ) | C→
n | C→⊥

n | ©◦ (σ)

Action C←
n denotes phagocytosis; the co-action C←⊥

n is meant to synchronize with
C←
n; names n are used to pair-up related actions and co-actions. The co-phago

action is equipped with a process σ, this process will be associated to the new
membrane that engulfs the external membrane. Action C→

n denotes exocytosis,
and synchronizes with the co-action C→⊥

n . Exocytosis causes an irreversible mixing
of membranes. Action ©◦ denotes pinocytosis. The pino action is equipped with
a process σ: this process will be associated to the new membrane, that is created
inside the brane performing the pino action.

Definition 5. The reaction relation for PEP is the least relation containing the
following axioms, and satisfying the rules in Definition 3:

(phago) C←
n.σ|σ0L P M ◦ C←⊥

n(ρ).τ |τ0L Q M → τ |τ0L ρL σ|σ0L P M M ◦Q M

(exo) C→⊥
n .τ |τ0L C→

n.σ|σ0L P M ◦Q M → P ◦ σ|σ0|τ |τ0L Q M

(pino) ©◦ (ρ).σ|σ0LP M → σ|σ0L ρL M ◦ P M

2.2 The Mate/Bud/Drip Calculus (MBD)

The second calculus, also proposed in [3], is inspired by membrane fusion and
splitting. To make membrane splitting more controllable, in [3] two more basic
operations are used: budding, consisting in splitting off one internal membrane,
and dripping, consisting in splitting off zero internal membranes. Membrane
fusion, or merging, is called mating.

Definition 6. The set of actions of MBD is defined by the following grammar:

a ::= maten | mate⊥n | budn | bud⊥n(σ) | drip(σ)

Actions maten and mate⊥n will synchronize to obtain membrane fusion. Action
budn permits to split one internal membrane, and synchronizes with the co-
action bud⊥n . Action drip permits to split off zero internal membranes. Actions
bud⊥ and drip are equipped with a process σ, that will be associated to the new
membrane created by the brane performing the action.

Definition 7. The reaction relation for MBD is the least relation containing
the following axioms, and satisfying the rules in Definition 3:

(mate) maten.σ|σ0LP M ◦ mate⊥n .τ |τ0L Q M → σ|σ0|τ |τ0L P ◦Q M

(bud) bud⊥n(ρ).τ |τ0L budn.σ|σ0L P M ◦Q M → ρL σ|σ0L P M M ◦ τ |τ0L Q M

(drip) drip(ρ).σ|σ0LP M → ρL M ◦ σ|σ0L P M

In [3] it is shown that the operations of mating, budding and dripping can
be encoded in PEP.

3 PEP is Turing powerful

In this section we show that a fragment of PEP, namely, the calculus without
the pino action, is Turing powerful. The result is proved by showing how to
model Random Access Machines (RAMs) [17], a well known Turing powerful
formalism. A direct consequence of this result is the undecidability of universal
termination for PEP. We start by recalling what RAMs are.

3.1 Random Access Machines

RAMs are a computational model based on finite programs acting on a finite
set of registers. More precisely, a RAM R is composed of the registers r1, . . . , rn,
that can hold arbitrary large natural numbers, and by a sequence of indexed
instructions (1 : I1), . . . , (m : Im). In [12] it is shown that the following two
instructions are sufficient to model every recursive function:

– (i : Succ(rj)): adds 1 to the contents of register rj and goes to the next
instruction;

– (i : DecJump(rj , s)): if the contents of the register rj is not zero, then
decreases it by 1 and goes to the next instruction, otherwise jumps to the
instruction s.

The computation starts from the first instruction and it continues by execut-
ing the other instructions in sequence, unless a jump instruction is encountered.
The execution stops when an instruction number higher than the length of the
program is reached.

A state of a RAM is modelled by (i, c1, . . . , cn), where i is the program
counter indicating the next instruction to be executed, and c1, . . . , cn are the
current contents of the registers r1, . . . , rn, respectively. We use the notation
(i, c1, . . . , cn) →R (i′, c′1, . . . , c

′
n) to denote that the state of the RAM R changes

from (i, c1, . . . , cn) to (i′, c′1, . . . , c
′
n), as a consequence of the execution of the

i-th instruction.
A state (i, c1, . . . , cn) is terminated if the program counter i is strictly greater

than the number of instructions m. We say that a RAM R terminates if its
computation reaches a terminated state.

3.2 Modelling RAMs in PEP

In this section we show how to model RAMs in PEP. The modelling of RAMs
is based on an encoding function, which transforms instructions and registers
independently.

The basic idea for modelling the natural numbers contained in the registers
is the following: the natural number n is represented by the nesting of 2n + 1
branes. The increment is performed by producing a new membrane that performs
a phago on the representation of n, while a decrement is performed by execut-
ing an exo of the membrane representing n − 1, that lies inside the membrane
representing n.

Consider a RAM R with instructions (1 : I1), . . ., (m : Im) and registers r1,
. . ., rn; the encoding of an initial state (1, c1, . . . , cn) is defined as follows:

[[(1, c1, . . . , cn)]] = C←
p1L M◦! [[(1 : I1)]] ◦ . . . ◦ ! [[(m : Im)]] ◦

[[r1 = c1]] ◦ . . . ◦ [[rn = cn]] ◦ GARBL M

where
GARB =! C→⊥

exitpc | ! C←⊥
garbage(C→⊥

exitpc)

is the process on the garbage collector membrane.
The encoding of an initial state of the RAM is composed by the following

parts: C←
p1L M, representing the program counter, (an unbounded number of occur-

rences of) the encodings of each instruction, the encodings of the initial contents
of registers, and a garbage membrane used to collect no longer used membranes
and to inhibit their actions.

The presence of a “program counter” system C←
pi

L M denotes the fact that the
next instruction to be executed is Ii.

The encoding of register rj with content zero is

[[rj = 0]] = ZjL M

where
Zj =! C←

incj
| ! C←⊥

decreqj
(C→⊥

z). C→⊥
exitpc

If an increment operation on rj is executed, then – by action C←
incj – the

system [[rj = 0]] is engulfed in a new membrane, thus obtaining a representation
of [[rj = 1]].

If the membrane of system [[rj = 0]] is entered by a request for decrement or
jump – action C←⊥

decreqj
– the choice corresponding to the zero case is selected,

and the program counter corresponding to the jump is expelled by C→⊥
exitpc.

The encoding of register rj with content n + 1 is

[[rj = n + 1]] = SjL C→
exitregL [[rj = n]] M M

where
Sj =! C←

incj
| C←⊥

decreqj
(C→⊥

nz). C→⊥
exitreg.

C←
garbage. C→⊥

exitpc

The case of an increment operation is treated in the same way as in the
encoding of rj = 0.

If the membrane of system rj = n + 1 is entered by a request for decrement
or jump, then the choice corresponding to the non-zero case is selected by C→⊥

nz,
and the membrane representing rj = n is expelled by C→⊥

exitreg. At this point,
the no longer used external membrane of the system [[rj = n + 1]] is engulfed
by the garbage collector membrane, by C←

garbage. Finally, the program counter
corresponding to the next instruction is expelled by C→⊥

exitpc.
Note that it is necessary to engulf the external membrane of the system

[[rj = n + 1]] in the garbage collector, to inhibit the possibility for the process
! C←

incj
to capture a subsequent request for increment of register rj .

The encoding for the instruction (i : Ii) is as follows:

[[(i : Succ(rj))]] = C←⊥
pi

(0). C←⊥
incj

(C→
exitreg). C→⊥

exitpc.SjL C→
exitpcL C←

pi+1L MMM
[[(i : DecJump(rj , s))]] = C←⊥

pi
(0). C←

decreqj
.Ji+1,s

where

Jh,k = C→⊥
znzL C→

znzL C→
nz L C→

exitpcL C→
exitpcL C→

exitpcL C←
ph

L MMMMM ◦
C→
z L C→

exitpcL C←
pk

L MMM M M

The encoding of each instruction consists in a membrane, and the encoding
of a RAM contains an unbounded number of copies of the encoding of each
instruction.

When a program counter system C←
piL M appears at top-level, an (occurrence

of) instruction (i : Ii) is activated by engulfing the program counter.
If the i-th instruction is an increment of register rj , then the external mem-

brane of the encoding of such an instruction will become the new external mem-
brane of the encoding of the contents of register rj . To this aim, the external

membrane of [[(i : Succ(rj))]] engulfs the system [[rj = k]] – where k is the current
contents of rj – by C←⊥

incj
; [[rj = k]] is wrapped with a membrane decorated with

process C→
exitreg, that will permit to [[rj = k]] to be expelled when a decrement

operation will be performed on system [[rj = k + 1]]. At this point, the internal
program counter C←

pi+1L M is expelled to the top-level, by action C→⊥
exitpc, and the

process associated to the external brane will behave as Sj , i.e., the process on
the external brane of [[rj = k + 1]].

Suppose that the i-th instruction is a decrement of register rj , or jump to
instruction s if the contents of rj is zero.

If the contents of rj is not zero, e.g., rj = k + 1, then it is necessary to
remove the two outer membranes of [[rj = k + 1]], or, in other words, to permit
to [[rj = k]] to be expelled from the system [[rj = k + 1]]. Moreover, the program
counter C←

pi+1L M should be produced at top-level.
On the other hand, if the contents of rj is zero, the program counter C←

ps
L M

should be produced.
In both cases, the membrane representing the i-th instruction is engulfed by

the encoding of register rj , by performing action C←
decreqj

. The system engulfed by
the encoding of rj is Ji+1,s, and essentially permits to perform a choice between
the two program counters C←

pi+1L M and C←
psL M. After entering the encoding of rj ,

Ji+1,s evolves to C→
nzL C→

exitpcL C→
exitpcL C→

exitpcL C←
pi+1L MMMMM ◦ C→

zL C→
exitpcL C←

ps
L MMM.

If rj = 0, and hence the encoding of the i-th instruction has been engulfed by
[[rj = 0]], then Ji+1,s has been engulfed by an internal membrane with associated
process C→⊥

z , and only the program counter C←
psL M will be expelled. (The other

program counter will remain forever inside the system [[rj = 0]], surrounded by
a membrane with an associated empty process.)

On the other hand, if rj > 0, then Ji+1,s has been engulfed by an inter-
nal membrane with associated process C→⊥

nz, and only the the program counter
C←
pi+1L M will be expelled.

3.3 Correctness of the encoding

In this section we show that our encoding of RAMs preserves universal termi-
nation. In the previous section, we noted that during the computation some
innocuous garbage is created inside the garbage collector membrane and inside
the membrane of the system [[rj = 0]].

To show the correctness of the encoding we need to keep this additional
garbage systems into account; hence, we define the encoding [[[]]], mapping a
state of the RAM on a set of processes.

The set [[[rj = n]]] contains all the processes that are equal to the encoding
of registers, but for the presence of some innocuous garbage inside the inner
membrane.

Definition 8. Let R be a system.
We say that R ∈ [[[rj = 0]]] iff there exists I such that R ≡ ZjLGZIM

where GZI = ©i∈I0L C→
nzL C→

exitpcL C→
exitpcL C→

exitpcL C←
phi

L MMMMMM
and Zj =! C←

incj
| ! C←⊥

decreqj
(C→⊥

z). C→⊥
exitpc.

We say that R ∈ [[[rj = n + 1]]] iff there exists R′ ∈ [[[rj = n]]] such that
R ≡ SjL C→

exitregL R′M M
and Sj =! C←

incj | C←⊥
decreqj

(C→⊥
nz). C→⊥

exitreg.
C←
garbage. C→⊥

exitpc.

Given a state (i, c1, . . . , cn), with [[[(i, c1, . . . , cn)]]] we denote the set of pro-
cesses that are equal to process [[(i, c1, . . . , cn)]] but for the presence of some
innocuous garbage.

Definition 9. Let P be a system.
We say that P ∈ [[[(i, c1, . . . , cn)]]] iff there exist J,R1, . . . , Rn such that
Ri ∈ [[[ri = ci]]] for i = 1, . . . , n and
P ≡ C←

piL M◦! [[(1 : I1)]] ◦ . . . ◦ ! [[(m : Im)]] ◦
R1 ◦ . . . ◦ Rn ◦ GARBL GGJ M

where GGJ = ©j∈J0L! C←
incj

L C→
zL C→

exitpcL C←
pkj

L MMMMM.

As the encoding of the initial state of a RAM defined in the previous section
does not contain any garbage, it is easy to see that it belongs to the set [[[]]] of
encodings corresponding to the initial state:

Proposition 1. Let R be a RAM with program (1 : I1), . . . , (m : Im) and initial
state (1, c1, . . . , cn). Then [[(1, c1, . . . , cn)]] ∈ [[[(1, c1, . . . , cn)]]].

We show that a system belonging to the set of encodings of a RAM state is
able to mimic a computational step of the RAM by a (nonempty) sequence of
steps.

Lemma 1. Let R be a RAM with program (1 : I1), . . . , (m : Im) and ini-
tial state (1, c1, . . . , cn). Let (i, c1, . . . , cn) be a state of R. If (i, c1, . . . , cn) →R

(i′, c′1, . . . , c
′
n) then for all systems P ∈ [[[(i, c1, . . . , cn)]]] there exists

Q ∈ [[[(i′, c′1, . . . , c
′
n)]]] such that P →+ Q.

Proof. The proof is by case analysis. Four cases can happen:

1. the ith instruction is an increment on register rj and cj = 0;
2. the ith instruction is an increment on register rj and cj > 0;
3. the ith instruction is a decrement on register rj and cj = 0;
4. the ith instruction is a decrement on register rj and cj > 0.

We report only the first case.
Suppose that the ith instruction is an increment on rj and cj = 0.
Hence, i′ = i + 1, c′j = 1 and c′i = ci for i = 1, . . . , n and i 6= j.
As P ∈ [[[(i, c1, . . . , cn)]]], we have that exist J,R1, . . . , Rn such that

Ri ∈ [[[ri = ci]]] for i = 1, . . . , n and
P ≡ C←

pi
L M◦! [[(1 : I1)]] ◦ . . . ◦ ! [[(m : Im)]] ◦

R1 ◦ . . . ◦ Rn ◦ GARBL GGJ M
with GGJ = ©j∈J0L! C←

incj
L C→

zL C→
exitpcL C←

pkj
L MMMMM.

As the ith instruction is an increment on register rj , we have that
[[(i : Ii)]] = C←⊥

pi
(0). C←⊥

incj
(C→

exitreg). C→⊥
exitpc.SjL C→

exitpcL C←
pi+1MM.

Hence the program counter system C←
pi

L M is engulfed by [[(i : Ii)]]. Formally,
P → P1 where

P1 = C←⊥
incj

(C→
exitreg). C→⊥

exitpc.SjL C→
exitpcL C←

pi+1L MMM◦
! [[(1 : I1)]] ◦ . . . ◦ ! [[(m : Im)]] ◦
R1 ◦ . . . ◦ Rn ◦ GARBL GGJ M

.

As Rj ∈ [[[rj = cj]]], we have that there exists I such that Rj ≡ ZjLGZIM,
with GZI = ©i∈I0L C→

nzL C→
exitpcL C→

exitpcL C→
exitpcL C←

phi
L MMMMMM and

Zj =! C←
incj | ! C←⊥

decreqj
(C→⊥

z). C→⊥
exitpc.

By performing action C←⊥
incj

(C→
exitreg), the external membrane of the encoding

of the ith instruction engulfs system Rj . Formally, P1 → P2 with
P2 = C→⊥

exitpc.SjL C→
exitpcL C←

pi+1L MM ◦ C→
exitregLRjMM◦

! [[(1 : I1)]] ◦ . . . ◦ ! [[(m : Im)]] ◦
R1 ◦ . . . Rj−1 ◦ Rj+1 . . . ◦ Rn ◦ GARBL GGJ M

By performing C→⊥
exitpc, the new program counter C←

pi+1L M is expelled; hence
P2 → P3 with
P3 = C←

pi+1L M ◦ SjL C→
exitregLRjM M◦

! [[(1 : I1)]] ◦ . . . ◦ ! [[(m : Im)]] ◦
R1 ◦ . . . Rj−1 ◦ Rj+1 . . . ◦ Rn ◦ GARBL GGJ M

As Rj ∈ [[[rj = 0]]], we have that SjL C→
exitregLRjM M ∈ [[[rj = 1]]]; hence,

P3 ∈ [[[(i + 1, c1, . . . , cj−1, 1, cj+1, . . . , cn)]]].
Summing up, we have that

(i, c1, . . . , cj−1, 0, cj+1, . . . , cn) →R (i + 1, c1, . . . , cj−1, 1, cj+1, . . . , cn) and
P →+ P3 with P3 ∈ [[[(i + 1, c1, . . . , cj−1, 1, cj+1, . . . , cn)]]].

We show that a sufficiently long sequence of computational steps of a weak
encoding of a RAM state corresponds to one (or more) steps of the RAM.

Lemma 2. Let R be a RAM with program (1 : I1), . . . , (m : Im) and initial
state (1, c1, . . . , cn). Let (i, c1, . . . , cn) be a state of R and P ∈ [[[(i, c1, . . . , cn)]]].
If P → P1 → . . . → Pj → . . . then one of the following holds:

– the ith instruction is (i : Succ(rj)) and P3 ∈ [[[(i + 1, c1, . . . , cj + 1, . . . , cn)]]];
– the ith instruction is (i : DecJump(rj , s)), cj = 0 and P5 ∈ [[[(s, c1, . . . , cn)]]];
– the ith instruction is (i : DecJump(rj , s)), cj > 0 and

P9 ∈ [[[(i + 1, c1, . . . , cj − 1, . . . , cn)]]].

Proof. (Sketch) The proof is by case analysis.
It is easy to see that the systems contained in the garbage collector mem-

brane, as well as the systems in the membrane of the encoding of registers with
content zero, are innocuous and can perform no move.

Concerning the first two cases, the first three (resp. five) steps of computation
are univocally determined and lead to a system belonging to the set of encodings
of the next state of the RAM.

In the last case, some nondeterminism is introduced by the interleaving of
actions C→⊥

znz and C→⊥
nz – performed by the system encoding the DecJump instruc-

tion – with actions C→⊥
exitreg and C←

garbage – performed by the encoding of register
rj . Whatever execution order is chosen, after the execution of the four actions
mentioned above the reached system is the same.

We can now conclude with the Theorem which states that our modelling of
RAMs preserves universal termination.

Theorem 1. Let R be a RAM with program (1 : I1), . . . , (m : Im) and initial
state (1, c1, . . . , cn). Then we have that the RAM R terminates if and only if all
computations of the system [[(i, c1, . . . , cn)]] terminate.

An immediate consequence is the undecidability of universal termination:

Corollary 1. The universal termination property is undecidable for PEP sys-
tems.

The above theorem provides no information on the decidability of existential
termination: if the RAM does not terminate, we only deduce that there exists
at least one divergent computation starting from the encoding of the RAM.

A first possibility to prove the undecidability of existential termination con-
sists in showing that the encoding presented in this section is uniform w.r.t.
termination. A process P is uniform w.r.t. termination if the following property
holds: if P has a terminating computation, then all computations starting from
P terminate. An encoding satisfying this uniformity property provides a faithful
modeling of the behaviour of the RAM: if the RAM terminates (resp. diverges)
then all the computations of the encoding terminate (resp. diverge).

An alternative possibility consists in providing a deterministic encoding of
RAMs; as for deterministic systems existential and universal termination are
equivalent properties, the undecidability of existential termination directly fol-
lows from Corollary 1.

3.4 A deterministic encoding of RAMs

In this section we show how to obtain a deterministic encoding of RAMs by
a slight modification of the encoding presented in section 3.2. In the previous
encoding some nondeterminism is present in the execution of a decrement oper-
ation. After the membrane of the DecJump instruction entered the encoding of
the register to decrement, the action C→⊥

znz (performed by the encoding of the in-
struction) can be executed in parallel with actions C→⊥

exitreg and C←
garb (performed

by the encoding of register). Here we introduce a synchronization membrane that
forces a sequential execution of the two sequences of actions mentioned above.

Consider a RAM R with instructions (1 : I1), . . ., (m : Im) and registers r1,
. . ., rn; the encoding of an initial state (1, c1, . . . , cn) is defined as follows:

〈〈(1, c1, . . . , cn)〉〉 = C←
p1L M◦! 〈〈(1 : I1)〉〉 ◦ . . . ◦ ! 〈〈(m : Im)〉〉 ◦

〈〈r1 = c1〉〉 ◦ . . . ◦ 〈〈rn = cn〉〉 ◦ GARBL M

where GARB =! C→⊥
exitpc | ! C←⊥

garbage(C→⊥
exitpc) is the process on the garbage collector

membrane.
The encoding of register rj with content zero is 〈〈rj = 0〉〉 = ZjL M, where

Zj =! C←
incj

| ! C←⊥
decreqj

(C→⊥
z). C→⊥

exitpc.

The encoding of register rj with content n + 1 is

〈〈rj = n + 1〉〉 = SjL C→
exitregL 〈〈rj = n〉〉 M M

where
Sj =! C←

incj | C←⊥
decreqj

(C→⊥
nz). C→⊥

sync.
C→⊥
exitreg.

C←
garbage. C→⊥

exitpc

The encoding for the instruction (i : Ii) is as follows:

〈〈(i : Succ(rj))〉〉 = C←⊥
pi

(0). C←⊥
incj

(C→
exitreg). C→⊥

exitpc.SjL C→
exitpcL C←

pi+1L MMM
〈〈(i : DecJump(rj , s))〉〉 = C←⊥

pi
(0). C←

decreqj
.Ji+1,s

where

Jh,k = C→⊥
znzL C→

znzL C→
nzL C→

syncL M ◦ C→
exitpcL C→

exitpcL C→
exitpcL C←

ph
L MMMMM ◦

C→
zL C→

exitpcL C←
pk

L MMM M M

It is easy to show that this encoding is deterministic, and that (a slight
variation of) the results presented in the previous section hold also for this
deterministic encoding.

An immediate consequence of Corollary 1 is the undecidability of existential
termination:

Corollary 2. The existential termination property is undecidable for PEP sys-
tems.

4 Decidability of termination for MBD

In this section we show that the existence of a divergent computation is decidable
for MBD.

The decidability proof exploits the techniques similar to the ones developed
in [2] for (fragments of) Mobile Ambients [5], and is based on the theory of
well-structured transition systems [8]: the existence of an infinite computation
starting from a given state is decidable for finitely branching transition systems,
provided that the set of states can be equipped with a well-quasi-ordering, i.e.,
a quasi-ordering relation which is compatible with the transition relation and
such that each infinite sequence of states admits an increasing subsequence.

We start by providing some basic definitions and results on well-structured
transition systems and on well-quasi-ordering on sequences of elements belonging
to a well-quasi-ordered set, that will be used in the following parts of this Section.

Then, we prove the decidability of termination for MBD; to this aim, we
first provide an alternative semantics that is equivalent w.r.t. termination to the
one presented in Section 2, but which is based on a finitely branching transition
system and permits to define a well-quasi-ordering on the derivatives of a given
system (i.e., the set of systems reachable from a given initial system). Then, by
exploiting the theory developed in [8], we show that termination is decidable for
MBD systems.

4.1 Well-Structured Transition System

We start by recalling some basic definitions and results from [8], concerning
well-structured transition systems, that will be used in the following.

A quasi-ordering (qo) is a reflexive and transitive relation.

Definition 10. A well-quasi-ordering (wqo) is a quasi-ordering ≤ over a set X
such that, for any infinite sequence x0, x1, x2, . . . in X, there exist indexes i < j
such that xi ≤ xj.

Note that, if ≤ is a wqo, then any infinite sequence x0, x1, x2, . . . contains an
infinite increasing subsequence xi0 , xi1 , xi2 , . . . (with i0 < i1 < i2 < . . .).

Transition systems can be formally defined as follows.

Definition 11. A transition system is a structure TS = (S,→), where S is a
set of states and →⊆ S × S is a set of transitions.
We write Succ(s) to denote the set {s′ ∈ S | s → s′} of immediate successors of
s ∈ S.
TS is finitely branching if ∀s ∈ S : Succ(s) is finite. We restrict to finitely
branching transition systems.

Well-structured transition systems, defined as follows, provide the key tool to
decide properties of computations.

Definition 12. A well-structured transition system (with strong compatibility)
is a transition system TS = (S,→), equipped with a quasi-ordering ≤ on S, also
written TS = (S,→,≤), such that the two following conditions hold:

1. well-quasi-ordering: ≤ is a well-quasi-ordering, and
2. strong compatibility: ≤ is (upward) compatible with →, i.e., for all s1 ≤

t1 and all transitions s1 → s2, there exists a state t2 such that t1 → t2 and
s2 ≤ t2.

The following theorem (a special case of a result in [8]) will be used to obtain
our decidability result.

Theorem 2. Let TS = (S,→,≤) be a finitely branching, well-structured transi-
tion system with decidable ≤ and computable Succ. The existence of an infinite
computation starting from a state s ∈ S is decidable.

4.2 Higman’s Lemma

To show that the quasi-ordering relation we will define on MBD systems is a
well-quasi-ordering we need the following result, due to Higman [10] and stating
that the set of the finite sequences over a set equipped with a wqo is well-quasi-
ordered.

Given a set S, with S∗ we denote the set of finite sequences of elements in S.

Definition 13. Let S be a set and ≤ a wqo over S. The relation ≤∗ over S∗

is defined as follows. Let t, u ∈ S∗, with t = t1t2 . . . tm and u = u1u2 . . . un. We
have that t ≤∗ u iff there exists an injection f from {1, 2, . . . ,m} to {1, 2, . . . , n}
such that ti ≤ uf(i) and i ≤ f(i) for i = 1, . . . ,m.

Note that relation ≤∗ is a quasi-ordering over S∗.

Lemma 3. [Higman] Let S be a set and ≤ a wqo over S. Then, the relation ≤∗
is a wqo over S∗.

Also the following propositions will be used to prove that the relation on
systems is a well-quasi-ordering:

Proposition 2. Let S be a finite set. Then the equality is a wqo over S.

Proposition 3. Let S, T be sets and ≤S, ≤T be wqo over S and T , respectively.
The relation ≤ over S × T is defined as follows: (s1, t1) ≤ (s2, t2) iff (s1 ≤S s2

and t1 ≤T t2). The relation ≤ is a wqo over S × T .

4.3 A finitely branching semantics for MBD systems

Because of the structural congruence rules, the reaction transition system for
MBD is not finitely branching. To obtain a finitely branching transition system
(with the same behavior w.r.t. termination), we take the transition system whose
states are the equivalence classes of structural congruence.

Technically, it is possible to define a normal form for systems, up to the
commutative and associative laws for the ◦ and | operators.

In a system in normal form, the presence of a replicated version of a sequential
process !a.σ (resp. system !(σL P M)) forbids the presence of any occurrence of
the nonreplicated version of the same process (resp. system), as well as of other
occurrences of the replicated version of the process (resp. system). Moreover,
replication is distributed over the components of parallel composition operators,
and redundant replications and empty systems and terms are removed.

Definition 14. Let ca= be the least congruence on systems satisfying the commu-
tative and associative rules for ◦ and |.

A brane process σ is in normal form if σ
ca=

∏
i∈I ai.σi |

∏
j∈J !a′j .σ

′
j, where

– σi and σ′j are in normal form for i ∈ I and j ∈ J ;
– if ai = bud⊥n(ρ) or ai = drip(ρ) then ρ is in normal form;

if a′j = bud⊥n(ρ) or a′j = drip(ρ) then ρ is in normal form;
– if σi

ca= σ′j then ai 6
ca= a′j;

– if σ′i
ca= σ′j and a′i

ca= a′j then i = j.

A system P is in normal form if P
ca= ©i∈IσiL Pi M ◦ ©j∈J !(σ′jLP ′

j M), where

– σi, Pi, σ′j and P ′
j are in normal form for i ∈ I and j ∈ J ;

– if Pi
ca= P ′

j then σi 6
ca= σ′j;

– if P ′
i

ca= P ′
j and σ′i

ca= σ′j then i = j.

The function nf produces the normal form of a process or a system:

Definition 15. The normal form of a process is defined inductively as follows:

nf(0) = 0
nf(maten.σ) = maten.nf(σ)
nf(mate⊥n , σ) = mate⊥n .nf(σ)
nf(budn.σ) = budn.nf(σ)
nf(bud⊥n(ρ).σ) = bud⊥n(nf(ρ)).nf(σ)
nf(drip(ρ).σ) = drip(nf(ρ)).nf(σ)

Let nf(σ) =
∏

i∈I ai.σi |
∏

j∈J !a′j .σ
′
j and nf(τ) =

∏
h∈H bh.τh |

∏
k∈K !b′k.τ ′k.

Then

nf(σ | τ) =
∏
{ai.σi | i ∈ I ∧ ∀k ∈ K : ai.σi 6

ca= b′k.τ ′k} |∏
{bh.τh | h ∈ H ∧ ∀j ∈ J : bh.τh 6

ca= a′j .σ
′
j} |∏

{!a′j .σ′j | j ∈ J} |∏
{!b′k.τ ′k | k ∈ K ∧ ∀j ∈ J : b′k.τ ′k 6

ca= a′j .σ
′
j}

and
nf(!σ) =

∏
{!ai.σi | i ∈ I} |

∏
{!a′j .σ′j | j ∈ J}

Definition 16. The normal form of a system is defined inductively as follows:

nf(�) = �
nf(σ.P) = nf(σ).nf(P)

Let nf(P) = ©i∈IσiL Pi M ◦ ©j∈J !(σ′jLP ′
j M) and nf(Q) = ©h∈HτhL Qh, M ◦

©k∈K !(τ ′kLQ′
k M). Then

nf(P ◦ Q) = ©{σiL Pi M | i ∈ I ∧ ∀k ∈ K : σiLPi M 6ca= τ ′kLQ′
k M} ◦

©{τhL Qh M | h ∈ H ∧ ∀j ∈ J : τhL Qh M 6ca= σ′jL P ′
j M} ◦

©{!σ′jL P ′
j M | j ∈ J} ◦

©{!τ ′kL Q′
k M | k ∈ K ∧ ∀j ∈ J : τ ′kLQ′

k M 6ca= σ′jL P ′
j M}

nf(!P) = ©{!σiL Pi M | i ∈ I} ◦ ©{!σ′jLP ′
j M | j ∈ J}

It is easy to see that function nf produces processes and systems in normal
form.

Proposition 4. Let σ be a process. Then nf(σ) is a process in normal form.
Let P be a system. Then nf(P) is a system in normal form.

Proof. By induction of the structure of σ (resp. P).

The normal form of two structurally congruent processes (resp. systems) is
the same, up to associativity and commutativity of | (resp. ◦) operator.

Proposition 5. Let σ, τ be two processes. If σ ≡ τ then nf(σ) ca= nf(τ).
Let P,Q be two systems. If P ≡ Q then nf(P) ca= nf(Q).

Proof. By induction on the structure of the proof of σ ≡ τ (resp. P ≡ Q).

We define an alternative semantics for systems in normal form. This seman-
tics turns out to be finitely branching, and equivalent to the reduction semantics
of section 2.

Definition 17. The reaction relation 7→ for systems in normal form is the least
relation satisfying the axioms and rules in Tables 1, 2 and 3.

The reduction relation 7→ is finitely branching over the set of systems in
normal form:

Proposition 6. Let P be a system in normal form. The set of immediate suc-
cessors Succ(P) = {P ′ | P 7→ P ′} is finite.

Proof. By induction on the structure of P . Let P = ©i∈IσiL Pi M ◦©j∈J !(σ′jLP ′
j M).

By inductive hypothesis, the sets Succ(Pi) and Succ(P ′
j) are finite for all i ∈ I

and j ∈ J .
Let #act(P) be the number of occurrences of actions in system P .
Consider a reduction P 7→ P ′. The last rule applied in the proof of this

reduction can either be one of the axioms of Tables 1, 2 and 3 or one of the rules
in Table 3.

Consider axiom (mate1): the number of reductions obtained by application
of this axiom is bounded by the product of the number of actions mate occurring
in P with the number of actions mate⊥ occurring in P , which is smaller than
(#act(P))2.

The same reasoning can be applied to each axiom, hence the number of
immediate successors of P obtained by application of an axiom is bounded by
(10 + 9 + 3)× (#act(P))2.

Consider now the set of immediate successors obtained by application of rule
(brane1). This set is bounded by |I| × max{|Succ(Pi)| | i ∈ I}. By inductive
hypothesis the sets of immediate successors of systems Pi, for i ∈ I, are finite.
Hence also the set of immediate successors of P obtained by application of rule
(brane1) is finite.

The same reasoning applies to rule (brane2), hence the set of immediate
successors of P is finite.

We now show that a system P terminates (according to the reaction rule →)
iff nf(P) terminates (according to the reaction rule 7→). To this aim, we need
the following auxiliary results.

Lemma 4. Let P be a system. If P → P ′ then nf(P) 7→ nf(P ′).

Proof. By induction on the proof of P → P ′ (the difficult case is when the last
rule in the proof tree is (par)).

Lemma 5. Let P be a system. If nf(P) 7→ Q then nf(P) → Q.

Proof. By induction on the proof of nf(P) 7→ Q.

Corollary 3. Let P be a system. The system P terminates iff nf(P) terminates.

4.4 Decidability of termination for MBD systems

Let us consider a system P in normal form. In this section we provide a quasi-
order on the derivatives of P (and a quasi-order on brane processes) that turns
out to be a wqo compatible with 7→. Hence, exploiting the results in section 4.2,
we obtain decidability of termination.

We note that each system (resp. process) in normal form is essentially a finite
sequence of objects of kind σL Q M or !(σL Q M) (resp. of objects of kind a.σ or !a.σ).
If we consider the nesting level of membranes, we note that each subsystem Q
contained in a subterm σL Q M or !(σL Q M) of a system R is simpler than R. More
precisely, the maximum nesting level of membranes in Q is strictly smaller than
the maximum nesting level of membranes in R. As already observed in [4], the
reactions in MBD preserve the nesting level of membranes; hence, the nesting
level of membranes in a system P provides an upper bound to the nesting level
of membranes in the set of the (normal forms of the) derivatives of P .

Definition 18. The nesting level of a system is defined inductively as follows:

nl(�) = 0
nl(σLP M) = nl(P) + 1
nl(P ◦Q) = max{nl(P), nl(Q)}
nl(!P) = nl(P)

Proposition 7. Let P be a system in normal form. If P 7→ P ′ then nl(P ′) ≤
nl(P).

Proof. By induction of the proof of P 7→ P ′.

Thanks to normal forms, we have that the set of processes of kind a.σ or !a.σ
that occur as subterms in the derivatives (w.r.t. 7→) of a process in normal form
is finite. This fact will be used to show that the quasi-orders on processes and
on systems are wqo.

Definition 19. Let P be a system in normal form. The set of derivatives of P
w.r.t. 7→ is defined as follows: nfDeriv(P) = {P ′ | P 7→∗ P ′}.
Definition 20. The set of sequential and replicated sequential subprocesses of a
process is defined inductively as follows:

Subp(0) = ∅
Subp(maten.σ) = {maten.σ} ∪ Subp(σ)
Subp(mate⊥n .σ) = {mate⊥n .σ} ∪ Subp(σ)
Subp(budn.σ) = {budn.σ} ∪ Subp(σ)
Subp(bud⊥n(ρ).σ) = {bud⊥n(ρ).σ} ∪ Subp(ρ) ∪ Subp(σ)
Subp(drip(ρ).σ) = {drip(ρ).σ} ∪ Subp(ρ) ∪ Subp(σ)
Subp(σ | τ) = Subp(σ) ∪ Subp(τ)
Subp(!σ) = {!σ′ | σ′ ∈ Subp(σ)} ∪ Subp(σ)

The set of sequential and replicated sequential subprocesses of a system is defined
inductively as follows:

Subp(�) = ∅
Subp(σLP M) = Subp(σ) ∪ Subp(P)
Subp(P ◦Q) = Subp(P) ∪ Subp(Q)
Subp(!P) = Subp(P)

It is easy to see that the set of sequential and replicated sequential subpro-
cesses of a process (resp. system) is finite:

Proposition 8. Let σ be a process. The set Subp(σ) is finite.
Let P be a system. The set Subp(P) is finite.

Proof. By induction on the structure of σ (resp. P).

The following proposition – stating that the transformation of a process (resp.
system) in normal form does not increase its set of sequential and replicated se-
quential subprocesses – will be used to show that the set of sequential and repli-
cated sequential subprocesses does not increase after execution of a reduction
step.

Proposition 9. Let σ be a process. Then Subp(nf(σ)) ⊆ Subp(σ).
Let P be a system. Then Subp(nf(P)) ⊆ Subp(P).

Proof. By induction on the structure of σ (resp. P).

Proposition 10. Let P be a process in normal form. If P 7→ P ′ then Subp(P ′) ⊆
Subp(P).

Proof. By induction on the proof of P 7→ P ′.

Definition 21. Let P be a process in normal form. The set of subprocesses of
the derivatives of P is defined as SubDeriv(P) =

⋃
P ′∈nfDeriv(P) Subp(P ′).

Proposition 11. Let P be a process in normal form. Then the set SubDeriv(P)
is finite.

Proof. Let P ′ ∈ nfDeriv(P). Then P 7→∗ P ′. By induction on the length of the
derivation P 7→∗ P ′ and by Proposition 10 we obtain Subp(P ′) ⊆ Subp(P). By
Proposition 8 we obtain that SubDeriv(P) is finite.

We introduce a quasi-order �proc on processes in normal form such that
σ �proc τ if

– for each occurrence of a replicated guarded process at top-level in σ there is
a corresponding occurrence of the same process at top-level in τ ;

– for each occurrence of a guarded process at top-level in σ there is either
a corresponding occurrence of the same process or an occurrence of the
replicated version of the process at top-level in τ .

Definition 22. Let σ and τ be two processes in normal form.
Let σ =

∏
i∈I ai.σi |

∏
j∈J !a′j .σ

′
j and τ =

∏
h∈H bh.τh |

∏
k∈K !b′k.τ ′k, and H ∩

K = ∅. We say that σ �proc τ if there exists a pair of functions (f, g) such that:

– f : I → H ∪K and g : J → K
– ∀i, i′ ∈ I : if f(i) = f(i′) and f(i) ∈ H then i = i′

– ∀i ∈ I : if f(i) ∈ H then bf(i).τf(i)
ca= ai.σi

– ∀i ∈ I : if f(i) ∈ K then b′f(i).τ
′
f(i)

ca= ai.σi

– ∀j ∈ J : b′g(j).τ
′
g(j)

ca= a′j .σ
′
j

We define a quasi-order on systems such that R �sys S if

– for each replicated membrane !(ρLR1 M) at top-level in R there is a corre-
sponding replicated membrane !(σLS1 M) at top-level in S such that ρ is
smaller than σ and R1 is smaller than S1;

– for each occurrence of a membrane ρL R1 M at top-level in R there is
• either a corresponding occurrence of a membrane σL S1 M at top-level in

S such that ρ is smaller than σ and R1 is smaller than S1

• or an occurrence of a replicated membrane !(ρL R1 M) at top-level in S.

Definition 23. Let P,Q be systems. Let P = ©i∈IσiLPi M ◦ ©j∈J !(σ′jLP ′
j M)

and Q = ©h∈HτhL Qh, M ◦ ©k∈K !(τ ′kL Q′
k M) and H ∩ K = ∅. We say that

P �sys Q if there exists a pair of functions (f, g) such that:

– f : I → H ∪K and g : J → K
– ∀i, i′ ∈ I : if f(i) = f(i′) and f(i) ∈ H then i = i′

– ∀i ∈ I : if f(i) ∈ H then σi �proc τf(i) and Pi �sys Qf(i)

– ∀i ∈ I : if f(i) ∈ K then σi �proc τ ′f(i) and Pi �sys Q′
f(i)

– ∀j ∈ J : σ′j �proc τ ′g(j) and P ′
j �sys Q′

g(j)

It is easy to see that �proc and �sys are quasi-orderings.
We start showing that the relation �sys is strongly compatible with 7→. To

this aim, we need the following auxiliary propositions:

Proposition 12. Let σ1, σ2, τ1, τ2 be processes in normal form. If σi �proc τi

for i = 1, 2 then nf(σ1 | σ2) �proc nf(τ1 | τ2).

Proposition 13. Let P1, P2, Q1, Q2 be systems in normal form. If Pi �sys Qi

for i = 1, 2 then P1 ◦ P2 �sys Q1 ◦Q2.

Theorem 3. Let P, P ′, Q be systems in normal form. If P 7→ P ′ and P �sys Q
then there exists Q′ in normal form such that Q 7→ Q′ and Q �sys Q′.

Proof. The proof is by induction on the structure of P , then by case analysis on
the last axiom or rule applied to obtain the reduction P 7→ P ′.

The following proposition will be used to show that �proc is a wqo over the
set of subprocesses of the derivatives of a system P .

Proposition 14. Let σ and τ be two processes in normal form.
Let σ =

∏n1
i=1 ai.σi |

∏n1+n2
j=n1+1!a

′
j .σ

′
j and τ =

∏m1
h=1 bh.τh |

∏m1+m2
k=m1+1!b

′
k.τ ′k.

If a1.σ1 . . . an1 .σn1 !a
′
n1+1.σ

′
n1+1 . . .!a′n1+n2

.σ′n1+n2
=∗

b1.τ1 . . . bm1 .τm1 !b
′
m1+1.τ

′
m1+1 . . .!b′m1+m2

.τ ′m1+m2
then σ �proc τ .

Proof. If a1.σ1 . . . an1 .σn1 !a
′
n1+1.σ

′
n1+1 . . .!a′n1+n2

.σ′n1+n2
=∗

b1.τ1 . . . bm1 .τm1 !b
′
m1+1.τ

′
m1+1 . . .!b′m1+m2

.τ ′m1+m2
then there exists an injection

f : {1, . . . , n1 + n2} → {1, . . . ,m1 + m2} mapping the each element of the first
sequence into a corresponding, equal element in the second sequence. The first n1

(resp m1) elements of the first (resp. second) sequence are sequential processes,
whereas the last n2 (resp. m2) elements of the first (resp. second) sequence are
replicated sequential processes. Hence the first n1 (resp. last n2) elements of the
first sequence will be mapped on the first m1 (resp. last m2) elements of the
second sequence.

Consider the pair of functions (g1, g2) such that

– g1(i) = f(i) for i = 1, . . . , n1

– g2(i) = f(i) for i = n1 + 1, . . . , n1 + n2

The pair of functions (g1, g2) satisfies the conditions of Definition 22, hence
σ �proc τ .

By Higman lemma and Proposition 2 it easy to prove that

Lemma 6. Let P be a system in normal form. The relation �proc is a wqo over
the set of processes in SubDeriv(P).

Proof. Take an infinite sequence σ1, σ2, . . . , σh, . . . of normal form processes
in SubDeriv(P). Let σh =

∏nh

i=1 ai,h.σi,h |
∏mh

j=1!a
′
j,h.σ′j,h. By definition of

SubDeriv and Subp, we have that ∀h > 0 : ∀1 ≤ i ≤ nh : ai,h.σi,h ∈ SubDeriv(P)
and ∀h > 0 : ∀1 ≤ i ≤ mh :!a′j,h.σj,h ∈ SubDeriv(P). Hence, we have an infinite
sequence of elements of SubDeriv(P)∗; as SubDeriv(P) is finite (by Proposi-
tion 11), by Proposition 2 and Higman Lemma (Lemma 3) we have that =∗ is a
wqo over SubDeriv(P). Thus there exist i, j such that
a1,i.σ1,i . . . ani,i.σni,i!a

′
1,i.σ

′
1,i . . .!a′mi,i

.σ′mi,i
=∗

a1,j .σ1,j . . . anj ,j .σnj ,j !a′1,j .σ
′
1,j . . .!a′mj ,j .σ

′
mj ,j .

By Proposition 14 we have σi �proc σj .

Now it is possible to prove that �sys is a wqo.
The set of derivatives of a system P w.r.t. 7→ with nesting level not greater

than n is defined as

Definition 24. Let P be a system in normal form and n ≥ 0. We define
nfDerivn(P) = {Q | Q ∈ nfDeriv(P) ∧ nl(Q) ≤ n}.

Proposition 15. Let P be a system in normal form. Then nfDeriv(P) =
nfDerivnl(P)(P).

Proof. A consequence of Proposition 7.

Now we show that �sys is a wqo over a subset of derivatives whose elements
have a nesting level smaller than a given natural number. The proof proceeds
by induction on the nesting level of membranes, and makes use of Higman’s
Lemma, of Lemma 6 and of Proposition 3.

Theorem 4. Let P be a system in normal form and n ≥ 0. The relation �sys

is a wqo over the set nfDerivn(P).

Proof. The proof is by induction on n.
The case n = 0 is trivial, as nfDeriv0(P) ⊆ {�}.
For the inductive step, take n > 0 and an infinite sequence P1, P2, . . . , Ph, . . .

with Ph ∈ nfDerivn(P).
Let Ph = ©nh

i=1σi,hL Pi,h M ◦ ©mh
j=nh+1!(σ

′
j,hL P ′

j,h M).
As Ph ∈ nfDerivn(P), we have that σi,h ∈ Subp(P) for i = 1, . . . , nh and

σ′j,h ∈ Subp(P) for j = nh + 1, . . . ,mh.
Moreover, nl(Ph) ≤ n; by definition of nesting level, we obtain nl(Pi,h) ≤

n− 1 for i = 1, . . . , nh and nl(P ′
j,h) ≤ n− 1 for j = nh + 1, . . . ,mh.

Hence, Pi,h ∈ nfDerivn−1(P) for i = 1, . . . , nh and P ′
j,h ∈ nfDerivn−1(P)

for j = nh + 1, . . . ,mh.
By Lemma 6 we know that �proc is a wqo over Subp(P). By inductive hy-

pothesis, we have that �sys is a wqo over nfDerivn−1(P).
By Proposition 3 we obtain that �= (�proc,�sys) is a wqo over Subp(P)×

nfDerivn−1(P).
By Higman Lemma we obtain that �∗ is a wqo over

(Subp(P)× nfDerivn−1(P))∗.
By Proposition 3 we obtain that �′= (�∗,�∗) is a wqo over

(Subp(P)× nfDerivn−1(P))∗ × (Subp(P)× nfDerivn−1(P))∗.
Consider the infinite sequence s1, . . . , sh, . . . with

sh = (((σ1,h, P1,h), . . . , (σnh,h, Pnh,h)),
((σ′nh+1,h, P ′

nh+1,h), . . . , (σ′nh+mh,h, P ′
nh+mh,h)))

We have that sh ∈ (Subp(P)×nfDerivn−1(P))∗ × (Subp(P)×nfDerivn−1(P))∗

for h > 0. As �′ is a wqo over such a set, there exist k, q such that sk �′ sq.
This means that

(σ1,k, P1,k), . . . , (σnk,k, Pnk,k) �∗ (σ1,q, P1,q), . . . , (σnq,q, Pnq,q)

Thus there exists an injection f : {1, . . . , nk} → {1, . . . , nq} such that σi,k �proc

σi,f(k) and Pi,k �sys Pi,f(k) for i = 1, . . . nk.
We also have that

(σ′nk+1,k, P ′
nk+1,k), . . . , (σ′nk+mk,k, P ′

nk+mk,k) �∗
(σ′1,q, P

′
1,q), . . . , (σ

′
nq+mq,q, P

′
nq+mq,q)

Thus there exists an injection g : {nh +1, . . . , nh +mk} → {nq +1, . . . , nq +mq}
such that σ′i,k �proc σ′i,g(k) and P ′

i,k �sys P ′
i,g(k) for i = nk + 1, . . . nk + mk.

Consider the systems Pk and Pq and the pair of functions (f, g). We have
that Pk = ©nk

i=1σi,kL Pi,k M ◦ ©mk
j=1!(σ

′
j,kL P ′

j,k M) and Pq = ©nq

i=1σi,qLPi,q M ◦
©mq

j=1!(σ
′
j,qLP ′

j,q M). Moreover, the pair of functions (f, g) satisfies the require-
ments of Definition 23. Hence, Pk �sys Pq.

Summing up, we have showed that �sys is a wqo over nfDerivn(P).

Theorem 5. Let P be a system in normal form. The relation �sys is a wqo
over the set nfDeriv(P).

Proof. An easy consequence of Theorem 4 and of Proposition 15.

The following theorem ensures that the hypothesis of Theorem 2 are satisfied.

Theorem 6. Let P be a system in normal form. Then the transition system
(nfDeriv(P), 7→,�sys) is a well-structured transition system with decidable �sys

and computable Succ.

Proof. Strong compatibility of �sys with the transition relation 7→ has been
proved in Theorem 3. By Theorem 5 we have that�sys is a wqo over nfDeriv(P).
From Definition 23 it is possible to deduce an effective procedure to check �sys.
From Definitions 16 and 17 it is possible to deduce an effective procedure to
compute Succ.

By the above theorem and Theorem 2 we get the following

Corollary 4. Let P be a MBD system. The termination of P is decidable.

5 Conclusion

The aim of this paper is to investigate and compare the expressiveness of the
two basic brane calculi PEP and MBD w.r.t. their ability to encode computable
functions.
Regarding the PEP calculus we provided the following results:

(1) an encoding of RAMs that preserves the universal termination property,
i.e., the existence of a divergent computation;

(2) an improved, deterministic encoding of RAMs that faithfully models the
RAM behavior, in the following sense:
– If the RAM terminates then the (unique) computation of the RAM en-

coding terminates;
– if the RAM does not terminate then the (unique) computation of the

RAM encoding diverges.

The impact of the above results on the decidability of termination properties in
PEP is the following:

– as a consequence of the existence of the encoding (1), we obtain the undecid-
ability of universal termination for PEP systems. Note that the existence of
the encoding (1) does not imply the undecidability of existential termination
on PEP systems, because PEP systems are in general nondeterministic, and
may have both a terminating and a divergent computation.

– as a consequence of the existence of the deterministic encoding (2), and of
the equivalence of existential and universal termination properties for deter-
ministic systems, we also obtain the undecidability of existential termination
for PEP systems.

Regarding the MBD calculus, we provided the following result:

(3) Universal termination is decidable on MBD systems.

As a consequence of the decidability of universal termination, we obtain the im-
possibility to provide an encoding of RAMs in MBD that preserves the universal
termination property, i.e., an encoding that has a divergent computation if and
only if the RAM diverges. Hence, it is also impossible to define a deterministic
encoding of RAMs in MBD.

From the above results we deduce the following expressiveness gap between
PEP and MBD, w.r.t. their ability to reproduce the behavior of a RAM: there
exists a deterministic (hence, both universal and existential termination pre-
serving) encoding of RAMs in PEP, but there exist neither a deterministic nor a
universal termination preserving encoding of RAMs in MBD. Regarding the de-
cidability of properties, we have that universal termination is decidable in MBD,
whereas it turns out to be undecidable in PEP. Hence, there exist no encoding
of PEP in MBD that preserves the existence of a divergent computation.

Regarding the MBD calculus, the decidability of universal termination (3)
does not tell anything about the decidability of existential termination, and
about the possibility to define a weaker, nondeterministic encoding of RAMs in
MBD, that preserves existential termination (i.e., the encoding has a terminating
computation if and only if the RAM terminates). This topic has been investigated
in [1], where a nondeterministic encoding of RAMs in MBD, which preserves
existential termination, is provided. As a consequence of this result, we obtain
the undecidability of the existential termination property for MBD.

The comparison of a (nondeterministic) model with its deterministic frag-
ment is an interesting topic in automata theory, that has recently attracted
the interest of the research community working on membrane computing (see,
e.g., [11] and the references therein). From the results presented in this paper
and in [1], we deduce the following:

– The deterministic fragment of PEP is as powerful as the full (nondetermin-
istic) PEP calculus w.r.t. the ability to encode RAMs;

– There exists a gap between the deterministic fragment and the full MBD
calculus, as there exists a weak, existential termination preserving encoding
of RAMs in MBD [1], but there exist no such encoding in the deterministic
fragment of MBD (this is a consequence of the decidability of universal
termination on MBD, and of the equivalence of universal and existential
termination on deterministic systems).

The results presented in this paper hold for the interleaving semantics, ac-
cording to which a single interaction is executed at each computational step.
While interleaving semantics is the classical semantics for process calculi, the

usual semantics in membrane computing is based on maximal parallelism: at
each computational step, a maximal set of independent interactions must be
executed simultaneously. As for many variants of P systems the computational
power decreases when moving from the maximal parallelism to the interleav-
ing semantics (see [9]), it seems worthwhile to investigate if the decidability
of universal termination for MBD with the interleaving semantics also holds
when moving to the maximal parallelism semantics. Concerning MBD with the
maximal parallelism semantics, in [1] we provided a deterministic encoding of
RAMs. Hence, both the universal and existential termination properties turn
out to be undecidable in MBD with the maximal parallelism semantics. From
the decidability of universal termination in MBD with interleaving semantics
(3), we obtain an expressiveness gap between MBD with the interleaving and
with the maximal parallelism semantics, thus confirming the intuition emerging
from [9] for P systems: in most cases the computational power increases when
moving from interleaving to maximal parallelism. Note that the undecidability
of universal termination for MBD with maximal parallelism semantics does not
contradict the decidability of universal termination for MBD with interleaving
semantics provided in the present paper, as the well-quasi-ordering on systems
�sys defined in Section 4 is not compatible with the maximal parallelism reduc-
tion semantics. Consider, e.g., the systems P1 = matenL M ◦mate⊥nL M ◦ matemL M
and P2 = P1 ◦ mate⊥mL M. We have that P1 �sys P2; the only reduction step that
P1 can perform is the fusion of the two membranes matenL M and mate⊥nL M; thus,
according to the maximal parallelism semantics, P1 ⇒ matemL M. On the other
hand, two independent fusions can be performed by P2; thus, according to the
maximal parallelism semantics, both fusions must be performed, and the only
computational step for P2 is P2 ⇒ �. Thus, P1 �sys P2 and P1 ⇒ matemL M,
but there exist no system P ′

2 such that P2 ⇒ P ′
2 and matemL M �sys P ′

2, thus
preventing the compatibility of �sys with ⇒ to hold.

In [6] a variant of P systems, inspired by the interaction primitives of the
Brane Calculi, has been proposed and investigated. Quite surprisingly, it is shown
that the class of P systems containing only the mate and drip operations is
Turing powerful. A deep comparison of Brane Calculi and the class of P systems
proposed in [6] deserves further investigation. At a first sight, it seems that
the interaction primitives used in P systems are more powerful than the MBD
primitives. Some other, evident differences are the following: Brane Calculi are
equipped with an interleaving semantics, whereas P systems have a maximal
parallelism semantics; in [6] only a finite number of membranes is sufficient
to achieve Turing completeness, whereas in the present paper (and in [1]) an
unbounded number of membranes is required.

In the present paper we showed that universal termination is a decidable
property for MBD. The technique employed to prove the decidability of uni-
versal termination is based on the theory of well-structured transition systems:
besides universal termination, such a theory permits to analyse other interest-
ing properties, such as, e.g., coverability, boundedness, and eventuality proper-

ties [8]. We plan to investigate the possibility to use this theory for the analysis
of biologically relevant properties.

We also plan to extend our investigation to recent refinements of Brane Cal-
culi, such as, e.g., the Projective Brane Calculus [7], as well as to quantitative
variants of Brane Calculi, along the lines of, e.g., [15].

Acknowledgement: We thank the anonymous referees for their comments.
We are indebted to Fabien Tarissan for his careful comments and precious sug-
gestions.

References

1. N. Busi. On the computational power of the Mate/Bud/Drip Brane Calculus: in-
terleaving vs. maximal parallelism. Proc 6th International Workshop on Membrane
Computing (WMC6), LNCS 3850, Springer, 2006.

2. N. Busi and G. Zavattaro. On the expressive power of movement and restriction
in pure mobile ambients. Theoretical Computer Science, 322:477–515, 2004.

3. L. Cardelli. Brane Calculi - Interactions of biological membranes. Proc. Com-
putational Methods in System Biology 2004 (CMSB 2004), LNCS 3082, Springer,
2005.

4. L. Cardelli. Abstract Machines for System Biology. Draft, 2005.
5. L. Cardelli and A.D. Gordon. Mobile Ambients. Theoretical Computer Science,

240(1):177–213, 2000.
6. L. Cardelli and G. Păun. An universality result for a (Mem)Brane Calculus based

on mate/drip operations. International Journal of Foundations of Computer Sci-
ence, to appear.

7. V. Danos and S. Pradalier. Projective Brane Calculus. Proc. Computational
Methods in System Biology 2004 (CMSB 2004), LNCS 3082, Springer, 2005.

8. A. Finkel and Ph. Schnoebelen. Well-Structured Transition Systems Everywhere!
Theoretical Computer Science, 256:63–92, Elsevier, 2001.

9. R. Freund. Asynchronous P Systems and P Systems Working in the Sequen-
tial Mode Proc. 5th International Workshop on Membrane Computing (WMC5),
LNCS 3365, Springer, 2005.

10. G. Higman. Ordering by divisibility in abstract algebras. In Proc. London Math.
Soc., vol. 2, pages 236–366, 1952.

11. O. H. Ibarra. Some Recent Results Concerning Deterministic P Systems. Proc 6th
International Workshop on Membrane Computing (WMC6), LNCS 3850, Springer,
2006.

12. M.L. Minsky. Computation: finite and infinite machines. Prentice-Hall, 1967.
13. G. Păun. Membrane Computing. An Introduction. Springer, 2002.
14. G. Păun. Computing with membranes. Journal of Computer and System Sciences,

61(1):108–143, 2000.
15. C. Priami, A. Regev, W. Silverman, and E. Shapiro. Application of a stochastic

passing-name calculus to representation and simulation of molecular processes.
Information Processing Letter, 80:25-31, 2001.

16. A. Regev, E. M. Panina, W. Silverman, L. Cardelli, E. Shapiro. BioAmbients:
An Abstraction for Biological Compartments. Theoretical Computer Science,
325(1):141–167, Elsevier, 2004.

17. J.C. Shepherdson and J.E. Sturgis. Computability of recursive functions. Journal
of the ACM, 10:217–255, 1963.

(mate1) maten.σ|σ0L P M ◦ mate⊥n .τ |τ0L Q M ◦ R 7→
nf(σ|σ0|τ |τ0L P ◦Q M ◦ R)

(mate2) (!maten.σ)|σ0L P M ◦ mate⊥n .τ |τ0L Q M ◦ R 7→
nf(σ|(!maten.σ)|σ0|τ |τ0L P ◦Q M ◦ R)

(mate3) !(maten.σ|σ0L P M) ◦ mate⊥n .τ |τ0L Q M ◦ R 7→
nf(σ|σ0|τ |τ0L P ◦Q M ◦ !(maten.σ|σ0L P M) ◦ R)

(mate4) maten.σ|σ0L P M ◦ (!mate⊥n .τ)|τ0L Q M ◦ R 7→
nf(σ|σ0|τ |(!mate⊥n .τ)|τ0L P ◦Q M ◦ R)

(mate5) (!maten.σ)|σ0L P M ◦ (!mate⊥n .τ)|τ0L Q M ◦ R 7→
nf(σ|(!maten.σ)|σ0|τ |(!mate⊥n .τ)|τ0L P ◦Q M ◦ R)

(mate6) !(maten.σ|σ0L P M) ◦ !(mate⊥n .τ)|τ0L Q M ◦ R 7→
nf(σ|σ0|τ |!(mate⊥n .τ)|τ0L P ◦Q M ◦ !(maten.σ|σ0L P M) ◦ R)

(mate7) maten.σ|σ0L P M ◦ !(mate⊥n .τ |τ0L Q M) ◦ R 7→
nf(σ|σ0|τ |τ0L P ◦Q M ◦ !(mate⊥n .τ |τ0L Q M) ◦ R)

(mate8) (!maten.σ)|σ0L P M ◦ !(mate⊥n .τ |τ0L Q M) ◦ R 7→
nf(σ|(!maten.σ)|σ0|τ |τ0L P ◦Q M ◦ !(mate⊥n .τ |τ0L Q M) ◦ R)

(mate9) !(maten.σ|σ0L P M) ◦ !(mate⊥n .τ |τ0L Q M) ◦ R 7→
nf(σ|σ0|τ |τ0L P ◦Q M ◦ !(maten.σ|σ0L P M) ◦ !(mate⊥n .τ |τ0L Q M) ◦ R)

(mate10) !(maten.σ|mate⊥n .σ′|σ0L P M) ◦ R 7→
nf(σ|σ′|σ0|σ0L P ◦ P M ◦!(maten.σ|mate⊥n .σ′|σ0L P M) ◦ R)

(mate11) !((!maten.σ)|mate⊥n .σ′|σ0L P M) ◦ R 7→
nf(σ|(!maten.σ)|σ′|σ0|σ0L P ◦ P M ◦

!((!maten.σ)|mate⊥n .σ′|σ0L P M) ◦ R)

(mate12) !(maten.σ|(!mate⊥n .σ′)|σ0L P M) ◦ R 7→
nf(σ|σ′|(!mate⊥n .σ′)|σ0|σ0L P ◦ P M ◦

!(maten.σ|(!mate⊥n .σ′)|σ0L P M) ◦ R)

(mate13) !((!maten.σ)|(!mate⊥n .σ′)|σ0L P M) ◦ R 7→
nf(σ|(!maten.σ)|σ′|(!mate⊥n .σ′)|σ0|σ0L P ◦ P M ◦

!((!maten.σ)|(!mate⊥n .σ′)|σ0L P M) ◦ R)

Table 1. The axioms for the reduction relation 7→ (mating).

(bud1) bud⊥n (ρ).τ |τ0L budn.σ|σ0L P M ◦Q M ◦R 7→
nf(ρL σ|σ0L P M M ◦ τ |τ0L Q M ◦R)

(bud2) (!bud⊥n (ρ).τ)|τ0L budn.σ|σ0L P M ◦Q M ◦R 7→
nf(ρL σ|σ0L P M M ◦ τ |(!bud⊥n (ρ).τ)|τ0L Q M ◦R)

(bud3) !(bud⊥n (ρ).τ |τ0L budn.σ|σ0L P M ◦Q M) ◦R 7→
nf(ρL σ|σ0L P M M ◦ τ |τ0L Q M ◦
!(bud⊥n (ρ).τ |τ0L budn.σ|σ0L P M ◦Q M) ◦R)

(bud4) bud⊥n (ρ).τ |τ0L !(budn.σ)|σ0L P M ◦Q M ◦R 7→
nf(ρL σ|!(budn.σ)|σ0L P M M ◦ τ |τ0L Q M ◦R)

(bud5) (!bud⊥n (ρ).τ)|τ0L !(budn.σ)|σ0L P M ◦Q M ◦R 7→
nf(ρL σ|!(budn.σ)|σ0L P M M ◦ τ |(!bud⊥n (ρ).τ)|τ0L Q M ◦R)

(bud6) !(bud⊥n (ρ).τ |τ0L !(budn.σ)|σ0L P M) ◦Q M) ◦R 7→
nf(ρL σ|!(budn.σ)|σ0L P M M ◦ τ |τ0L Q M ◦
!(bud⊥n (ρ).τ |τ0L !(budn.σ)|σ0L P M ◦Q M) ◦R)

(bud7) bud⊥n (ρ).τ |τ0L !(budn.σ|σ0L P M) ◦Q M ◦R 7→
nf(ρL σ|σ0L P M M ◦ τ |τ0L !(budn.σ|σ0L P M) ◦Q M ◦R)

(bud8) (!bud⊥n (ρ).τ)|τ0L !(budn.σ|σ0L P M) ◦Q M ◦R 7→
nf(ρL σ|σ0L P M M ◦ τ |(!bud⊥n (ρ).τ)|τ0L !(budn.σ|σ0L P M) ◦Q M ◦R)

(bud9) !(bud⊥n (ρ).τ |τ0L !(budn.σ|σ0L P M) ◦Q M) ◦R 7→
nf(ρL σ|σ0L P M M ◦ τ |τ0L !(budn.σ|σ0L P M) ◦Q M◦
!(bud⊥n (ρ).τ |τ0L !(budn.σ|σ0L P M) ◦Q M) ◦R)

Table 2. The axioms for the reduction relation 7→ (budding).

(drip1) drip(ρ).σ|σ0L P M ◦ R 7→
nf(ρL M ◦ σ|σ0L P M ◦ R)

(drip2) (!drip(ρ).σ)|σ0L P M ◦ R 7→
nf(ρL M ◦ σ|(!drip(ρ).σ)|σ0L P M ◦ R)

(drip3) !(drip(ρ).σ|σ0L P M) ◦ R 7→
nf(ρL M ◦ σ|σ0L P M ◦ !(drip(ρ).σ|σ0L P M) ◦ R)

(brane1)
P → Q

σL P M ◦ R 7→ σL Q M ◦ R

(brane2)
P → Q

!(σL P M) ◦ R 7→ σL Q M ◦ !(σL P M) ◦ R

Table 3. The axioms and rules for the reduction relation 7→.

