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Abstract

We formally define a notion of credit and responsibility within the Generalized
Non Deducibility on Compositions framework. We investigate the validity of our
definitions through some examples discussed in the literature.
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1 Overview

Formal methods and tools have been successfully applied for the analysis of
network security. The protocol under investigation is described in a given
language, then a formal specification of the security property to be analyzed
is defined. Whether or not the security property is fulfilled is investigated by
formally analyzing the protocol in a hostile environment, i.e., considering the
presence of an adversary running in parallel with the honest participants.

Both the property’s formal specification and its informal definition are cru-
cial steps for the analysis. Indeed, even a common notion as authentication
is usually considered a slippery security property (see [8]). Several definitions
have been proposed in the security community. Henceforth, to define a formal
model for authentication is a tricky task and many different formalisms ac-
tually exist [2,3,5,8,10,11,12,13]. Their expressiveness, usability and accuracy
are often questioned, e.g. [8], and some effort has been devoted to compare
them. In [4] three different authentication properties are compared, and the
comparison is carried out within the Generalized Non Deducibility on Com-
positions schema (GNDC, [7,5]). GNDC has been proposed for defining and
analyzing security properties and it is based on the notion of non-interference.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science
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In this paper, we try to formally capture the meaning of two different
flavors of authentication, credit and responsibility. Abadi first focused his at-
tention on these two properties in [1], arguing about two possible uses of an
authenticated message m. Suppose that a principal A sends the message to a
principal B. Then, as far as responsibility is concerned, “B may believe that m
is being supported by A’s authority”. Also, as far as credit is concerned, “B
may attribute credit for m to A”. Abadi expresses the concepts of credit and
responsibility through several examples, by discussing their distinction in the
design and analysis of protocols. Different cryptographic operators (digital sig-
natures, encryptions, decryptions) may lead either to responsibility or credit.
Our investigation starts from the intuitions of Abadi by rephrasing them: we
suggest that responsibility supports orders, i.e., public messages which speak
for some principal, while credit is related to a principal for secret messages
known in advance only by that principal, that wants to be acknowledged as
the holder of the secret messages.

The paper is organized as follows. The next section recalls the GNDC
schema used for modeling security properties. Section 3 defines credit and re-
sponsibility within GNDC. Section 4 considers some of the protocols analyzed
by Abadi in [1]. It is checked if these protocols meet our formal definitions.
Section 5 provides a sketch of a formal comparison between the two properties.
Section 6 concludes the paper. The interested reader will find in the Appendix
the syntax and semantics of the language used for specifying cryptographic
protocols.

2 A General Schema for Security Properties

In this section we present the general schema GNDC for the definition of
security properties given in [7,5]. We assume some familiarity with process
algebras. Further, throughout the paper we specify protocols and properties
through Crypto-CCS, [7], basically process algebra CCS with cryptographic
modeling constructs. The syntax and semantics of the language can be found
in the Appendix.

Informally, the GNDC schema states that a system specification P satisfies
property GNDC α(P )

/ if the behaviour of P , despite the presence of a hostile
environment Eφ

C that can interact with P only through a set of channels in C,
appears to be same (w.r.t. a behavioral relation / of observational equivalence)
to the behaviour of a modified version α(P ) of P that represents the expected
(correct) behaviour of P . The GNDC schema thus has the form

P ∈ GNDC α(P )
/ iff ∀X ∈ Eφ

C : (P ‖ X)\C / α(P ), (1)

where (P ‖ X)\C denotes the parallel composition of processes P and X
restricted to communication over channels other than C. By varying parame-
ters / and α a variety of security properties can be formulated in the GNDC
schema, [6].
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In (1) there is an additional constraint that is required in the specific
context of analyzing cryptographic protocols: the static (initial) knowledge
of the hostile environment must be bound to a specific set of messages. This
limitation is needed to avoid a too strong hostile environment that would be
able to corrupt any secret (as it would know all cryptographic keys, etc.).
Formally, Eφ

C just represents all processes communicating through channels
in C and having an initial knowledge bound by φ. We consider as hostile
processes only the ones belonging to Eφ

C .

Obviously, with a specific formal framework in mind, e.g. a CCS-like
process algebra, all symbols in (1) need to be instantiated. Consider the
instance

P ∈ GNDC
α(P )
≤trace

iff ∀X ∈ Eφ
C : (P ‖ X)\C ≤trace α(P ) (2)

of GNDC. Here, the trace inclusion relation has been instantiated as a be-
havioral relation / of observational equivalence. Trace inclusion is defined as
follows: we say that the traces of P are included in the traces of Q (P ≤trace Q)
iff whenever P can move from the state P to the state P ′ through a sequence
of actions γ, then also Q can do the same, apart from internal actions of
P and Q. The trace inclusion relation is commonly used for the analysis of
safety properties. When ≤trace is considered, there exists a sufficient criterion
for the static characterization (i.e., not involving the universal predicate ∀) of
GNDC α(P )

/ (for further details, see [7,5]).

3 Defining Responsibility and Credit within the GNDC

schema

According to Abadi [1], “Authentication can serve both for assigning responsi-
bility and for giving credit”. He concludes that some authentication protocols
are adequate for applications requiring responsibility but not necessarily for
applications requiring credit and vice versa. Hence, he claims the need to
better clarify whether the properties of an authentication protocol suffice for
establishing responsibility and/or credit.

We believe that responsibility and credit can be defined similarly to the
characterization of the correspondance property given in [13] (note that cor-
respondence was called agreement in [10], upon being formalized in the CSP
process algebra, [11]). What is technically done in the characterization of the
agreement property is to give each principal the possibility to perform control
actions, expressing the current local view of the computation. These con-
trol actions are inserted in the specification of a protocol only for verification
purposes and the principals cannot exploit them during the protocol run.
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3.1 Assigning responsibility

We formally define here the responsibility property. Assigning responsibility
to a principal A for a public message M 1 specifies that M is supported by
A’s authority. We give the following intuitive explanation of the property:

“A principal B may assign responsibility to a principal A for a public mes-
sage M iff A explicitly sent M to B.

Our informal interpretation finds its motivation in everyday life, where who
actually claims something is generally considered responsible for what he
claimed.

To formally model the property we exploit a pair of control actions. We
define control actions corresponding to accepting responsibility and, symmet-
rically, assigning responsibility. We shall write accept resp (A,B,M) meaning
that “A accepts responsibility from B for message M”, and assign resp (B,A,M)
meaning that “B assigns responsibility to A for message M”.

The property is specified as follows:

αAR(P ) = ‖(x,y,m)∈D(P ) accept resp (x, y,m).assign resp (y, x,m)

where P is a protocol instance and D(P) is the set of all possible deliveries
one wishes to consider. A delivery is a triple (x, y,m), where x is the sender
of message m and y the receiver. αAR(P ) is specified in Crypto-CCS. If Q is
a term in the algebra, then ch (msg).Q is the process that sends message msg
on channel ch and then behaves as Q.

Example 3.1 Consider a protocol instance P where we have a honest user
A, a malicious one E and a bank B. Assume that A (E) sends a message M
(M ′) to B, then the set D(P ) is {(A,B,M), (E,B,M ′)}.

We formulate responsibility within the GNDC schema as follows:

Definition 3.2 P satisfies Assigning Responsibility iff P is GNDC
αAR(P )
≤trace

.

Thus, a protocol enjoys Assigning Responsibility iff, in each computation,
the act of giving each responsibility is preceded by the accepting of such a
responsibility. We remark that, since we consider a trace based semantics, ac-
cepting responsibility without the corresponding assignment is not considered
an attack.

3.2 Giving credit

We formally define here the credit property. Giving credit to a principal A for a
message M specifies that A asks credit for a particular piece of information. In
a nutshell, we believe that this notion is similar to responsibility where only

1 A public message is a message possibly known by all the principals.
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secret messages are taken into account 2 . Therefore, we give the following
intuitive explanation of the property:

“A principal B may give credit to a principal A for a secret message M iff
only A initially knows M and A wants credit for M from B”.

Namely, in order to get credit from B, A should convince B that message M is
possessed by A itself. As an example, suppose B rules a scientific committee
and A is a scientist that discovers a treatment for a disease considered hard
to cure up to now. Accordingly, A sends to B a message whose meaning may
be roughly expressed as: “I discover the treatment for X. The treatment is
Y. I require the paternity for such a discovery.” First, B should authenticate
the message as coming from A and being actually originated by A. Then, B
should give credit to A (i.e., B should give A the paternity for the medical
discovery). Y can be something that B does not know in advance, but that
can be easily verified by B. As another example, suppose indeed that B rules
a quiz show. Some external trusted third party, e.g. a notary, can previously
give to B the digest of the right answer. Upon receiving the answer from A,
B verifies its correctness by comparing the digests. If they are equal, B may
give credit to A for the answer.

To formally model the credit property we introduce a new pair of control
actions. We represent a credit request from A to B by the action ask cre ,
and a credit giving by the action give cre . The protocol should ensure that
B gives credit to A only if A required it. This requirement is captured by the
following specification:

αGC′(P ) = ‖(x,y,m)∈D(P ) ask cre (x, y,m).give cre (y, x,m)

We put a constraint on the set D(P ) to model the fact that we do not consider
public values. We assume not possible to have two (or more) triples in D(P )
with the same message m. By means of this constraint we assume that only
one principal is in the position to ask credit for a certain message. We call
this assumption “the message uniqueness” condition.

When modeling a protocol, we usually describe only the honest agents
running the protocol. However, in this particular framework, the set D(P ) of
correct deliveries should also take into account the deliveries of possible mali-
cious users. In particular, such deliveries must consider each possible message
belonging to the knowledge of a malicious user (and apart from private mes-
sages of other users). We call this assumption “the correct sending capability”
condition.

Definition 3.3 Assume that D(P ) satisfies the message uniqueness condition
and the correct sending capability condition. Then, P satisfies Giving Credit

iff P is GNDC
αGC′ (P )
≤trace

.

2 A secret message is a message not known by other principals in a protocol except principal
A.
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A(m, k)
def
= [〈(k,A,B, T ), k−1

A 〉 `enc x]ask cre (A,B,m) .

c1 ((A,B), x) .[〈m, k−1〉 `enc y][〈y, kB〉 `enc z]c2 ((A,B), z)

B(k)
def
= c1(y).[y `snd z][〈z, k〉 `dec t][t `fst u][u `snd b][b = B][u `fst r]

[r `snd a][r `fst k′]c2(w) .[w `snd h][〈h, k−1
B 〉 `dec j]

[〈j, k′〉 `dec g]give cre (b, a, g)

P
def
= A(M,K) ‖B(KA)

Table 1
First example.

In terms of traces, if an action give cre(B,A,M) exists in the trace, then
an action ask cre(A,B,M) must previously occur within the same trace.

In the following section, we consider some of the protocols analyzed by
Abadi in [1] and we check if these protocols meet our formal definitions for
credit and responsibility.

4 Examples

4.1 First Example

The first protocol analyzed in [1] shows how to send a short-term public key K
from a principal A to a principal B (Message 1). The short-term public key is
signed with the long-term private key of principal A, K−1

A . T is a timestamp.
The short-term secret key K−1 is then used in subsequent messages (e.g.,
Message 2) for signing further messages, e.g., M. The protocol assumes that
B knows A’s public key KA.

Message 1 A → B : A,B, {K,A,B, T}K−1

A

Message 2 A → B : A,B, {{M}K−1}KB

As far as credit is concerned, we wonder about the correctness of the following
interpretation of Message 1: principal A is asking principal B to obtain credit
for messages signed with K−1.

In Tab. 1, the protocol is expressed in our process algebra. The expected
control actions ask cre and give cre are opportunely inserted.

We require that principal A actually possesses M, in order to prevent man
in the middle attacks. Indeed, let us consider the attack presented in [1] (the
behaviour of the attacker is formally defined in Tab. 2):
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E
def
= c1(x)[x `snd y] % E intercepts A’s message 1

[〈y, kA〉 `dec z] % E decrypts {K,A,B, T}K−1

A
and

[〈z, k−1
E 〉 `enc w] % replaces A with E. Then, it encrypts

% the message under K−1
E

c1 ((E,B), w) . % E replaces A with E and sends it

c2(j) . [j `fst k] % E intercepts A’s message 2 and

c2 ((E,B), k) % replaces A with E. Then it sends to B

% the message E,B, {{M}K−1}KB

Table 2
Credit attack on the first example.

Message 1 A → E(B) : A,B, {K,A,B, T}K−1

A

Message 1’ E → B : E,B, {K,E,B, T}K−1

E

Message 2 A → E(B) : A,B, {{M}K−1}KB

Message 2’ E → B : E,B, {{M}K−1}KB

We denote an attacker pretending to be B as E(B). The attacker intercepts the
messages from A to B, replacing them with its own messages. In messages
1’ and 2’ the attacker impersonates itself. In particular, E makes a credit
request using K, and therefore E could benefit from A’s request. Indeed,
when B receives Message 1’ from E, B may think that E is asking credit for
subsequent messages signed with a private key correspondent to K. (E, and
not A, is actually talking with B). In practice, E behaves badly by intercepting
messages but then it executes correctly the steps of the protocol, by playing
the role of itself. Note that E cannot decrypt message {{M}K−1}KB

, because
it does not know K−1

B . Hence, E does not possess M .

Let us consider the process P ′ .
= (P ‖E) \ {c1, c2}, c1 and c2 being the

channels over which messages 1,1’ and 2,2’ are exchanged, respectively. There
exists a trace for this process that is not a trace for αGC′(P ). Indeed, if the
above mentioned attack is successfully launched, we can find a trace in P ′

where a give cre(B,E,M) action is preceded by a ask cre(A,B,M) action.
Thus, B may give credit to E for message M even if A has previously required
credit for that message. On the contrary, given the restriction on D(P), we
cannot have two credit requests related to deliveries dealing with the same
message, i.e., A,B,M and E,B,M . Consequently, we cannot have a trace
in which give cre(B,E,M) is performed after ask cre(A,B,M) in αGC′(P ).
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Hence, P /∈ GNDC
αGC′ (P )
≤trace

. As Abadi, we conclude that the protocol is not
adequate to give credit.

We believe that responsibility is concerned with public messages, as mes-
sage {M}K−1 encrypted with KB. Hence, it would make sense assigning re-
sponsibility to E for messages it sends to B. Unfortunately, our formalization
of responsibility does not agree with Abadi’s (and our) intuitive interpretation.
This formally lies in the fact that A emits an accept resp(A,B, {{M}K−1}KB

)
action whereas B must perform an assign resp(B,E, {{M}K−1}KB

). By al-
lowing also attackers to issue control actions, many apparent attacks against
responsibility would disappear. If agent E behaves correctly in issuing con-
trol actions, then E emits the action accept resp(E,B, {{M}K−1}KB

) and the
correspondence with the control action assign resp(B,E, {{M}K−1}KB

) is
established.

We require that the emission of control actions by an adversary happens
in a fair way, i.e., whenever the adversary acts as a honest participant, then
it emits the corresponding control action. Note that, contrary to the previous
literature, here we allow adversaries to output control actions. Thus, we relax
the GNDC requirement confining the adversary to interact only through a set
of channels C. Here, we also allow the adversary to output control actions over
special control channels, only for verification purposes. Basically, we augment
the Sort of actions that an adversary can do. To this aim, we introduce the
operator ↓X s.t., given a parallel system S and a sequential process X, if
S

γ
=⇒ S ′ then γ ↓X denotes the sequence of actions performed by X during

the computation γ.

Assume that an adversary can act either as a malicious user or as a honest
one. Then, its honest behavior is described by a process RX (that is a Crypto-
CCS term) prescribing its role. RX represents the role of X. We define
the predicate HonX

RX ,AR(γ) that tells us whether or not X behaves correctly
w.r.t. accept resp control actions. Informally, X behaves correctly w.r.t.
accept resp control actions iff, whenever the first action of its role is performed,
then this first action has been preceded by an opportune accept resp action 3 .

When malicious agent can perform only accept resp control actions, the
predicate HonX

RX ,AR(γ) can be defined as follows:

3 It is not necessary to study the correct behavior of the malicious user acting as the
responder in a protocol, since the absence of assign resp actions is not significant.
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HonX
RX ,AR(γ)

iff

∃y,m s.t.










γ ↓X= α1 . . . αn∧

∃j.2 ≤ j ≤ n : αj = FST (RX , y,m)∧

m ∈ D(φ ∪ msgs(α1, . . . , αj−1))











→ αj−1 = accept resp(X, y,m)

where FST (RX , y,m) is the first action X performs during computation γ,
following its role RX and involving a receiver y and a message m.

A process can issue a control action involving a certain message only if
this message belongs to its knowledge after the sequence α1, . . . , αj−1. This
requirement is essential for our different characterization of credit and respon-
sibility. Broadly speaking, our idea is the following. A third party can be
considered responsible for some public message it actually sends, but, when-
ever it acts according to a man in the middle scheme, it cannot have any credit
assigned for forwarding messages that it actually does not know.

We define a relation between processes which is a refinement of the classical
trace inclusion relation.

Definition 4.1 The relation between processes ≤RX ,AR is defined as follows:

S1 ≤RX ,AR S2 iff {γ | S1
γ

=⇒ ∧HonX
RX ,AR(γ)} ⊆ {γ | S2

γ
=⇒}

Thus, responsibility within the GNDC schema can finally be defined:

Definition 4.2 P satisfies Assigning Responsibility iff P is GNDC
αAR(P )
≤RX,AR

.

Similarly, we can define the predicate HonX
RX ,GC and a relation ≤RX ,GC for

credit properties.

Definition 4.3 Assume that D(P ) satisfies the message uniqueness condition
and the correct sending capability condition. Then, P satisfies Giving Credit

iff P is GNDC
αGC′ (P )
≤RX,GC

.

These slightly different notions allow us to identify those possible adver-
saries that correctly follow the steps in a protocol. Let us consider again the
man in the middle attack where the enemy plays the role of itself while sending
messages to B. Now E can issue control actions. Since the encrypted commu-
nication in Message 2 prevents learning message M and due to the restriction
on D(P ), there is still a credit attack (E is indeed not allowed to ask for credit
for a message that it does not know).
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On the contrary, E is no longer a hostile attacker talking about responsi-
bility. Indeed, since {{M}K−1}KB

is assumed to be a public message, E may
issue the control action accept resp(E,B, {{M}K−1}KB

). This action matches
the corresponding assign resp(B,E, {{M}K−1}KB

) raised by B. Thus, there
is no responsibility attack.

Our latter formalization for credit and responsibility agrees with the intu-
ition provided by Abadi in [1].

4.2 Second Example

In Abadi’s second example, A transmits a session key K to B along with A’s
identity (Message 1). The message is encrypted under B’s public key KB.
The session key may is then used for further messages (e.g., Message 2 and
3). The protocol is specified as follows:

Message 1 A → B : {A,K}KB

Message 2 A → B : {M}K

Message 3 B → A : {M ′}K

We agree with Abadi’s intuition that the protocol is adequate for applica-
tions requiring responsibility for B. Only B can retrieve K from Message 1,
then A can reasonably hold B responsible for a message encrypted under K
(unless A did not generate the encrypted message itself. The protocol assumes
that both principals can recognize their own messages). We note also that the
presence of A’s identity in Message 1 allows B to know the principal who will
hold B responsible for subsequent messages.

On the contrary, B cannot hold A responsible for messages encrypted under
K, since Message 1 could be generated by others, pretending to be A. Indeed,
the possible issue of an assign resp(A,B,M ′) action from B will never be
preceded by the issue of the correspondent accept resp(B,A,M ′) from A.

Let us consider the credit property. Abadi suggests that this protocol seems
to give a form of “unqualified” credit to A. By including its name in Message
1, A could claim credit for messages encrypted under K. Suppose now that
A chooses K incompetently, or maliciously. In this case, a third party C can
send a message {M ′′}K to B. As a consequence C gives “unqualified” credit
to A for M”, since B may give credit to A for M” even if A has not send that
message.

This scenario contrasts with our intuition that messages for which some-
one gives us credit must be consciously sent by ourselves. According to our
definition of credit, one is allowed to receive credit only for actions it actually
deserves. Thus, we rule out protocols giving forms of “unqualified” credit.
Formally, it is easy to verify that the protocol under investigation does not
guarantee credit to A. Since Message 1 does not provide A’s authentication,
whatever adversary can attribute messages encrypted under K to A. How-
ever, A cannot issue the control action ask cre(A,B,M) if it does not possess
M. In case, there would be an action give cre(B,A,M) not preceded by the
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correspondent ask cre action and, consequently, a credit attack.

4.3 Third Example

In his paper, Abadi gives a third example, a protocol used as a component
of Krawczyk’s SKEME protocol [9]. The protocol aims at obtaining a shared
key from two random quantities (JA and JB) that principal A and principal
B respectively invent. A and B send each other these random quantities,
encrypted with the public key of the receiver. They finally compute a shared
key K by applying a one-way hash function to the concatenation of JA and
JB. The shared key can be used in subsequent communication between A and
B.

Message 1 A → B : {JA}KB

Message 2 B → A : {JB}KA

K = H(JA, JB)

Let us consider the following on-line attack:

Message 1 A → B : {JA}KB

Message 1’ B → C : {JA}KC

Message 2 C → A : {JC}KA

In this case A initiates the protocol with a malicious principal B, who forwards
A’s half-key to C. Both A and C compute the same shared key K (K will
not be known by B), but A mistakenly believes that it shares K with B, and
C believes that it shares K with A. This attack supposes that B makes C
believe that Message 1’ comes from A. Further, A believes Message 2 comes
from B.

According to this computation, C can claim credit to A for messages en-
crypted under K. This leads to a credit attack. Suppose indeed that com-
munications take place over channels cab, cbc and cca respectively and consider
the process P ′ .

= (A ‖B ‖C)\{cab, cbc, cca}. In our analysis framework, we can
obtain a trace in P’ s.t. an action ask cre(C,A,M ′) is observed (provided
that C possesses M’), and then a give cre(A,B,M ′) action is executed.

Similarly, there is a responsibility attack on B. Indeed, each message from
C will be assigned to B (i.e., A may think that the message is supported by
B’s authority). However, since B behaved badly, it is questionable if we have
to study responsibility attacks on B. It is worthy to investigate such attacks
when B’s behavior causes some harm to an honest agent C. As an example,
consider the case in which the message sent by C contains a password to enter
C’s secret data. A may believe that such a credential is supported by B’s
authority and consequently that B can enter C’s secret data. The message
sent from C to A could be “put on my directory the files in the common
repository protected with password p”.

Thus, in our interpretation, we have both a credit and a responsibility
attack on the responder.
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5 Comparison

Informally, upon analyzing the previous examples, it would seem that giving
credit is at least as difficult as assigning responsibility. In particular, if we
restrict to consider AR only over processes s.t. D(P ) enjoys the restriction
for credit, then clearly the two notions are equal. Indeed, our definition for
credit could be imagined as a requirement of responsibility provided that the
messages for which we require responsibility are secret.

The GNDC analysis framework is suitable for formally comparing different
security properties. Actually, since responsibility is defined for public messages
while credit for secret ones, a formal comparison of the two properties is
not possible. In order to make it feasible, we need to drop the assumption
about the secrecy of messages in the credit specification. Though maintaining
coherence with the previous formulation, another characterization could be
the following:

We have a credit attack whenever a user B gives credit to A for a message
M and either A did not ask credit from B for that message or there is
another user C who asked credit for M from B before A.

This expresses a form of race condition for asking credit. Provided a correct
environment, whenever a user is willing to ask credit for a message M , M
should be known only by itself 4 . Thus, if the protocol is correct, no one else
could try to ask credit for that message. Roughly, this means that if a protocol
satisfies our previous definition of credit, then it satisfies also the current one.

The above-mentioned characterization does not mention secret values. A
possible formalization could be the following:

P ′
m =

∑

(x,y,m)∈D(P )m
ask cre (x, y,m).

(give cre (y, x,m).

‖(‖(x′,y′,m)∈D(P )m\{(x,y,m)} ask cre (x′, y′,m)))

αGC′′(P ) = ‖m∈MD
P ′

m

where MD = {m | (x, y,m) ∈ D(P )} are all the possible messages that occur
in D(P ) and D(P )m = {(x, y,m) ∈ D(P )} are the triples in D(P ) containing
message m. Given a message m, only the first request asking credit for m will
be served.

Definition 5.1 P satisfies Giving Credit iff E is GNDC
αGC′′ (P )
≤RX,GC

.

We can now perform a comparison with the responsibility property.

4 In particular circumstances, we may allow the recipient to know M too. More likely,
the recipient could simply have a way to validate the message, e.g. by having the message
digest.
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Proposition 5.2 If P enjoys credit (Def. 5.1) then P [f ] enjoys responsibility
(Def. 4.2), where f(ask cre) = accept resp and f(give cre) = assign resp.

Basically, the proof is done by noticing that, up to renaming of actions by
f , we have that αGC′′(P ) ≤trace αAR(P ).

6 Conclusions

We have defined credit and responsibility properties within a well-established
schema for modeling and analyzing security properties. We have also con-
sidered some of the protocols analyzed by Abadi in [1], and check if these
protocols meet our formal definitions. We conclude that our definitions of
credit and responsibility almost always adhere to Abadi’s intuitions. How-
ever, we argue that credit should be considered somehow a stronger property
than responsibility, whereas [1] gives special cases where this seems not com-
pletely reasonable. Indeed, the current work and the work in [1] differ for the
notion of “unqualified credit”. Abadi allows a user C to speak for a user A. As
a consequence, A can get credit for a statement A did not make. On the con-
trary, we force the user A to get credit only for messages originated by itself.
Finally, we have sketched a formal comparison between the two properties.

Actually, we dealt with direct responsibility and direct credit, rather than
with delegation. It could be worthy to study how delegation can be interpreted
in our framework.
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A Crypto-CCS

The model of the language consists of sequential agents able to communicate
by exchanging messages.

The data handling part of the language consists of messages and inference
systems. Messages are the data manipulated by agents, they form a set Msgs of
terms possibly containing variables. The set Msgs is defined by the grammar:

m ::= x | b | F 1(m1, . . . ,mk1
) | . . . | F l(m1, . . . ,mkl

)

where F i (for 1 ≤ i ≤ l) are the constructors for messages, x ∈ V is a
countable set of variables, b ∈ B is a collection of basic messages and ki, for
1 ≤ i ≤ l, gives the number of arguments of the constructor F i. Messages
without variables are closed messages.

Inference systems model the possible operations on messages. They consist
of a set of rules r, e.g., :

r =
m1 . . . mn

m0

where {m1, . . . ,mn} is a set of premises (possibly empty) and m0 is the conclu-
sion. An instance of the application of rule r to closed messages mi is denoted
as m1 . . . mn `r m0. Given an inference system, a deduction function D
is defined such that, if φ is a finite set of closed messages, then D(φ) is the
set of closed messages that can be deduced starting from φ by applying in-
stances of the rules in the system. The syntax and semantics of Crypto-CCS
are parametric with respect to a given inference system. Example inference
systems suitable to model specific cryptographic protocols will be shown in
the following sections.

The control part of the language consists of compound systems, interface
equationsequential agents running in parallel. The language syntax is as fol-
lows:

14



Gorrieri, Martinelli, and Petrocchi

Compound systems: S ::= (S1 ‖S2) | S \ C | Aφ

Sequential agents: A ::= 0 | p.A | A1 + A2 | [m1 . . .mn `r x]A1; A2

| [m = m′]A1; A2 | E(m1, . . . , mn)

Prefix constructs: p ::= c!m | c?x

where m,m′,m1, . . . ,mn are closed messages or variables, x is a variable, c ∈
Ch (a finite set of channels) φ is a finite set of closed messages, C is a subset
of Ch.

0 is the process that does nothing.

p.A is the process that can perform an action according to the particular
prefix construct p and then behaves as A. In particular,

• c!m denotes a message m sent on channel c;

• c?x denotes the receiving of a message m on channel c. The received message
replaces the variable x.

A1 + A2 represents the non deterministic choice between A and A1.

[m1 . . . mn `r x]A1; A2 is the inference construct. If, by applying an in-
stance of rule r, with premises m1 . . . mn, a message m can be inferred, then
the process behaves as A1 (where m replaces x), otherwise it behaves as A2.

[m = m′]A1; A2 is the match construct, to check message equality. If
m = m′ then the system behaves as A1, otherwise it behaves as A2.

A compound system S1 ‖S2 denotes the parallel execution of S1 and S2.
S1 ‖S2 performs an action p if one of its sub-components performs p. A
synchronization, or internal action, denoted by τ , may take place whenever S1

and S2 are able to perform two complementary actions, interface equationsend-
receive actions on the same channel.

A compound system S \ C allows only visible actions whose channels are
not in C. (Internal action τ being the invisible action).

The term Aφ is a single sequential agent whose knowledge, interface equa-
tionthe set of messages which occur in its term, is described by φ. The knowl-
edge of an agent increases either when it receives messages (see rule (?) in
Fig. A.1) or it infers new messages from the messages it knows (see rule D
in Fig. A.1). For every sequential agent Aφ, it is required that all the closed
messages that appear in Aφ belong to its knowledge φ.

The activities of the agents are described by the actions that they can
perform. The set Act of actions which may be performed by a compound
system ranges over by a and it is defined as: Act = {c?m, c!m, τ | c ∈ C,m ∈
Msgs,m closed}. P is the set of all the Crypto-CCS closed terms (interface
equationwith no free variables). sort(P) is the set of all the channels that
syntactically occur in the term P.

The operational semantics of a Crypto-CCS term is described by means
of the labeled transition system (lts, for short) 〈P , Act, {

a
−→}a∈Act〉, where

{
a

−→}a∈Act is the least relation between Crypto-CCS processes induced by the
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(!)
(c!m.A)φ

c!m
−→ (A)φ

(?)
m ∈ Msgs

(c?x.A)φ
c?m
−→ (A[m/x])φ∪{m}

(D)
m1 . . . mn `r m (A[m/x])φ∪{m}

a
−→ (A′)φ′

([m1 . . . mn `r x]A;A1)φ
a

−→ (A′)φ′

(‖
1
) S

a
−→ S′

S ‖S1

a
−→ S′ ‖S1

(‖
2
)
S

c!m
−→ S′ S1

c?m
−→ S′

1

S ‖S1

τ
−→ S′ ‖S′

1

(\1)
S

c!m
−→ S′ c /∈ L

S \ L
c!m
−→ S′ \ L

(+2)
S

a
−→ S′

S + S1

a
−→ S′

(D1)
6 ∃m s.t. m1 . . . mn `r m (A1)φ

a
−→ (A′

1)φ′

([m1 . . . mn `r x]A;A1)φ
a

−→ (A′
1)φ′

(=)
m = m′ (A)φ

a
−→ (A′)φ′

([m = m′]A;A1)φ
a

−→ (A′)φ′

(=1)
m 6= m′ (A1)φ

a
−→ (A′

1)φ′

([m = m′]A;A1)φ
a

−→ (A′
1)φ′

(Const)
E(x1, . . . , xn) =def A A[m1/x1, . . . ,mn/xn]

a
−→ A1

E(m1, . . . ,mn)
a

−→ A1

Fig. A.1. Operational semantics of Crypto-CCS.

axioms and inference rules of Fig. A.1 (in that figure the symmetric rules for
‖1, ‖2, \1, +2 are omitted).

The expression S
a

−→ S ′ means that the system can move from the
state S to the state S ′ through the action a. The expression S =⇒ S ′ de-
notes that S and S ′ belong to the reflexive and transitive closure of

τ
−→;

let γ = a1 . . . an ∈ (Act\{τ})∗ be a sequence of actions. Then, S
γ

=⇒ S ′ if
S =⇒

a1−→=⇒ . . . =⇒
an−→ =⇒ S ′.
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