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We analyze and compare several soft real-time applications designed for the secure transmission of packetized audio over the
Internet. The main metrics we consider for the purposes of our analysis are (i) the computational load due to the coding/decoding
phases, and (ii) the computational overhead of the encryption/decryption activities, carried out by the audio tools of interest.
The main result we present is that an appropriate degree of security may be guaranteed to real-time audio communications at
a negligible computational cost if the adopted security strategies are integrated together with the playout control mechanism
incorporated in the audio tools.
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1. INTRODUCTION

The Internet offers a best-effort service over public networks
without security guarantees. Therefore, the provision of se-
cure real-time audio applications over wide area networks
(WAN) like the Internet has to be carefully addressed. In par-
ticular, the success of such applications depends strictly on
the speech quality and the privacy guaranteed by the pro-
vided services, which have to be perceived as sufficiently good
by their users. Based on these considerations, we concentrate
our attention on the steps of the audio data flow pipeline
(depicted in Figure 1) which affect the performance and the
security features of those applications designed for deliver-
ing secure real-time communications over the Internet. More
precisely, in this paper, we analyse several audio applications
to investigate the overhead, in terms of additional latency,
which is caused by the embedded data compression algo-
rithms and securing mechanisms.

In general, the provision of both adequate performance
and security for the above-mentioned applications has to be
carefully examined and modeled because of some important
constricting conditions, illustrated as follows.

(i) These applications are often constrained to work un-
der very restrictive resources (e.g., bandwidth) and congested
traffic conditions. In particular, network-based audio ap-
plications experience variable transmission delay; hence the
most used approach in order to ameliorate the effect of such
an inevitable problem is to adapt the application behavior to
the variable network delays (see, e.g., [1]).

(ii) Real-time audio applications which employ public,
untrusted, and uncontrolled networks have strict security re-
quirements, namely, they have to guarantee authentication,
confidentiality, and integrity of the conversation (see, e.g.,
[2]).

On the one hand, from a performance standpoint, many
are the factors that affect the computational cost of real-time
audio applications over the Internet, such as codec, network
access, transmission, operating system, and sound-card de-
lays; and a significant issue is the problem of the latency
due to each of the above components. For instance, an ef-
ficient coding of the signal, carried out by the codec activity,
is the first factor to be considered if we want to effectively ex-
ploit the available transmission rates over the network, and
to obtain at the receiver site the same speech quality as that
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generated at the sender site [3, 4]. While such a kind of de-
lay is relatively fixed, others depend on variable conditions.
This is the case, for example, of network delays, for which
the situation is quite crucial. Indeed, since the current Inter-
net service model offers a flat, classless, and best-effort ser-
vice, real-time audio traffic experiences unwanted delay vari-
ation (known as jitter) on the order of 500/1000 milliseconds
for congested Internet links [5]. On the contrary, it is well
accepted that telephony users find round trip delays longer
than 300 milliseconds, more like a half-duplex connection
than a real-time conversation (experience suggests that a de-
lay of even 250 milliseconds is annoying despite the fact that
message coherence is not affected). In addition, too large au-
dio packet loss rates (over 10%) may have an awful impact
on speech recognition [6, 7].

These observations put in evidence the importance of
the trade-off between the stochastic end-to-end delays of the
played out audio packets and the packet loss percentage, es-
pecially when dealing with the problem of unpredictable jit-
ter typical of network environments providing a best-effort
service (see, e.g., [1, 8, 9, 10]). The problem of obtaining
the optimal trade-off between these two aspects and facing
the constraints on strict delays and losses tolerated in an un-
favourable platform is addressed by adaptive packet audio
control algorithms (see, e.g., [1, 9, 10]), which adaptively ad-
just to the fluctuating network delays of the Internet in order
to guarantee, when possible, an acceptable quality of the au-
dio service.

On the other hand, from a security standpoint, real-
time audio communications are a much less secure ser-
vice than most people realize. It is relatively easy for any-
one to eavesdrop phone conversations. Still, critics claim
that the Echelon system [11], a world wide high-tech es-
pionage system, is being used for crass commercial theft
and a brutal invasion of privacy on a staggering scale. As
far as audio applications over the Internet are concerned,
anyone with a PC and an access to the public network
has the possibility to capture the network traffic, poten-
tially compromising the privacy and the reliability of the
provided services. Hence, it is mandatory for audio appli-
cations to guarantee authentication, confidentiality, and in-
tegrity of data.

In the light of the above considerations, in this paper,
we analyse some popular tools designed at the application
layer for delivering secure real-time audio communications
over the Internet, and we compare them by evaluating the
computational overhead introduced by the coding algorithm
and by the securing mechanism adopted by those tools. In
particular, to carry out such a comparison, we have taken
into account the following audio tools: Nautilus [12], PGP-
fone [13], Speak Freely [14], and BoAT [15]. The above-
mentioned tools, Nautilus, Pretty Good Privacy Phone (PGP-
fone) and Speak Freely, have been designed for protecting
audio communications, at the application level, on the ba-
sis of external cryptographic modules. The motivation be-
hind our choice of taking into account such tools relies on
the consideration that they are freeware and downloadable
with complete source code. On the other hand, the fourth
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Figure 1: Internetworking audio data flow pipeline issue.

audio tool we take into consideration, that is, BoAT, inte-
grates, at the application level, the security mechanism to-
gether with the playout control algorithm. We point out that
the freeware version of such a tool [15] does not include the
security infrastructure, whose implementation is an ongoing
copyrighted project.

An important consideration concerning Nautilus, PGP-
fone, and Speak Freely is that these audio software pack-
ages do not include adaptive mechanized playout adjust-
ment schemes. In contrast, BoAT has been designed to inte-
grate the mechanism that adaptively adjust the audio play-
out point to the variable network behavior with the algo-
rithm that makes the conversation secure. On the one hand,
the playout control scheme of BoAT offers a minimal per-
packet communication overhead, and also tolerable packet
loss percentage and playout delays. On the other hand, the
securing mechanism, integrated with the playout control al-
gorithm, provides the receiver with a high assurance of se-
crecy, integrity, and authenticity of the conversation at a neg-
ligible computational cost as long as the underlying crypto-
graphic assumptions are enforced. More precisely, the secur-
ing algorithm of BoAT allows two trusted parties to have a
private conversation by employing a stream cipher (differ-
ently from the other considered tools which adopt block ci-
phers only) whose cryptanalysis is made much more difficult
by the integration of this algorithm with the playout control
mechanism. In particular, the securing algorithm naturally
allows the parties taking part into the audio communication
to agree on a sequence of session keys used by the particular
stream cipher to encrypt data, where the lifetime of each key
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is limited to a temporal interval not greater than one second
of conversation (corresponding to less than 212 bits of trans-
mitted data), whereas the best-known attacks of stream ci-
phers require 220 to 233 ciphertext bits (with complexity from
259 to 221, respectively) [16, 17].

Other popular tools include strong security mechanisms
at the application level like, for example, SecurePhone Pro-
fessional [18] and SecuriPhone [19], two professional en-
crypted voice over Internet protocol (IP) tools, WebPhone
[20], a shareware TCP/IP-based network phone tool, and
MS NetMeeting [21], a freeware real-time Web phone (in-
cluded in Windows 2000) which employs the MS Crypto
APIs to support cryptographic services. In particular, Net-
Meeting is distributed in a binary form only and a com-
parison with the other tools would be complicated by the
fact that some of its functionalities are embedded into the
Windows operating system. On the other hand, there are
other popular web audio tools that do not consider secu-
rity services with the same intensity. For instance, FreeP-
hone [22] does not take into consideration security features
at all, while NeVot [23] and rat [24] provide a simplistic pri-
vacy service (without authentication mechanisms and key
exchange protocols) which consists in encrypting the conver-
sation by using the well-known DES block cipher [25] that
exploits a symmetric key somehow decided by the involved
parties.

This paper is a full version of [26], which in turn is based
on some preliminary ideas [27] proposed to embed security
services into the audio tool BoAT [10, 15, 28]. Here, we re-
port on a complete performance/security comparative anal-
ysis conducted on the audio tools, Nautilus, PGPfone, Speak
Freely, and BoAT, by measuring the computational overhead
due to the coding/decoding phases, and the computational
overhead due to the encryption/decryption phases. The main
results we obtained emphasize that the computational costs
payed by the security mechanism are quite low with respect
to those due to the coding activity, by each of the considered
tools. In particular, thanks to its integrated approach, the se-
curity platform of BoAT pays a computational cost which
turns out to be about two orders of magnitude lower than
that of the other tools. We wish to conclude these considera-
tions by observing that our experimental results put clearly in
evidence the kind of influence that the coding activity exerts
on the cost of the security mechanism in terms of computa-
tional overhead. Simply put, the higher the compression level
imposed by the codec, the lower the computational overhead
due to the securing algorithm is (since less data are to be en-
crypted).

The remainder of the paper is organized as follows. In
Section 2, we discuss the general problem of guaranteeing
secure real-time audio communications over IP platforms,
provide a succinct survey of those tools that guarantee secu-
rity at the application level through external cryptographic
modules, and provide the reader with the system and adver-
sary model which all the tools have to cope with. In Section 3,
we present a detailed survey of the BoAT architecture. In
Section 4, we introduce the experimental scenario we have
developed for carrying out our analysis. In Sections 5 and 6,

we provide, respectively, the results of our experimental anal-
ysis with respect to the coding activity and the security mech-
anism. Finally, in Section 7, some conclusions terminate the
paper.

2. SECURE AUDIO TRANSMISSION OVER IP

The need to consider security constraints when developing
applications over IP is well accepted. The IP underlies large
academic and industrial networks as well as the Internet.
IP’s strength lies in its easy and flexible way to route pack-
ets; however, its strength is also its weakness. In particular,
the way IP routes packets makes large IP networks vulnera-
ble to a range of security risks, for example, spoofing (mean-
ing that a machine on the network masquerades as another)
and sniffing (meaning that a third party listens in a trans-
mission between two other parties). In order to protect au-
dio communications in such a scenario, different approaches
can be exploited depending on the particular layer chosen to
be equipped with a complete set of security services. In the
following two subsections, we briefly introduce two different
audio security approaches; the former amounts to the use
of the network level secure protocol termed IP-Sec, while the
latter consists in equipping the networked audio applications
with appropriate security mechanisms.

2.1. Securing speech at the network level

According to this approach, networked audio applications
rely on the underlying securing internetworking structure to
satisfy their security requirements. Usually, this transparent
management of security is obtained by making the network
layer secure. This is the case of IP-Sec [29], a collection of
protocols and mechanisms adopted to extend the classical IP
layer with authentication and security features.

The IP security (IP-Sec) protocol suite [29], developed
by the Internet Engineering Task Force (IETF), defines a set
of IP extensions for the provision of a secure, virtual, and
private network which is as safe as or safer than an isolated
local area network (LAN), but built on an unsecured, public
network. The set of security services that IP-Sec can provide
includes access control, connectionless integrity, data origin
authentication, rejection of replayed packets (a form of par-
tial sequence integrity and defence against unauthorized re-
sending of data), confidentiality (encryption), and limited
traffic flow confidentiality. IP-Sec technology seeks to secure
the network itself instead of the applications that use it, as
shown in Figure 2. Just as IP is transparent to the average
user, so are the IP-Sec-based security services. Unlike classical
specific application-level methods for protecting communi-
cations, this protocol suite guarantees security for any appli-
cation using the network. To make the network level secure,
the IP-Sec exploits three main traffic security technologies:
(i) the Authentication Header (AH) through which authen-
tication of packets is allowed, (ii) the Encapsulation Payload
(ESP) through which encryption of data is offered, and (iii)
the Internet Key Exchange (IKE) protocol that allows users
to agree on keys and every related information. As already
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Figure 2: IP-Sec within the network layers.

Table 1: Packet size overhead due to the ESP header when the audio
packet is generated by the codecs implemented in three different
tools.

GSM (Speak Freely) GSM (PGPfone) LPC-10 (Nautilus)
+9% +57% +39%

mentioned, these mechanisms are designed to be algorithm-
independent.

Besides the optimal level of interoperability guaranteed
by this standard, the computational costs imposed by its im-
plementation must be carefully considered, especially when
real-time applications have to be supported. In particular,
these costs are associated with (i) the memory needed for the
IP-Sec code and data structures, and (ii) the computational
overhead due to the activities of header management and of
data encryption and decryption, to be carried out on a per-
packet basis. This per-packet computational cost amounts to
increased latency and reduced throughput. In addition, the
use of the IP-Sec also imposes bandwidth utilization over-
head on the transmission/switching/routing elements of the
Internet infrastructure even if those components do not im-
plement the IP-Sec. This is due to the increase in the packet
size resulting from the addition of dedicated IP-Sec headers
and from the increased traffic associated with key manage-
ment protocols. For instance, the ESP header consists of a 10-
byte long segment, an additional padding of variable length
(0–255 bytes), and finally, a message authenticating code
(MAC) whose length depends on the particular algorithm
used to compute it. Such an additional header increases the
packet size and can jeopardize the application throughput.
This situation is particularly exacerbated when short audio
samples are transmitted with each packet. To make this prob-
lem explicit, in Table 1, we show the packet size overhead due
to the ESP header, in the case the audio packet is generated by
the GSM codecs of Speak Freely and PGPfone (see columns
1 and 2), and by the LPC-10 codec of Nautilus (see column
3), when the particular algorithm used for the MAC is the
MD5 [30]. It is also worth considering the analysis developed
in [31], where the authors evaluate the performance of dig-
ital video transmission with the IP-Sec over IPv6 networks
using an ordinary PC platform. By adding the IP-Sec infras-
tructure, the throughput degrades to 1/9 with respect to the
performance without authentication or encryption.

In conclusion, the provision of reliable real-time audio
quality data transmission over the Internet can be a hard task
when using IP-Sec. For this reason and due to the fact that

IP-Sec is not yet widely used over the Internet, other specific
application-level security methods are to be considered in or-
der to provide an adequate trade-off between security and
performance.

2.2. Securing speech at the application level

According to this approach, we can exploit suitable hardware
and software packages that, working at the application layer,
are able to offer a secure real-time audio communication
over the Internet. Usually, these applications are responsible
for taking the audio samples, and then continuously digitiz-
ing, compressing, and encrypting them. After the encryption
phase, the obtained audio packets are sent out through the
network to the receiver site, where the reverse process is exe-
cuted.

In this section, we make an overview of the software tools
termed Nautilus, Speak Freely, and PGPfone, which pro-
vide secure audio communications over the Internet by ex-
ploiting, at the application level, appropriate external secu-
rity modules. As already mentioned, instead, BoAT guaran-
tees secure conversations by merging the security strategy to-
gether with the playout control mechanism. Due to the nov-
elty of the approach adopted in BoAT, the general architec-
ture of this tool together with the related design issue are pre-
sented separately in Section 3. For the sake of completeness,
in Section 2.2.4, we formally provide the system model and
the threat model with which the above audio tools have to
cope.

2.2.1. Nautilus

Nautilus [12] is a popular audio tool that digitizes, encrypts,
transmits, and playouts audio packets either on ordinary
phone lines using modems or over TCP/IP networks includ-
ing the Internet. This tool provides usable speech quality at
bandwidths as low as 4800 bps. The current version of Nau-
tilus supports linear predicting coding [3] and exploits three
different encryption functions.

The securing algorithm of Nautilus first generates an en-
cryption key in one of two ways. In the former case, the key
is generated from a secret passphrase that the users share.
In the latter case, Nautilus generates the key by employing
the Diffie-Hellman key exchange algorithm. Once the key is
agreed on, by using one of the two ways, it is used for the en-
cryption of the rest of the conversation by means of one of
three block ciphers (Triple DES, Blowfish, and IDEA [25]),
to be selected by the user. It is worth noting that Nautilus has
been the first audio tool of this type freely distributed with
source code (written in C) and it has been through four pub-
lic beta test releases.

This tool is supported by two hardware platforms: IBM
PC-compatibles and desktop Sun Sparcstations. In the for-
mer case, it supports (i) Windows platforms including Win-
dows 95, 98, and NT, (ii) Linux, and (iii) Solaris X86. In the
latter case, SunOS or Solaris are needed.

2.2.2. Speak Freely

Speak Freely [14] is an audio tool for Windows machines
and a variety of Unix workstations (Windows and Unix
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machines can intercommunicate) which are usable across a
local network or the Internet. Speak Freely is full duplex and
provides a variety of compression modes, but if no com-
pression mode is selected, it requires the network to reli-
ably transmit 8000 Bps. Speak Freely incorporates a software
implementation of the compression algorithm used in GSM
digital cellular telephones that permits operations over Inter-
net links of modest bandwidth. For instance, by using GSM
compression, in conjunction with sample interpolation, the
data rate can be reduced to about 9600 bps. Moreover, Speak
Freely supports ADPCM compression to halve the data rate,
and LPC-10 which compresses audio down to the limit of
346 Bps, thus yielding a compression factor of more than 26
to 1. Within Speak Freely, audio packets can be encrypted
with either IDEA, DES, Blowfish, or a method based on a bi-
nary key supplied in a file. Speak Freely cooperates with PGP
[32] to automatically exchange session keys with users on the
same public key ring.

Speak Freely supports multicasting and can interoperate
with other Internet voice programs supporting the Internet
Real-Time Transport Protocol (RTP) or the Lawrence Berke-
ley Laboratory Visual Audio Tool (VAT) protocol, a widely
used Unix conferencing program.

2.2.3. PGPfone

PGPfone [13] is another popular tool which exploits external
software modules in order to provide secure audio commu-
nications over the Internet. In particular, the audio transmis-
sion starts by transparently and dynamically negotiating the
keys between the two parties by using the Diffie-Hellman key
exchange protocol. Then, the voice stream is encrypted by
means of either triple DES, CAST, or Blowfish, depending on
the user.

The tool architecture allows any speech compression al-
gorithm to be negotiated between the two parties as long as
both parties support the same algorithm in their respective
versions of PGPfone. Currently, it supports the GSM speech
compression algorithm and the ADPCM compression for
higher bandwidth connections such as ISDN. PGPfone is
copyrighted freeware for noncommercial use and available
for Windows machines and Apple Macintosh.

2.2.4. The system model and the threat model

In this section, we define the environment in which the con-
sidered audio tools are expected to work, and the threat
model such mechanisms should deal with, which basically
reflects the assumptions of the Dolev-Yao model [33].

An ideal network can be expected to provide some pre-
cise properties; for instance, it should guarantee message de-
livery, deliver messages in the same order they are sent, de-
liver one copy of each message, and support synchronization
between the sender and the receiver. All these properties are
favourable in order to support real-time applications such as
packetized audio transmission or multimedia conferencing
over wide area networks.

However, the underlying network upon which we operate
has certain limitations in the level of the service it can pro-

vide. Some of the more typical limitations on the network we
are going to consider are that it may

(i) drop messages,
(ii) reorder messages,

(iii) deliver duplicate copies of a given message,
(iv) limit messages to some finite size,
(v) deliver messages after an arbitrarily long delay.

A network with the above limitations is said to provide a
best-effort level of service, as exemplified by the Internet. This
model adequately represents the Internet as well as shared
LANs, but not switched LANs. All the dissertations and the
results presented in the next sections are obtained under such
model of the network.

As far as the adversary model is concerned, we argue that
the audio tools we consider are also secure in the presence of
a powerful adversary with the following capabilities:

(i) the adversary can eavesdrop, capture, drop, resend, de-
lay, and alter packets;

(ii) the adversary has access to a fast network with negligi-
ble delay;

(iii) the adversary computational resources are large, but
not unbounded. The adversary knows every detail
of the cryptographic algorithm, and is in possession
of encryption/decryption equipment. Nonetheless he
cannot guess secret keys or invert pseudorandom func-
tions with nonnegligible probability.

3. A SURVEY OF BoAT

In this section, we describe in detail the playout control soft-
ware mechanism of [10], which has been originally designed
for controlling and adapting the audio application to the
network conditions. In [27], some proposals have been dis-
cussed to extend the above algorithm with security features.
Here, we give a detailed and formal explanation of the ap-
proach proposed in [26], which integrates the playout con-
trol activity together with the security mechanism.

The original playout control algorithm of BoAT has been
passed through intense functional and performance analysis
[8], which revealed its adequacy to guarantee real-time con-
straints and it has been implemented in a software tool called
BoAT [15]. Such a mechanism follows an adaptive approach
and operates as follows. At the sending site, audio samples are
periodically gathered, packetized, encrypted, and then trans-
mitted to the receiving site, where the provision of a syn-
chronous playout of the received audio packets is achieved
by queueing the packets into a smoothing buffer and delay-
ing their playout so as to maximize the percentage of packets
that arrive before their playout point.

The playout control mechanism of BoAT assumes nei-
ther the existence of an external mechanism for maintain-
ing an accurate clock synchronization between the sender
and the receiver, nor a specific distribution of the end-to-end
transmission delays. Such a scheme relies on a periodic syn-
chronization between the sender and the receiver in order
to obtain an estimation of the upper bound for the packet
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Table 2: Steps of the handshaking protocol.

Direction Message Type Contents of packets

S→ R probe sender time ts
R→ S response sender time ts
S→ R install RTT computed by S
R→ S ack RTT computed by S

transmission delays experienced during the conversation.
This upper bound is computed using round trip time (RTT)
values obtained from packet exchanges of a handshaking
protocol periodically performed (about every second) be-
tween the two parties. The handshaking protocol can be ex-
ploited for a two-fold goal:

(i) it allows the receiver to generate a synchronous play-
out of audio packets in spite of stochastic end-to-end
network delays;

(ii) it allows the two authenticated parties to agree on a se-
quence of secret keys used to encrypt the conversation.

Before detailing the handshaking protocol and the re-
lated playout mechanism, we briefly explain the notation we
adopt: S is the sender, R is the receiver, Mj is a chunk of con-
versation contained in a packet, and Pj denotes a packet com-
posed of a timestamp and an audio sample Mj . We denote
by K0 a symmetric key agreed on during a preliminary au-
thentication phase (e.g., by using a regular digital signature
scheme such as RSA [34]), and by Ki any subsequent session
key agreed on between the two authenticated parties. More-
over, we assume that the packets of the handshaking phase
are encrypted with K0 by using any one of the block ciphers
for the symmetric cryptography such as AES and Blowfish
[25].

3.1. The playout control algorithm of BoAT

The first purpose of the synchronization protocol of BoAT
is the provision of an adaptive control mechanism at the re-
ceiver site in order to properly playout the incoming audio
packets. This is typically achieved by buffering the received
audio packets and delaying their playouts so that most pack-
ets, in spite of stochastic end-to-end network delays, will have
been received before their scheduled playout points. The suc-
cess of such a strategy depends on a correct estimation of an
upper bound for the maximum transmission delay. The tech-
nique we describe to achieve such an estimation is based on
a three-way handshake protocol.

The first handshaking protocol precedes the conversa-
tion. As shown in Table 2, the sender begins the packet pro-
tocol exchange by sending a probe packet timestamped with
the time value shown by its own clock (ts). At the reception
of this packet, the receiver sets its own clock to ts and sends
immediately back a response packet. Upon receiving the re-
sponse packet, the sender computes the value of the RTT by
subtracting the value of the timestamp ts from the current
value of its local clock. At that moment, the difference be-
tween the sender clock CS and the receiver clock CR is equal

to an unknown quantity (say t0) which may range from a the-
oretical lower bound of 0 (i.e., all the RTT values have been
consumed on the way back from the receiver to the sender),
and a theoretical upper bound of RTT (i.e., all the RTT values
have been consumed when the probe packet is transmitted
from the sender to the receiver). Then, the sender transmits
to the receiver an installation packet with the calculated RTT
value attached. Upon receiving this packet, the receiver sets
the time of its local clock by subtracting from the current
value of its local clock the value of the transmitted RTT. At
that moment, the difference between CS and CR is equal to a
value given by

∆ = CS − CR = t0 + RTT, (1)

where ∆ ranges in the interval [RTT, 2×RTT], depending on
the unknown value of t0, that in turn may range in the inter-
val [0,RTT]. Hence, the receiver is provided with the sender’s
estimate of an upper bound for the transmission delay that
can be used in order to dynamically adjust the playout delay
and buffer. In essence, a maximum transmission delay equal
to ∆ is left to the audio packets to arrive at the receiver in
time for playout, and consequently a playout buffering space
proportional to ∆ is required for packets with early arrivals.

During the audio conversation, the sender timestamps
each emitted audio packet Pj with the value of its local clock
ts at the moment of the audio packet generation. When an
audio packet arrives, its timestamp ts is compared with the
value tr of the receiver clock, then a decision is taken accord-
ing to the rules shown in Table 3. Simply put, packets that
arrive too late to be played out (ts < tr) are immediately dis-
carded. In the same way, packets arriving too far in advance
(ts > tr + ∆) are discarded since their playout instant is be-
yond the temporal window represented by the buffer size.
Instead, if tr ≤ ts ≤ tr + ∆, the packet arrives in time for be-
ing played out and is placed in the first empty location in the
playout buffer. Then, the playout buffering space allows the
packets that arrive in time for being played out to be sched-
uled according to the following rules. The playout instant of
each packet that arrive in time is scheduled after a time in-
terval equal to the positive difference between the values of ts
and tr . Using the same rate adopted for the sampling of the
original audio signal at the sender site, the playout process
at the receiver site fetches audio packets from the buffer and
sends them to the audio device for playout. More precisely,
when the receiver clock shows a value tr , the playout process
searches in the buffer for the audio packet with timestamp
tr . If such a packet is found, it is fetched from the buffer and
sent to the audio device for immediate playout.

In order for the proposed policy to adaptively adjust
to the highly fluctuant end-to-end delays experienced over
wide area, packet-switched networks (like the Internet), the
above mentioned synchronization technique is first carried
out prior to the beginning of the conversation, and then pe-
riodically repeated throughout the whole audio communica-
tion. The adopted period is about 1 second in order to pre-
vent the two clocks (possibly equipped with different clock
rates) from drifting apart. Thus, each time a new RTT is
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computed by the sender, it may be used by the receiver for
adaptively setting the value of its local clock and the playout
buffer size. This strategy guarantees that both the introduced
additional playout time and the buffer size are always propor-
tioned to the traffic conditions. However, it may be not pos-
sible to replace on the fly the current value of the receiver’s
clock and the dimension of its playout buffer. In fact, such an
instantaneous adaptive adjustment of the parameters might
introduce either gaps or even time collisions inside a talkspurt
period during which the audio activity is carried out.

On the one hand, a gap occurs when a given sequence
of audio packets is artificially contracted (or truncated) by
the playout control mechanism, thus causing at the receiver
an arbitrary skipping of a number of consecutive audio sam-
ples. This unwanted situation arises when an improvement
of the traffic conditions of the underlying network causes a
reduction of the estimated RTT. In such a case, as soon as
the current synchronization is completed and the receiver in-
stalls new parameters, the receiver’s clock suddenly advances
from its current value to a larger value. In [10], it is shown
that, in order for the receiver to playout all the audio pack-
ets generated by the sending site without skipping any audio
sample, it suffices that the sender transmits the installation
packet as soon as the first silence period not smaller than an
amount of time proportional to the improvement of the traf-
fic conditions is elapsed. Since no audio packet is generated
during the silence period, at the moment the receiver sets a
new value for its own clock, no audio packet is waiting for its
playout instant in the receiver’s buffer.

On the other hand, a time collision occurs when audio
packets that would be too late for playout according to the
current synchronization may instead be considered in time
for playout if they are processed by the receiver’s buffer as
soon as a new synchronization has been completed. This sit-
uation arises in case of a deterioration of the traffic condi-
tions over the underlying network. In such a case, the instal-
lation of a new synchronization causes the receiver’s clock to
be moved back from its current value; thus, in order to avoid
collisions, it is necessary that the receiver does not play out,
when the new synchronization is active, any audio packet
that was generated when the old synchronization was active.
Again, in [10], it is shown that in order to circumvent the
problem raised by such a scenario, it suffices that the receiver
installs the new value for its own clock only at the beginning
of a silence period signalled by the sender.

In general, the installation at the receiver of the values
of the receiver’s playout clock and of the buffer dimension is
carried out only during the periods of audio inactivity, when
no audio packets are generated by the sender (i.e., during si-
lence periods between different talkspurts). The reader inter-
ested in the proofs concerning the policies described above
should refer to [10].

3.2. The securing algorithm of BoAT

In this section, we show how to integrate the playout control
algorithm of BoAT with security services allowing for con-
fidentiality, integrity, and authenticity to be preserved. This
is obtained in two steps. On the one hand, we guarantee the

Table 3: Playout rules at the receiver site.

Condition Effect on the packet Motivation

ts < tr discarded
it arrived too late to
be played out

ts > tr +∆ discarded
it arrived too far in
advance of its playout

tr ≤ ts ≤ tr + ∆ buffered
it arrived in time for
being played out

handshaking packets against spoofing and sniffing attempts.
On the other hand, we employ the handshaking protocol to
make secure the whole audio conversation.

As far as secrecy is concerned, we show that the robust-
ness of the privacy mechanism of BoAT depends on (i) the
particular stream cipher we adopt and (ii) the lifetime of the
secret keys used during the conversation. As far as authentic-
ity is concerned, we show that after a preliminary authentica-
tion phase, the two trusted parties are provided with data ori-
gin authentication during the conversation lifetime. As far as
the integrity is concerned, we show that the receiving trusted
party can unambiguously decide that a received packet Pj

(timestamped with a value ts) is exactly the same packet Pj

sent at the instant ts by the sending trusted party.

3.2.1. The handshaking protocol

The original handshaking protocol of BoAT is exploited in
order to exchange fresh session keys between the two authen-
ticated parties, more precisely providing a key for each syn-
chronization phase. Such a key will be used to secure the con-
versation and will have a lifetime equal to at most 1 second,
namely, the time between two consecutive synchronizations.
More precisely, we adopt the exchanged key as the session
key of a stream cipher used to encrypt audio data. A stream
cipher is a symmetric encryption algorithm which is usu-
ally faster than any block cipher. While block ciphers operate
on large blocks of data, stream ciphers typically operate on
smaller units of plaintext, usually bits. A stream cipher gen-
erates what is called a keystream starting from a session key K
which is used as a seed for the pseudorandom generation of
the keystream. Encryption is accomplished by combining the
keystream with the plaintext, usually with the bitwise XOR
operation. Examples of well-known stream ciphers are A5/1
[35] (used by about 130 million GSM customers in Europe
to protect the over-the-air privacy of their cellular voice and
data communication), RC4 [25] (by the RSA’s group), and
SEAL [36].

The packets of the handshaking phases, instead of being
encrypted with the particular stream cipher, are encrypted
by employing the initial key K0 and a block cipher that can
use long keys in order to strengthen the security assumptions
(e.g., up to 448-bit keys in the case of Blowfish, or up to 2040-
bit keys in the case of RC6). During the generic handshaking
phase i, the two authenticated parties agree on a 128-bit ses-
sion key Ki (e.g., exchanged in the install packet). Whenever
the handshaking protocol has a positive outcome, Ki is the
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new key used to secure the subsequent chunk of conversa-
tion. Since the handshaking protocol is periodically started
during the conversation, a sequence of keys {Ki}i∈N is gener-
ated.

In order to guarantee the correct behavior of the above
mechanism, both sender and receiver must come to an agree-
ment. In particular, the sender site has to know if the re-
ceiver site has received the new key Ki in order to decide to
employ such a key to encrypt the following audio samples.
Hence, upon receiving the installation packet, the receiver
sends back an ack packet. At the reception of this packet, the
sender starts to use the new key. An additional information
for each audio packet is used as a flag in order to inform the
receiver that the key is changed and is exactlyKi. For instance,
by following a policy inspired by the alternating bit proto-
col, if each packet encrypted with the key Ki is transmitted
with a flag bit set to 0, then whenever a new synchroniza-
tion phase is completed, each subsequent packet is transmit-
ted with the bit set to 1. It is worth noting that if either the
installation packet or the ack packet does not arrive at their
destination, both sender and receiver carry on the commu-
nication by using the old key. Indeed, on the one hand, the
sender begins to encrypt the outgoing audio packets with the
new key only if it receives the ack packet. On the other hand,
the receiver begins to decrypt the ingoing audio packets with
the new key as soon as it receives a packet whose flag has been
changed with respect to the previously received packets. The
presented policy does not require additional overhead on the
original scheme because it relies on the handshaking proto-
col only.

As far as the secrecy, authenticity, and integrity condi-
tions of the handshaking protocol are concerned, the follow-
ing remarks are in order.

(i) An adversary can try to corrupt the result of the hand-
shaking protocol so that the two parties, after such a negotia-
tion, disagree on the new key used for securing the conversa-
tion. In particular, he may try to forge or alter some packets
of the handshaking phase, but he does not know the symmet-
ric key used to encrypt them (e.g., he cannot create or alter
a response packet with a given timestamp). In addition, he
can cheat neither the sender nor the receiver by reusing any
packet because of the presence of the timestamp ts in case of
the probe and response packets, and also the presence of of
the RTT in case of the install and ack packets (e.g., during
the generic handshaking phase i, he cannot masquerade as
the receiver by transmitting to the sender the response and
ack packets intercepted during a previously completed hand-
shaking phase i− j).

(ii) An adversary can try to drop systematically the mes-
sages of the handshaking protocol so that the lifetime of the
old session key is extended from 1 second to the whole du-
ration of the conversation; in this way, many more data and
time are at disposal of a cryptanalysis attempt. Such a prob-
lem may be avoided by adopting the following policy. For
each handshaking message, we create a packet containing the
synchronization information encrypted with the block ci-
pher and the audio sample filled with rubbish. Such a packet
is first enriched with an additional field to inform the receiver

that this is a handshaking packet and then encrypted with
the stream cipher, thus masquerading it as a normal audio
packet. Finally, in order to make it harder to reveal the hand-
shaking packets, the time instant a new phase is started by the
sender can be randomly chosen, instead of being scheduled
once per second as in the original proposal of the algorithm.
With these assumptions in view, an adversary can only try to
drop some packets in a random way and, as a consequence,
he can break off several consecutive handshaking phases with
a negligible probability. In spite of this, an intensive traffic
analysis during a full-duplex conversation could significantly
restrict the temporal interval in which the two parties are ex-
pected to send packets of the handshaking phase. If we want
the security mechanism to be more robust against this un-
likely attack, we can shut down the conversation whenever
more than n consecutive handshaking phases are not com-
pleted, for some suitable n depending on the strength of the
cryptographic algorithm.

In essence, the handshaking protocol does not reveal any
information flow allowing an adversary to spoof or sniff the
conversation. Moreover, the same mechanism is robust to
lost and misordered packets and makes no assumption on the
service offered by the network. The described policy is simi-
lar to some well-known protocols for radio communications
which are based on using spread spectrum frequency, in the
sense that during a conversation, the transmission frequency
is frequently changed in order to avoid interception and al-
teration. In the case of the securing mechanism of BoAT, the
duration of every key is limited to the time space between two
consecutive synchronizations (at most one second for nor-
mal executions), thereby this policy allows for making it dif-
ficult for a not authenticated party to decode the encrypted
data, and practically guarantees to be robust to trivial breaks
[25].

3.2.2. Securing the conversation

The session key exchanged during the handshaking phase is
used by the particular stream cipher for the encryption of
both the timestamp and the whole audio packet. More pre-
cisely, each audio packet belonging to the chunk of conver-
sation i between the two consecutive synchronizations i and
i+ 1 is encrypted by resorting to the particular stream cipher
and the session key Ki.

In order to guarantee authenticity and integrity of data,
we employ this mechanism in conjunction with a MAC. In
particular, we can adopt a mechanism similar to the HMAC-
MD5 used also in [2] to ensure authenticity and integrity
of the audio packets. Alternatively, we can encrypt (by the
particular stream cipher) the output of a 1-way hash func-
tion applied to the audio packet to ensure authenticity and
integrity of the same packet. Examples of well-known hash
functions are MD5 and SHA [25].

In Algorithm 1, we show such an approach which guar-
antees a secure conversation. We denote by {Pj}Ki the audio
packet Pj encrypted by using the stream cipher starting from
the session key Ki, and by MAC(Ki, Pj) the message authen-
ticating code for the packet Pj obtained by resorting to the
session key Ki.
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Sender

1. Pj = {ts,Mj}
2. Send P∗j = {{Pj}Ki ,MAC(Ki, Pj)}

Receiver

1. Receive P∗j
2. Compute ts and Mj by means of Ki

3. Verify the MAC

Algorithm 1: Securing algorithm.

The algorithm guarantees secrecy and satisfies the prop-
erties of authentication and integrity. More precisely, it guar-
antees the following condition. For each audio packet P∗j ,
which is generated with the above algorithm and received in
time for its playout, the receiver can decide its playout instant
and verify its integrity and the authenticity of the sender.

Secrecy

As far as secrecy is concerned, the security mechanism of
BoAT offers to the trusted parties a high assurance of the
privacy of the data transmitted during the conversation life-
time. In fact, we have shown that the handshaking proto-
col does not reveal any information about the secret keys
exchanged between the trusted parties, and that an adver-
sary as specified in Section 2 cannot guess secret keys. Se-
crecy is a crucial condition that the recent literature shows
to be not met in glaring cases. For instance, we consider the
attack on the A5/1 algorithm (used in GSM systems [35])
proposed in [37], in which a single PC is proved to be able
to extract the conversation key in real time from a small
amount of generated output. In particular, the authors of
[37] claim that a novel attack requires two minutes of data
and one second of processing time to decrypt the conversa-
tion. Now we assume that the particular cipher we choose to
adopt is as weak as the A5/1 algorithm. In the approach of
BoAT, in the absence of a powerful adversary able to iden-
tify and drop the handshaking messages, during two minutes
of conversation, at least 120 different session keys are used
so that the quantity of data that can be analyzed for a single
key is not sufficient to perform the attack and to reveal the
key and, consequently, the conversation. Moreover, in sup-
port of the robustness of the approach of BoAT, we point
out that, in the recent literature, the best known attacks of
some stream ciphers, proposed in [16], have complexity 259

and require 220 bits of ciphertext and are based on some re-
strictive assumptions on the characteristics of the stream ci-
pher. In [17], a novel attack has a complexity gain 221, but
it requires 233 bits of ciphertext, and, in certain cases, the ci-
pher can resist this attack. Because of this, we have that an
adversary can guess somehow a session key with a negligi-
ble probability; anyway, we recall that each session key may
allow an adversary to decipher just one second of conver-
sation with no information about the remaining encrypted
data. In general, it is worth noting that the relatively short
lifetime of every session key improves the secrecy guarantees
for any cryptographic algorithm. Anyway, a study conducted

in [8] revealed that too short lifetimes (e.g., less than 0.5 sec-
onds) cause a worsening of the speech quality, therefore a
massive resort to such an approach should be carefully ana-
lyzed.

Authenticity

As far as authenticity is concerned, we first assume a prelim-
inary authentication phase carried out by the two parties be-
fore the conversation (e.g., by resorting to a regular digital
signature scheme). After this initial secure step, only the legit-
imate parties know the value of the symmetric key agreed on
during this phase, and can carry out the first packet exchange
of the handshaking protocol by means of the symmetric key.
In particular, as we have shown in Section 3.2.1, an adversary
cannot start, carry out, and complete the packet exchange of
such a synchronization protocol with any of the trusted par-
ties. Later on, during the conversation, each packet is times-
tamped with the sender clock value at the moment of the
audio packet generation, encrypted by means of the session
key Ki, and authenticated by means of the MAC, so that each
received packet can be played out only once, and only if it
arrives in time for being played out, according to the adap-
tive adjustment carried out during the ith handshaking syn-
chronization phase. The receiver is guaranteed that the audio
packets encrypted by means of the key Ki and played out ac-
cording to the piggybacked timestamp have been generated
at (and sent by) the sender site. In fact, an adversary cannot
behave as a “man in the middle” by generating new pack-
ets (as he does not know the session key and he cannot au-
thenticate the packets) or spoofing (as he can resend or de-
lay packets, but the timestamp allows the receiver to discard
such packets). Finally, we point out that the key Ki+1 is agreed
on by resorting to a packet exchange encrypted by means of
a secret key, and such a negotiation does not reveal any in-
formation about the new session key. For these reasons, we
deduce that the authentication condition is preserved along
the conversation lifetime.

Integrity

As far as integrity is concerned, the following remarks are
in order. As a first result, we argue about the correctness of
the algorithm, and then, we show that an adversary cannot
alter the content of the conversation obtained by applying
the above-presented algorithm. In a first simplified scenario,
we assume the system model without malicious parties. We
consider a packet P∗j generated by the sender and arriving at
the receiver site in time for its playout. As the trusted par-
ties share the same session key, the receiver can compute the
timestamp in order to schedule the playout instant of the
packet, compute Mj in order to playout the audio packet,
and check the MAC in order to verify the integrity of Mj .
The effect of this behavior cannot be altered by an adversary,
and we prove this fact by considering the potential moves
of a malicious party. We assume the audio packets gener-
ated by the sender and managed by the receiver as seen in
the above algorithm, and we show that all the played out
packets can be neither generated nor altered by an adversary
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with the capabilities specified in the threat model. In the case
the adversary eavesdrops, captures, drops, or delays a packet
P∗j , then the proof is trivial. In fact, in these cases the adver-
sary can only prevent the receiver from receiving or playing
out P∗j . The most interesting case arises whenever the ad-
versary tries to alter P∗j . In particular, he can alter the en-
crypted timestamp, the plaintext Mj , or the MAC, but in
this case, the receiver notices the alteration by verifying the
MAC, and therefore he discards the packet. It is worth not-
ing that it is computationally infeasible, given a packet Pj

and the message authenticating code MAC(Ki, Pj), to find
another packet P′j such that MAC(Ki, Pj) = MAC(Ki, P

′
j).

In addition, the adversary cannot send a new packet Pj

to the receiver because he knows neither the session key
nor the playout instant of the audio sample Mj he intends
to forge.

4. EXPERIMENTAL SCENARIO

In this section, we describe the experimental scenario we
have constructed to conduct the analysis of the audio tools of
interest, namely, Nautilus, PGPfone, Speak Freely, and BoAT.

The experiments have been conducted with the two
following machines, namely, a 133-MHz Pentium proces-
sor, 48-MB RAM, and ISA Opti 16-bit audio card, and a
200-MHz MMX Pentium processor, 64-MB RAM, and PCI
Yamaha 724 audio card. These workstations have used two
10/100-Mbit Ethernet network cards to transmit packets over
the underlying network. Both Linux (RedHat 6.0) and Win-
dows 98 operating systems have been used depending on the
analyzed audio tool.

In order to perform measurements of the computational
overhead introduced by both securing and coding activi-
ties, while avoiding the issue of taking into account network
delays, all the experiments were conducted as described in
the following. For all the analyzed audio tools, each audio
sample was first compressed by the codec employed within
that tool, then encrypted by the corresponding securing al-
gorithm, and finally, transmitted over the network by the
adopted Ethernet card. Hence, for each conducted exper-
iment, we took, at the sending site, measurements of the
time intervals between the packet generation instant and its
transmission instant over the network. This policy has al-
lowed us to take experimental measurements of the packe-
tization/compression/encryption delays not affected by the
problem of managing variable network delays. The reverse
process was executed at the receiving site in order to evaluate
the decompression/decryption delays. Each of those experi-
ments was repeated 30 times with an individual duration (for
each experiment) of 30 seconds. All the results (reported in
the two following sections) have been obtained by averaging
the experimental measurements taken in each repeated ex-
periment.

In order to allow the reader to understand the meaning
of the reported experimental results, some important con-
siderations concerning codecs are discussed in the following
section.

4.1. Codecs

An efficient coding of the signal is the first factor to consider
in order to allow speech to be reduced to a bandwidth fit-
ting the network availability, and to obtain the same speech
quality as generated at the sender site. For instance, telephone
quality of speech needs 64 Kbits, but in most cases, such
bandwidth is not reachable over the Internet. Codecs are
used to cope with this lack, but as the compression level in-
creases (and the needed bandwidth decreases), the generated
speech degrades itself by turning misunderstandable. This
issue has been passed down to the codec development ef-
forts of the International Telecommunication Union (ITU).
Hence, several codecs that work well in the presence of the
scarce network bandwidth constraint have been designed. As
an example, the ITU codecs G.729 and G.723.1 [38] have
been designed for transmitting audio data at bit rates ranging
from 8 Kbps to 5.3 Kbps.

In general, a trade-off exists between loss of fidelity in the
compression process and amount of computation required
to compress and decompress data. In turn, the more the data
are compressed, the faster is the encryption/decryption pro-
cess since less data is to be encrypted.

In the remainder of this section, we briefly survey the
most characterizing features of the codecs embodied in all
the audio tools of interest, namely, GSM, ADPCM, LPC-10,
and the wavelet-based codec of BoAT.

GSM compression employs the global system mobile al-
gorithm used by European digital cellular phones [39]. Speak
Freely supports the standard GSM version that can produce
audio at a data rate of 1650 bytes per second, thus reducing
the PCM basic data rate by a factor of almost five with lit-
tle degradation of voice-grade audio. In turn, PGPfone sup-
ports two versions of GSM: standard GSM and a version
called “GSM lite,” that provides the same speech quality as
full GSM, but with less effort and less bandwidth needed.
PGPfone provides GSM and GSM lite with a range of sam-
pling frequencies. More precisely, voice can be sampled at
various sampling rates, ranging through 4410, 6000, 7350,
8000, and 11025 samples per second. The faster GSM is sam-
pled, the better the voice quality, but at the cost of a consid-
erable computational load. Like most voice codecs, GSM is
asymmetrical in its computational load for compression and
decompression; indeed, decoding requires only about half
the computation as encoding.

ADPCM [3] compression uses adaptive differential pulse
code modulation and delivers high sound quality (the loss in
fidelity is barely perceptible) with low computing loads, but
at a cost of a higher bit rate with respect to GSM. Both Speak
Freely and PGPfone support ADPCM.

LPC-10 [3] uses a version of the linear predictive cod-
ing algorithm (as specified by United States Department of
Defense Federal Standard 1015/NATO-STANAG-4198) and
achieves the greatest degree of compression, but like GSM,
it is extremely computationally intensive. LPC-10 requires
many calculations to be done in floating point and may not
run in real time on a machine without an FPU. Audio fi-
delity in LPC-10 is less than what may be achieved with GSM.
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The high degree of compression achieved by LPC-10 per-
mits to use low-speed Internet links. In addition, the com-
putational overhead per each audio packet due to encryp-
tion/decryption activities decreases since those packets have
a typical small size. Both Nautilus and Speak Freely support
LPC-10.

As far as BoAT is concerned, its control mechanism ex-
ploits a wavelet-based software codec designed to encode
audio samples with a variable bit rate [28]. This codec ex-
ploits a flexible compression scheme based on the discrete
wavelet transform of audio data; the wavelet coefficients are
quantized using a successive approximation algorithm and
are encoded according to a run-length entropy coding strat-
egy that uses variable length codes. The quantization scheme
has the property that the bits in the audio stream are gen-
erated in order of importance, yielding a fully embedded
code. In such a way, the encoder can terminate the encod-
ing at any point, thus allowing any precise (and variable)
target bit rate. Based on this codec, a control mechanism
that encodes and transmits audio samples with a data rate
that is always proportioned to the network traffic condi-
tions has been devised. In essence, the control mechanism
devised within BoAT establishes a feedback channel between
the sender and the receiver in order to assess periodically,
in 5-second measurement intervals, the network congestion
estimated under the form of average packet loss rate (and
transmission delay variation). On the basis of this period-
ical feedback information, the following control process is
carried out at the sender’s site in order to match the send-
ing rate to the current network capacity. When the experi-
enced average loss percentage surpasses a given upper thresh-
old, the control process gradually decreases the sending rate
according to a predefined decreasing scheme which takes
into direct account the value of the measured jitter. Such
one gradual decrease is obtained by exploiting the possibil-
ity of terminating at any point the encoding activity pro-
vided by the wavelet-based variable-bit-rate codec embed-
ded in BoAT. Conversely, if the average loss rate falls below
a certain lower threshold, the sending rate is gradually in-
creased in order to match the improved connection capacity.
In summary, the use of one such wavelet-based variable-bit-
rate codec guarantees that BoAT is always able to encode au-
dio samples at a speed proportioned to the current network
performances.

As a final remark, it is also worth mentioning that BoAT
may guarantee a gradual adjustment of the sending rate to
range from 8000 Bps (corresponding to the toll quality pro-
vided by PCM) to 700 Bps (corresponding to the synthetic
quality provided by the LPC encoding strategy). For the pur-
poses of the experiments concerning the coding computa-
tional load, we have used only the two limiting rates: 700 Bps
and 8000 Bps. Instead, as far as the experiments related to
the encryption/decryption computational overhead are con-
cerned, we have used only the data rate 850 Bps, correspond-
ing to a speech quality comparable with that offered by the
GSM lite codec.

Summarizing, in Table 4, we report the costs of all the
above-mentioned codecs in terms of both relative CPU cost

Table 4: Relative CPU cost and bandwidth (bytes per second) re-
quirements of various codecs.

Codec CPU Bandwidth

ADPCM 1 4000

GSM 39 1650

LPC-10 53 346

BoAT 9 700

and needed bandwidth. The CPU costs reported in that ta-
ble are calculated taking the value 1 as the basis for the time
needed by ADPCM to encode a second of speech. For in-
stance, based on the fact that ADPCM takes one time slot to
encode a second of speech, the wavelet-based codec of BoAT
requires about 9 time slots to encode the same quantity of
data, even if it guarantees a better level of compression since
it requires 700 Bps instead of 4000 Bps.

To conclude this section, in Table 5, we report the quan-
tity of data compressed during a second of audio transmis-
sion by the different codecs embedded in each analyzed tool.
Such values are particularly meaningful, especially when
evaluating the performance of the securing algorithms, be-
cause they specify the quantity of data to be encrypted and
decrypted.

5. COMPRESSING DATA: EXPERIMENTAL RESULTS

In this section, we report the experimental results obtained
by calculating the computational overhead due to the codec
activity for all the analyzed tools. The motivation behind our
study relies on the fact that the coding activity is an impor-
tant step of the audio data flow pipeline, and also affects the
performance of the encryption/decryption activities. Hence,
a significant comparison among the different tools must also
take the performance of the coding/decoding activities into
consideration.

All the results of interest are reported in Tables 6, 7, 8,
and 9, and were obtained by employing the same architec-
ture presented in Section 4. In particular, our tables show
the computing time (expressed in milliseconds) needed for
coding (meaning that digitized speech samples are converted
into a compressed form) and decoding a second of conversa-
tion.

As already mentioned previously, the codecs imple-
mented in each tool offer different trade-offs between the
loss of fidelity and the amount of computation required to
compress and decompress the data. In turn, the more the
compression level, the faster the encryption/decryption pro-
cess. These considerations motivate the very different results
shown in our tables. In particular, we have that a lower com-
pression level implies a better speech quality, a lower cod-
ing computational load, and, consequently, a high quantity
of data to be encrypted and transmitted.

As a first result, since ADPCM offers the lowest compres-
sion level and the best quality of speech, we can observe that
its computational load is limited to a few milliseconds (3 to 6
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Table 5: Audio packet size and number of transmitted audio packets per second for each codec.

Speak Freely 7.1 PGPfone 2.1 Nautilus BoAT

GSM ADPCM GSM 4.4 ADPCM LPC-10

Bytes per packet 336 496 70 327 56 34

Packets per second 5 8.4 14 13 5.5 25

Table 6: Speak Freely 7.1 (Windows 98).

Computing time (ms)
CODEC

GSM ADPCM
Mean Variancy Mean Variancy

Coding 114.1 10.5 3.58 0.01
Decoding 32.2 3.23 3.67 4.51

Table 7: PGPfone 2.1 (Windows 98).

Computing time (ms)
CODEC

GSM lite ADPCM
Mean Variancy Mean Variancy

Coding 115 296 6.08 2.84
Decoding 79.1 274.3 5.88 2.75

depending on the tool, see Tables 6 and 7) with respect to tens
of milliseconds experienced by the other codecs. On the con-
trary, LPC-10, which offers the maximum level of compres-
sion, experiences the worst computational load (Table 8). In-
stead, both the BoAT codec (at 700 Bps) and the GSM codec
have a workload corresponding to about a hundred of mil-
liseconds (Tables 6, 7, and 9).

As another significant result, it is worth noting that each
codec, except for the ADPCM codec of Speak Freely (Table 6)
and for the wavelet-based codec of BoAT (Table 9), is appre-
ciably faster during the decoding than the encoding phase.
Only in the cases of ADPCM and of the BoAT codec (at
8000 Bps), the coding and decoding activities present a com-
parable computational load.

Again, as far as the wavelet-based codec of BoAT is con-
cerned, the amount of computation required to compress
data is very low when using the 8000 Bps data rate with re-
spect to the 700 Bps data rate (Table 9). We point out that
our experiments reveal that the codec of BoAT and the codec
of GSM represent a good trade-off between speech qual-
ity and coding computational load since they both outper-
form LPC-10 from a performance standpoint, and guaran-
tee a voice quality only a little lower than that provided by
the codec of ADPCM in spite of an appreciably lower needed
bandwidth.

6. SECURING DATA: EXPERIMENTAL RESULTS

In this section, we report the experimental results obtained
by calculating the computational overhead due to the secu-
rity mechanism for all the analyzed tools. In particular, the

Table 8: Nautilus 1.5a (Linux RedHat 6.0).

Computing time (ms)
CODEC
LPC-10

Mean Variancy
Coding 172 1.95
Decoding 80.8 18.6

Table 9: BoAT (Linux RedHat 6.0).

Computing time (ms)
CODEC

8000 Bps 700 Bps

Mean Variancy Mean Variancy

Coding 31.03 12.11 105.5 46.5
Decoding 36.1 22.6 143.7 337.6

results are obtained by employing the same architecture pre-
sented in Section 4.

As far as BoAT is concerned, we make the following as-
sumptions. The particular stream cipher we have consid-
ered in our experiments is the RC4 algorithm [25], while the
message-authenticating code of each packet is computed as
the encryption of the output of the MD5 message-digest al-
gorithm [30]. The packets of the handshaking protocol are
encrypted by using the block cipher Blowfish [25], and the
temporal interval between two consecutive synchronizations
is exactly one second.

In Table 10, we report the computational overhead (ex-
pressed in milliseconds) experienced during a second of con-
versation by a sending site that follows the algorithm illus-
trated in Algorithm 1 by singling out the different steps of
the mechanism:

(i) encryption of the handshaking packets by means of the
block cipher,

(ii) encryption of the audio packets by means of the stream
cipher,

(iii) computation of the MAC.

The results of Table 10 put in evidence the following
facts. The overall computational overhead is negligible (equal
to few tens of microseconds). The extremely low use of the
block cipher, which is used for the packets of the hand-
shaking phase only, motivates the almost null computational
cost derived from such an operation. Substantially, we note
that the computational overhead is equally divided between
the encryption phase, performed resorting to the RC4 al-
gorithm (whose performance is about 13.7 MBps), and the
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Table 10: Computational overhead of the securing mechanism of
BoAT per second of conversation.

Computing time (ms)

Block cipher 0.008

Stream cipher 0.0591

MAC 0.0474

Total latency 0.1145

authentication phase, performed resorting to the MD5 algo-
rithm (whose performance is about 17 MBps). It is worth
noting that these results are compatible with those on the
performance of RC4 and MD5 presented in [40, 41, 42, 43].
Moreover, we point out that we have not considered SEAL-
like stream ciphers, because from the performance viewpoint
these algorithms do not seem to be appropriate if the key
needs to be changed frequently (see, e.g., [36]).

Summarizing, the results put in evidence the negligible
computational overhead of the implemented security mech-
anism, especially with respect to the latency introduced by
the additional delay calculated by the adaptive playout con-
trol algorithm, equal to tens of milliseconds, as shown in
[1, 8, 9].

Now, we contrast the above results with the performance
obtained by analyzing the other application-level methods,
namely, Nautilus, PGPfone, and Speak Freely. Before pre-
senting the results of our experiments, we point out the fol-
lowing remarks. Unlike BoAT, we have that the above meth-
ods adopt block ciphers only in order to encrypt each au-
dio packet to be transmitted along the network. More pre-
cisely, they employ some well-known cryptographic algo-
rithms such as DES, 3DES, IDEA, Blowfish, and CAST (see
[25] for the technical details of these algorithms).

In order to provide the reader with a better understand-
ing of the reported results, we just recall the following re-
marks on the considered codecs. ADPCM offers toll qual-
ity of speech at the cost of a high quantity of data to be
encrypted and transmitted. GSM codecs offer high speech
quality in spite of a higher compression level. Finally, LPC-
10 offers poor speech quality with the maximum level of
compression. The experimental results are shown in Tables
11, 12, and 13. For each block cipher implemented in the
tools of interest, the tables report the computing time expe-
rienced during a second of conversation by the encryption
phase.

The first interesting point illustrated by our tables is that
in all cases the computational overhead of the privacy mech-
anism is restricted to a few milliseconds. The upper bound
is represented by the case of Speak Freely with the block
cipher DES and the codec ADPCM with 20.8 milliseconds
(Table 11). If we compare these results with those reported
in Table 10, we can conclude that the securing mechanism of
BoAT outperforms the other tools; in particular, BoAT turns
out to be about 2 orders of magnitude better than the other
tools (tens of microseconds with respect to a few millisec-
onds). This is because the integrated mechanism of BoAT

Table 11: Speak Freely 7.1 (Windows 98).

Computing time (ms)
CODEC

GSM ADPCM
Mean Variancy Mean Variancy

Blowfish 2.47 0.01 5.22 0.15
IDEA 3.94 0.01 9.08 0.05
DES 9.77 0.20 20.8 0.16

Table 12: PGPfone 2.1 (Windows 98).

Computing time (ms)
CODEC

GSM lite 4.4 ADPCM
Mean Variancy Mean Variancy

Blowfish 2.09 0.06 4.72 0.02
CAST 2.08 0.002 4.43 0.07
3DES 6.35 0.14 16.8 0.56

adopts a lightweight ciphering mechanism that is very ad-
equate when incorporated within the original handshaking
protocol.

The results of a comparison among the performance of
the different tools depend strictly on the particular codec
that is used to compress data. Indeed, the more the data are
compressed, the faster is the encryption/decryption process.
For instance, it may be significant to contrast the perfor-
mance of PGPfone with the codec GSM (Table 12) and BoAT
(Table 10) since the related codecs offer the same quality of
speech and the same quantity of data to be encrypted and
transmitted per second of conversation (850 bytes in the case
of BoAT and 980 bytes in the case of the PGPfone GSM 4.4).
The results (about 0.1 milliseconds for BoAT and about 2–7
milliseconds for PGPfone) confirm once again our claim that
BoAT outperforms the other tools.

As far as Nautilus is concerned, it is worth mentioning
that the very low computational overhead of its securing al-
gorithm (Table 13) depends on the fact that Nautilus uses the
LPC-10 codec that exploits a very high compression factor
(note that the output of the LPC-10 compression algorithm
per second of conversation is few hundreds of bytes). In par-
ticular, the speech quality offered by this codec is noticeably
poorer than the high quality guaranteed by the codecs of the
other considered tools.

An interesting remark is in order in the case of the AD-
PCM codec implemented in Speak Freely and PGPfone (see
Tables 11 and 12). Indeed, when using such a codec, we can
observe an overhead of the encryption phase of several mil-
liseconds, especially in the case of 3DES, because ADPCM
is based on a low compression level (thousands of bytes per
second of conversation) in order to offer toll quality of the
transmitted speech.

To conclude this section, we can summarize the obtained
results by observing that the integrated mechanism of BoAT,
thanks to its handshaking protocol which allows the two par-
ties to share the session keys, has turned out to be very suit-
able to extend the playout control algorithm with security
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Table 13: Nautilus 1.5a (Linux RedHat 6.0).

Computing time (ms)
LPC-10

Mean Variancy

Blowfish 0.32 0.0004

IDEA 0.48 0.004

3DES 0.84 0.0009

features in a simple and cheap way. Hence, adding security
modules to the audio data flow pipeline may be done without
jeopardizing the overall end-to-end delay because the pre-
sented approach has been revealed to be neither a noticeable
computational penalty nor a performance bottleneck in real-
time speech traffic. As far as the other application-level au-
dio tools of interest are concerned, the performance results
put in evidence that the computational overhead of the se-
curity mechanism is limited to a few milliseconds, and that
such a result is about 2 orders of magnitude worse than the
performance offered by BoAT.

7. CONCLUSION

In this paper, we have considered an adaptive packet audio
control mechanism called BoAT and three application-level
tools for the secure speech transmission over the Internet,
namely, Nautilus, PGPfone, and Speak Freely. The former
offers a scheme which adaptively adjusts to the fluctuating
network delays typical of the Internet and integrates in such
an algorithm security features. The other tools have been de-
signed at the application layer in order to add speech com-
pression and strong cryptographic protocols, as separated
external modules, to the audio transmission over untrusted
networks.

The comparison among the above audio tools has been
conducted by measuring the computational overhead of both
codec activity and security mechanism. In the former case,
we have put in evidence the role played by codecs in the gen-
eration of the audio data flow pipeline and how they also af-
fect the performance of the security mechanism. In the latter
case, we have emphasized the low-computational cost of the
cryptographic algorithms for each considered tool. In partic-
ular, we have shown the adequacy of BoAT in adding secu-
rity with a negligible overhead. As an example, an interest-
ing summarization of the results of Section 6 is reported in
Table 14, where we show the computing time experienced by
both encryption (at the sending site) and decryption (at the
receiving site) during a second of conversation. In such a ta-
ble, we consider the tools BoAT, Speak Freely with the codec
GSM and the block cipher DES, PGPfone with the codec
GSM lite 4.4 and the block cipher 3DES, and Nautilus with
the codec LPC-10 and the block cipher 3DES. The results re-
veal that the provision of security has a computational cost of
a few milliseconds and BoAT performs better than the other
tools (tens of microseconds with respect to a few millisec-
onds).

Table 14: Performance comparison.

Computing time (ms)

BoAT 0.229

Speak Freely 19.54

PGPfone 12.7

Nautilus 1.68

A final consideration may be done concerning the partic-
ular approach adopted by the designers of BoAT for guaran-
teeing security. This approach has permitted to add appro-
priate security services without affecting the overall playout
latency introduced by the playout control mechanism. This
is a very relevant result for all those audio tools that incor-
porate dynamic mechanisms to adapt the playout process to
the network conditions. In fact, as stressed in recent works
[8, 9], it is not possible to interfere with the playout values
decided by the control mechanisms without jeopardizing the
strict real-time constraints imposed by audio applications.
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