
Action re�nement as an implementation relation

Arend Rensink� and Roberto Gorrieri�

� Institut f�ur Informatik� University of Hildesheim� Postfach ������� D������
Hildesheim	 email
 rensink�informatik�uni
hildesheim�de

� Dipartimento di Scienze dell�Informazione� University of Bologna� Porta San
Donato �� I������ Bologna	 email
 gorrieri�cs�unibo�it

This work has been partially supported by the Vigoni exchange program and the
HCM network EXPRESS ��Expressiveness of Languages for Concurrency���

Abstract� We propose a theory of process re�nement which relates
behavioural descriptions belonging to conceptually di�erent abstraction
levels� through a so
called vertical implementation relation� The theory
is based on action re�nement� which permits to relate abstract actions
of the speci�cation to concrete computations of the implementation	 it
is developed in the standard interleaving approach� A number of proof
rules is shown to be sound for the particular vertical implementation
relation �based on observation congruence� we study in this paper� We
give an illustrative example�

Appeared in� TAPSOFT ���� Theory and Practice of Software
Development� M� Bidoit and M� Dauchet �Eds�	� pp� ��
���


� Introduction

There is a long tradition in de�ning process re�nement theories �cf� ��� for an
overview�	 essentially based on the idea that	 given two processes S and I 	 I
is an implementation of S if I is more deterministic �equivalent� according to
the chosen semantics� Still	 both S and I belong conceptually to the same ab

straction level	 as the actions they perform belong to the same alphabet� In
the development of software components	 however	 it is quite often required to
compare systems belonging to di�erent abstraction levels� To the best of our
knowledge	 the only theory that has been developed to this aim is the work on
action re�nement �e�g�	 ��	 
	 �	 ��	 ��	 ��	 ���� and interface re�nement ����

Given a re�nement function r mapping abstract actions to concrete pro

cesses	 the developed theories say that the implementation of a speci�cation S is
given by the syntactic substitution of concrete processes r�a� for actions a in S
��	 
	 ��	 ��� or by the semantic substitution of the model of concrete processes
r�a� for actions a in the semantics of S ��	 ��	 ��	 ���� The basic assumption
of these theories is that there is only one possible implementation for a given
speci�cation� in other words	 the action re�nement function is used as a pre�

scriptive tool to specify the only way abstract actions are to be implemented�
Consequences of this are the following�

� The re�nement function can be used as an operator of the language	 as it
de�nes also a function on processes� Hence	 it becomes immediately relevant
to investigate the so
called congruence problem� �nd an equivalence relation



such that	 if two processes S� and S� are equivalent	 then also r�S�� and
r�S�� are equivalent� Dating back to ���	 it is clear that it is necessary to
move to non�interleaving semantics� the parallel execution of actions a and
b	 denoted a jjj b	 is interleaving equivalent to their sequential simulation
a� b � b� a� however	 if we re�ne a to the sequence a�� a�	 then we obtain
a�� a� jjj b and a�� a�� b� b� a�� a� which are not equivalent at all� Most of the
work in action re�nement has been devoted to this problem�

� Because of the strong relation to the syntactical structure of the speci�ca

tion S	 the implementation r�S� is rigidly de�ned� One of the typical con

straints is that the possible causal relation between two abstract actions is
preserved among all the actions of the two implementing processes� For in

stance	 if S � a� b and r�a� � a�� a�	 then the only possible implementation
is r�S� � a�� a�� b� As pointed out in ����	 this can be a serious drawback	
because in general a causal relation at an abstract level could be partially
forgotten at the concrete one� if only a� is to be considered a cause for b	
then a�� �a� jjj b� implements a� b �via r�� Some investigations of less rigid
forms of action re�nement can be found in ��	 �
	 ���� Still	 in all these ap

proaches	 speci�cation and re�nement function completely determining the
implementation�

Our research starts by removing the basic assumption� more than one imple

mentation is possible for a given speci�cation� This seems quite natural	 even
if the implementation of the abstract action is completely speci�ed via r� for
instance	 if an abstract action represents a communication	 the way the actual
implementing protocol is de�ned should not be relevant at the high level of the
speci�cation� Considering the example above	 a jjj b is implemented as a�� a� jjj b
�via r� in the traditional approach	 but we also admit the more sequential process
a�� a�� b� b� a�� a� as a possible implementation� Similarly	 we consider a�� a� jjj b
a legal implementation for a� b� b� a �via r��

As a consequence	 the congruence problem simply disappears� since one single
speci�cation may admit non
equivalent implementations	 a fortiori implemen

tations of two equivalent speci�cations need be equivalent themselves� Further

more	 the syntactic structure needs not to be preserved rigidly�

We advocate the use of vertical implementation relations �up to a re�ne

ment function�	 a concept �rst proposed in ����	 as a means to relate processes
belonging to conceptually di�erent abstraction levels� They are built on top of
an existing horizontal implementation relation	 called its basis	 such as those
mentioned above	 but in addition use the re�nement function to set a correspon

dence between abstract actions and concrete computations� After introductory
de�nitions �Sect� ��	 the core of the paper �Sect� 
� discusses a set of proper

ties any vertical implementation relation vr �where r is the re�nement function
considered� should satisfy� They can be divided into two main groups� The �rst
group states the interplay between vr and its chosen basis �� in particular	 vid

�vertical implementation under the identity function� collapses to �	 and vr and
� compose	 meaning that � � vr � � � vr� The second group de�nes a set of
congruence
like properties� e�g�	 if Si v

r Ii for i � �� �	 then S��S� v
r I��I�� In



Sect� � we then propose a speci�c vertical implementation relation �r	 with the
following main features� it is de�ned in the standard interleaving approach	 its
basis is observation congruence � �cf� �����	 and it enjoys all the proof rules for
vr� Finally	 in Sect� � we apply the resulting theory to an example taken from
���� Because of space limitations	 proofs have been omitted from this paper�

Evaluation� The approach to action re�nement proposed in this paper is quite
new	 in the following respects�

� We allow a given abstract speci�cation to have di�erent	 incomparable im

plementations under a given	 �xed re�nement function� This immediately
implies that re�nement cannot be treated as an operator� hence the stan

dard congruence problem of traditional action re�nement disappears�

� We integrate action re�nement with interleaving semantics� The only re

motely similar work we are aware of is ���	 which establishes restrictions under
which interleaving models are still compositional with respect to traditional
re�nement� and ����	 which considers a di�erent type of action re�nement	
for which interleaving semantics is already compositional�

� We directly compare systems on di�erent levels of abstraction	 using the
concept of vertical implementation that extends the standard notion of �hor

izontal� implementation relation�

� We give algebraic proof rules for vertical implementation� The only compa

rable concept in traditional action re�nement seems to be its treatment as
syntactic substitution	 studied by Aceto and Hennessy in ��	 
� and compared
with semantic re�nement in �����

� We allow vertical implementation to be collapsed to the well
known observa

tional congruence relation	 by hiding all the actions that were re�ned� This
is reminiscent of interface re�nement as in ���� it makes it possible to mix
action re�nement with established methods for �horizontal� implementation�

Many of the basic ideas behind the approach of this paper were already present
in ���	 ���	 but the technical material	 including the algebraic proof rules and
the notion of vertical bisimulation	 appear here for the �rst time�

� De�nitions

We assume a universe of action names U	 ranged over by a� b� c	 and an invisible
action � �� U� Subsets of U are denoted A� A�C� C �for abstract and concrete

actions	 respectively�� We denote A� � A � f�g for any A � U� U� is ranged
over by �� �� �� In addition we use a set of process names X� We de�ne a family
of languages LA	 ranged over by t� u� v� S� I � A � U is the set of actions that
may be used within terms�

t ��� � j � j � j t� t j t� t j t jjA t j t��� j t�A j x j 	x
 t 


Here	 � � A� 	 A � A	 ��A� A and x � X� Renaming functions � are extended
when necessary with the mapping � 	� � � In addition	 we use t jjj u � t jj

�
u to



Table �� Structural operational semantics

�X

tX uX

�t� u�X

tX uX

�t	u�X

tX uX

�t jjA u�X

tX

�t�A�X

tX

t���X

tX

��x� t�X

� ��� �

t ��� t�

t� u ��� t�

u ��� u�

t� u ��� u�

t ��� t�

t	u ��� t�	u

tX u ��� u�

t	u ��� u�

t ��� t� � �� A

t jjA u ��� t� jjA u

u ��� u� � �� A

t jjA u ��� t jjA u�

t ��� t� u ��� u� � � A

t jjA u ��� t� jjA u�

t ��� t� � �� A

t�A ��� t��A

t ��� t� � � A

t�A ��� t��A

t ��� t�

t��� �
����
��� t����

t ��� t�

�x� t ��� t���x� t�x�

denote synchronisation
less parallelism� We also use A�t� to denote the set of
actions syntactically occurring in t �taking care to de�ne this appropriately for
recursive terms�� For the treatment of process names and recursion	 we rely
on the standard notion of guardedness � all recursive terms are assumed to be
guarded� A stronger criterion that we will need in the course of the paper is
visible guardedness	 which holds if all process names are guarded by a visible
action	 and no process name or recursion occurs in the context of hiding�

The language LA has an operational semantics expressed by a transition re

lation � � LA 
A� 
 LA and a termination predicate X� LA� see Table ��
There are two slightly nonstandard aspects� the semantic rule for recursion re

�ects the fact that we assume guardedness� and following Aceto and Hennessy
���	 a choice is terminated only if both operands are terminated� The latter has
the following consequence�

Proposition�� For all t � LA� if tX then �� � A� 
 t �
���

This plays a crucial role in our de�nition of vertical bisimulation� The basic	 one

step transitions are extended to � 
abstracting transitions in the usual fashion�

t �
������n����� u �
 t ���

�
��������

�
� � � ���

�
��n�����

�
u

An important property of visible guardedness is the following�

Proposition
� If t is visibly guarded� then for all � � A�� there is only a �nite

number of t� such that t �
�
� t��

In general	 a transition system is a tuple T � hL� S���X� qi where � �
S 
 L 
 S is the transition relation	 q � S is the initial state and X � S a
termination predicate	 which is such that sX implies �� � L
 s ���� We write
s �a� s� for �s� a� s�� � � and sX for s � X� We denote the components of T by
LT 	 ST etc�	 dropping the index whenever this does not give rise to confusion�
Obviously	 for every term t � LA	 the operational semantics gives rise to a
transition system with termination hA� �LA���X� ti where � and X are the
smallest predicates satisfying the rules in Table ��



A widely accepted � 
abstracting interleaving equivalence relation is observa�
tion congruence� see ����	 in our case extended to take termination into account�
see also ���� As the name suggests	 the resulting relation is a congruence over L�
The de�nition relies on a function ���U� � U� such that �� � 
 and �a � a for all
a � U�

De�nition �� Let T� U be transition systems with termination� A weak bisim

ulation relation between T and U is a binary relation � � ST 
SU such that for
all �sT � sU � � �

�� If sT �
�� s�T then �sU �

��
� s�U such that �s�T � s

�
U � � ��

�� If sU ��� s�U then �sT �
��
� s�T such that �s�T � s

�
U � � ��


� If sTX then �sU �
�
� s�U such that s�UX�

�� If sUX then �sT �
�
� s�T such that s�TX�

T and U are called observation equivalent	 denoted T � U 	 if there is a bisim

ulation relation � such that �qT � qU � � �	 and observation congruent	 denoted
T � U 	 if in addition
�� If qT �

�� sT then �qU �
�
� sU such that �sT � sU � � ��

�� If qU ��� sU then �qT �
�
� sT such that �sT � sU � � ��

Re�nement Functions� A re�nement function maps abstract actions to concrete
processes	 where the notions of abstract and concrete are accompanied by a
change of alphabet� If A is the set of abstract actions and C that of concrete
actions	 then a re�nement function is of the form r�A � LC	 with domain

dom r � A� To �informally� preserve the atomicity of abstract actions	 the im

ages of r are constrained to be

� non�empty	 i�e�	 �r�a�X for all a � dom r	
� eventually terminating	 i�e�	 t �

�
� t�X for any term t reachable from r�a�	

� visible	 i�e�	 t ����� for any term t reachable from r�a��

The resulting fragment of L is reasonably general	 and �as far as we know�
includes all re�nement functions that we know of as having been proposed in
practical examples� For instance	 all renaming functions can be regarded as �par

ticular instances� of re�nement functions� Some re�nement functions actually
contain a degree of confusion	 in the sense that the alphabets of re�nements
of di�erent abstract actions overlap� Part of the theory developed in this pa

per relies on the absence of such confusion� this is achieved by imposing further
restrictions on the re�nement functions�

De�nition � �re�nement functions	� Let r�A� LC be arbitrary�
�� r is called allowable if for all a � A	 r�a� is non
empty	 eventually terminating

and visible� The class of allowable re�nement functions is denoted RA�C�
�� r is called initial�distinct if for all a� b � A	 r�a� �c� together with r�b� �

�
�

t �c� implies a � b and � � 
 �hence t � r�b���

� r is called distinct on A if for all a� b � A	 r�a� �

�a�� ta �
c� t�a together with

r�b� �
�b�� tb �

c� t�b implies ta � tb and t�a � t�b	 and if	 furthermore	 �a � 
	
then a � b and �b � 
�



These constraints are semantic
based	 but it is not di�cult to single out syntactic
restrictions on terms that ensure them� From now on	 we only consider allowable
re�nement functions� With �r�A� 
C we denote the function a 	� A�r�a��� This
is extended pointwise �under overloading of notation� to �r�
A � 
C�

Another possible source of confusion contained in r consists of an overlap
between the actions used in the re�nements of a certain set A � A and the
re�nements of A � A n A� If such an overlap does not exist	 we say that r
preserves A	 which is formally de�ned as follows�

De�nition �� A � dom r is preserved by r if �r�A� � �r�A� � ��

Furthermore	 we distinguish the active domain adom r and the identity domain

idom r of a re�nement function r	 de�ned as follows�

adom r �
S
r�a���a�fag � ��r�a� � dom r��

idom r � dom r n adom r

Hence the active domain is a subset of the domain	 consisting of two types of
actions� those that are not mapped onto themselves	 and those that are used
in the image of any action di�erent from themselves� The identity domain	 on
the other hand	 consists only of �but not necessarily of all� actions on which
the re�nement is the identity function� �Note that adom r and idom r are always
preserved by r	 which would not have been the case if we had taken the more
straightforward de�nition adom r � fa j r�a� �� ag�� We use id �A � LA to
denote the identity re�nement function on A �hence adom id � ��� In addition	
we use the following constructions on re�nement functions�

rnA� a 	�

�
a if a � A
r�a� otherwise

r���� a 	� r�a���� r � �� a 	� r���a��

� Proof rules for vertical implementation

We now come to the concept of a vertical implementation relation vr	 parametrised
w�r�t� a re�nement function r� t vr u is intended to mean that t is an abstract
system and u one of its possible implementations	 where the correspondence
between actions of the former and computations of the latter is set via the re

�nement function r� We regard vertical implementation in combination with
a more standard	 ��at� or �horizontal� implementation relation �i�e�	 relating
systems at the same abstraction level� such as those studied in	 e�g�	 ���� This
�at implementation relation	 sometimes referred to as the basis of vr	 is de

noted �� In the following sections	 we will actually instantiate � to observation
congruence ��

In order to deal with recursion	 we also have to consider open terms	 i�e�	
terms with free process names� Let fn�t� denote the free process names in t�
Unfortunately	 we cannot rely on the standard technique to extend relations to
open terms	 since x � fn�t� has a di�erent interpretation from x � fn�u�� viz�	
the latter stands for an implementation of the former� Therefore	 we require a



Table �� Proof rules for vertical implementation

fn�t� � fxg

x vid
x � t vid t

R�

x vid
x � t vid u

t � u
R�

t � t� � � t� vr u� u� � u

� � t vr u
R�

� � vr
�

R�
� � vr

�

R�
� � vr r���

R�

� � t� v
r u�� t� v

r u�

� � t� � t� v
r u� � u�

R	

� � t� v
r u�� t� v

r u�

� � t�	 t� v
r u�	u�

R


� � t vr u r preserves A

� � t�A vrnA u��r�A�
R�

� � t vr u adom r � idom�

� � t��� vr u���
R��

� � t vr u � injective

� � t��� vr
������

u�	�
R��

� � t� v
r u�� t� v

r u� r preserves and is distinct on A

� � t� jjA t� v
r u� jj�r�A� u�

R��

x vr x � x vr x
R��

� � t vr u

��
 � t vr u
R��

�� x vr� x � t vr u � � t� vr� u�

� � t�t��x� vr u�u��x�
R��

�� x vr x � t vr u

� � �x� t vr �x� u
R��

list of assumptions about how the free process names are to be interpreted	 of
the form � � x� v

r� x�� 
 
 
 � xn vrn xn where for all i	 xi is a process name
and ri a re�nement function	 and xi v

ri xi expresses that xi occurring in u is
assumed to be an ri
implementation of xi occurring in t� �We sometimes write
� � x vr x where x � x� � � �xn and r � r� � � � rn are vectors of variables and
re�nement functions	 respectively�� We then write � � t vr u to indicate that
t vr u holds whenever appropriate closed terms are substituted for the xi� in
other words	 t�t�x� vr u�u�x� whenever �i
 ti v

ri ui� If dom� � �	 we write
� t vu r or simply t vr u�

A number of proof rules for vr are given in Table �� We �rst discuss the case
for closed terms� i�e�	 we assume � � � and consider R��R�� only�

The �rst group of properties	 consisting of rules R��R�	 expresses the basic
assumption of working �modulo� the basis �� Rule R� states that every term
implements itself as long as no re�nement takes place� rule R� says that vid 	
where no actual re�nement takes place	 implies horizontal implementation� Rule
R� explains the interplay between horizontal and vertical implementation� Note
that	 as a consequence	 we also have that t � u implies t vid u� hence � and vid

in fact coincide� Moreover	 Rules R��R� together imply that � is a pre
order	
which indeed is the standard requirement for ��at� implementation relations�

R��R�� essentially express congruence of vertical implementation with re

spect to the constants and operators of our language� For instance	 if the re

�nement functions in these rules are set to id 	 then these rules collapse to the
standard pre
congruence properties of �� �In other words	 � needs to be at least



a pre
congruence��

R	 is the core of the relationship between the re�nement function r and the
vertical implementation relation� It expresses the basic expectation that r�a�
should be an implementation for a� R
 and R� are straightforward congruence
rules� R� is slightly more surprising in that the re�nement function �loses� some
of its active domain	 namely those actions that are hidden� An interesting special
case is when all actively re�ned actions are hidden	 in which case the vertical im

plementation collapses to its basis� i�e�	 if t vr u then t� adom r � u��r�adom r��

Renaming and re�nement are similar concepts� indeed there is some interfer

ence between the two	 due to which no general congruence rule for renaming can
be formulated� Instead	 we have �standard� congruence �R�
� if the re�nement
and renaming functions do not interfere	 and another rule �R��� which treats
renaming as part of the re�nement and only works for injective renamings� In
R��	 �nally	 the synchronisation set A of the speci�cation is re�ned in the im

plementation� moreover	 there is a restriction on the re�nement function	 which
will be discussed below in more detail�

There are some side conditions in Table � whose rationale is not immediately
obvious� In particular	 the re�nement function is constrained to be A
preserving
in the rule for hiding �R��	 and distinct and preserving in the rule for parallel
composition �R���� We give two examples illustrating what goes wrong if these
side conditions are not met� We assume that � preserves deadlock freedom	 i�e�	
if t is deadlock
free and t � u then u is deadlock
free�

Example �� Assume A � C � fa� bg and let r� a 	� a� b� b 	� b� Then the rules of
Table � allow the following derivation�

�R	�

a vr a� b

�R	�

b vr b �R��

a� b vr a� b� b �R��

�a� b��a vid �a� b� b��a� b �R��

�a� b��a � �a� b� b��a� b

However	 �a� b��a gives rise to a non
deadlocking term when substituted for x in
x jjb b	 whereas �a� b� b��a� b does not� This contradicts the requirement that �
preserves deadlock freedom�

The above problem is caused by the application of R�� we hid a in the spec

i�cation and the alphabet of its re�nement	 �r�a�	 in the implementation� The
latter includes b � �r�a�	 which	 however	 also occurs independently of a� In other
words	 fag is not preserved by r� hence the side condition of R� is not met�

The next example shows what goes wrong if the distinctness condition in
Rule R�� is not met� confusion	 in the sense discussed in the justi�cation of
Def� �	 may arise if the re�nements of two di�erent actions start with the same
concrete action�



Example �� Let r be a re�nement function with active part a 	� c� a and b 	� c� b�
The rules of Table � then allow to derive ��a�d�jja�b�b�d���a� b � ��c� a�d�jja�b�c
�c� b�d���a� b� c� The left hand term contains no deadlock	 whereas the right hand
term has a � 
transition to the deadlocked state ��� b jjb�c�d �� d��b� c� d�

Now we turn to open terms and non
empty assumption lists� The intuition be

hind the proof rules discussed so far is not changed essentially� Rules R���R��

re�ect the intention discussed at the beginning of this section� Rule R�	 is the
usual congruence rule for recursion	 adapted to take the assumption list into ac

count� Moreover	 this rule is restricted to visibly guarded recursion� In contrast to
the restrictions discussed above	 this is not because the general version is known
to be unsound �in fact	 we conjecture that it is sound� but because we have been
unable to prove it� The di�culties stem from the fact that the standard proof
technique of up�to bisimulation �cf� ����� seems inapplicable�

� Vertical bisimulation

We now come to the de�nition of an actual vertical implementation relation that
satis�es the derivation rules of Table �� We build on the principles of observation
congruence� �However	 the basic framework in no way depends on this choice	
and we feel that any of the � 
abstracting relations studied in	 e�g�	 ��� can	 in
principle	 be used as a basis for vertical implementation��

Observation congruence is de�ned using a binary relation that connects states
of the speci�cation with states of the implementation� In the case of vertical
bisimulation	 we also have to take into account that in any given state of the
implementation	 there may be associated re�ned actions whose execution has
not yet terminated� These will be collected in a multiset of residual or pending
re�nements that is added as a third component to the bisimulation relation� To
be precise	 an r
residual set is a multiset of non
terminated terms t such that
r�a� �

�
� t for some a � dom r and � � C�� It is formally represented by a func


tion R � �LC � N�� We will denote t � R if R�t� � �� The operational behaviour
of a multiset corresponds to the synchronisation
free parallel composition of its
elements�

R ��� R� �
 �t � R
 �t ��� t�
 R� � �R � �t��� �t��

We use the following constructions on residual sets�

�� u 	��

�t�� u 	�
n
� if u � t and �tX
� otherwise

R� �R�� u 	�R��u� �R��u�
R� �R�� u 	�max �R��u��R��u�� ��

R � A� u 	�
n
R�u� if A�u� � A
� otherwise�

Note the fact that terminated terms do not contribute to the residual set� We
now present our proposal for relating a speci�cation T with an implementation

U 	 where abstract actions of the speci�cation are matched by computations of
their re�nements�



De�nition 
� Let T� U be transition systems with LT � A� and LU � C� 	 and
let r � RA�C be a re�nement function� A vertical bisimulation relation up to r is
a set � � ST 
 �LC � N�
SU such that for all hsT � R� sU i � �	 R is an r
residual
set and the following properties hold�
�� If sT ��� s�T 	 R � � and r��� �

�
� vX for � � C� then �sU �

�
� s�U such that

hs�T � �� s
�
U i � ��

�� If sU �
�
� s�U then either of the following holds�

�a� ��
 �sT �
��
� s�T and �r��� �

�
� v such that hs�T � R� �v�� s�U i � ��

�b� �sT �
�
� s�T and �R �

�
� R� such that hs�T � R

�� s�U i � ��

� If R �

�
� R� then �sU �

�
� s�U such that hsT � R

�� s�U i � ��
�� If sTX and R � � then �sU �

�
� s�U such that s�UX�

�� If sUX then R � � and �sT �
�
� s�T such that s�TX�

T and U are vertically bisimilar up to r	 denoted T �r U 	 if there is a vertical
bisimulation relation � with hqT � �� qU i � � and
�� If qT �

�� sT then �qU �
�
� sU such that hsT � �� sU i � ��

�� If qU ��� sU then �qT �
�
� sT such that hsT � �� sU i � ��

Let r� a�� a�� The following shows two examples of vertical bisimulation relations�

���

���

b

a�
b���

�a��

�a��

��� a�

a�

b

a�

a�
�a��

a

b

��� ���

a� ba�� a�� b a�� �a� jjj b�

The �rst item of Def� � is quite natural� if no residual is active and the speci�

cation can do an action �	 then the implementation can match any terminated
trace of the re�nement of �� �It turns out to be too strong to require that a
single step of the re�nement of � can be matched by the implementation�� The
second item considers the case where the moves of the implementation are to be
justi�ed� There are two possible justi�cations� either the low
level action �opens�
a new re�nement	 in which case the speci�cation must be able to do the corre

sponding abstract action	 and the new residual is added to the residual set� or
the low
level action continues one of the pending re�nements	 in which case the
speci�cation does not take part except for a possible invisible move� The third
item is crucial� any move of the pending re�nement set must be matched by
the implementation	 without the speci�cation moving at all� This implies that
pending re�nements can be �worked o�� in any possible order by the implemen

tation� This can be construed as an operational formulation of atomicity � that
which is started can always be �nished�

Directly from Def� �	 it follows that vertical bisimilarity up to id equals ob

servation congruence� Furthermore	 the rules in Table � are sound for �r	 To
formalise this	 we write x �r x � t �r t if �i
 ti �

ri ui implies t�t�x� �r u�u�x��



Theorem�� � �r satis�es all the rules in Table ��

Note that	 although Table � gives no recipe for deriving implementations from
speci�cations	 in many cases	 one particular implementation can be obtained
through the syntactic substitution of all abstract actions by their re�nements�

Abstraction� In order to strengthen the intuition behind vertical bisimulation	
we now show that it can in fact be characterised as a combination of �horizontal�
observation congruence and abstraction� The abstraction of a transition system
U up to a given re�nement function consists of �guessing� where the transitions
of U originate from	 i�e�	 which abstract action they re�ne�

De�nition � �abstraction	� Let U be a transition system with LU � C� 	 and
r � RA�C a re�nement function� An r�abstraction of U is a transition system
hA� � S���XU 
 f�g� �qU � ��i	 where �qU � �� � S � SU 
 �LC � N� and

� � f��s�R�� �� �s�� R� �v��� j s �
�
� s�� r��� �

�
� vg

� f��s�R�� �� �s�� R��� j s �
�
� s�� R �

�
� R�g

Moreover	 the following conditions are required to hold for all �s�R� � S�
�� if �s�R� ��� �s�� R��	 R � � and r��� �

�
� vX then �s �

�
� s�� s�t� �s�R� �

�
�

�s��� �� � �s�� R���
�� if s �

�
� s� then either �r��� �

�
� v
�s�R� ��� �s�� R��v�� or �R �

�
� R�
�s�R� ���

�s�� R���

� if R �

�
� R� then �s �

�
� s� such that �s�R� �

�
� �s�� R�� � �s�R��

There is a clear correspondence of the conditions above to the simulation prop

erties ��
 of Def� �� Two easy examples of abstraction	 using the function r with
r� a 	� a�� a�	 are given by the following transition systems �where we only show
nonempty residual sets��

a�b

a�

b

b

a�

a�

b

b

a

�a

�
�a��

�a��
b

a�

a�

b

b

a�

a�

b

a

�a

�
�a��

�a��
b

Theorem�� T �r U if there exists an r�abstraction V of U such that T � V �

Although the principle of abstraction strengthens the intuition behind vertical
bisimulation	 it does not yet o�er an easier method of checking vertical bisimu

lation� the abstraction of a transition system is not always de�ned	 may not be
unique when it is de�ned	 and may be non
trivial to construct even when unique�
On the other hand	 for the subclass of initial�distinct re�nement functions the
problem becomes much easier�



Proposition��� If r is initial�distinct and U an arbitrary transition system�

then modulo � there is at most one r�abstraction of U �

We denote this r
abstraction of U �if there is one� by U�r� If	 moreover	 U
is �nite
state	 then U�r is also �nite
state and can be e�ectively constructed�
Finally	 for initial
distinct r	 the inverse of Th� � also holds�

Theorem��� If r is initial�distinct and T �r U � then U�r exists and T � U�r�

� Example� Interface Re�nement

In this section we apply our theory to a small example taken from Brinksma	
Jonsson and Orava ���� The example concerns a distributed data base that can
be queried and updated and an agent responsible for updating the data base� the
latter can also do some local actions not involving the data base� An important
simpli�cation is that the state of the data base is completely abstracted away
from� Data base and agent are modelled by the following systems DataS and
AgentS �

loc

AgentI

cnf req

AgentS

upd

locDataS DataI

qry

cnf

req

qryqry upd

The problem considered in the paper is to change the interface between data
base and agent	 so that the two longer communicate over a single update action�
rather	 updating consists of two separate stages	 in which the update is requested
and con�rmed	 respectively� In our setting	 this can be expressed by a re�nement
function r� upd 	� req � cnf � Moreover	 it is required that in the meantime �be

tween request and con�rmation�	 querying the data base should not be disabled�
The solution proposed is to re�ne data base and agent by DataI and AgentI in
the above �gure�

It is seen that	 similar to our approach	 the proposed implementations di�er
from the corresponding speci�cations in the level of abstraction of their alpha

bets� The correctness criterion employed in the paper circumvents the associated
problems by just requiring �horizontal� correctness after hiding the relevant ac

tions� i�e�	 they prove

�DataS jjupd AgentS��upd � �DataI jjreq�cnf AgentI��req � cnf

where � is a testing preorder� The same result holds in our approach �albeit up
to observation equivalence�� in that sense	 we achieve nothing new� However	 our
method of establishing this result is quite di�erent�

� The �rst point is that we can state correctness in a more general manner	
before hiding the actions that are changed� for in our framework	 DataS �

r

DataI and AgentS �
r AgentI � Moreover	 we have an e�ective way to check



this	 through Abstraction Th� �	 by constructing DataI�r and AgentI�r and
observing DataI�r � DataS and AgentI�r � AgentS �

�cnf �

loc

upd�
qry qry

DataI�r

�

upd

�cnf �

AgentI�r

� The second point is that we can also prove these vertical inequalities alge�
braically	 and in fact derive DataI from DataS and AgentI from AgentS � �In
the approach of ���	 such a derivation is possible for Data but not for Agent ��
For consider the following algebraic speci�cations�

DataS � �	Q
 qry �Q� jjj �	U
 upd �U� AgentS � 	A
 upd �A� loc�A
DataI � �	Q
 qry �Q� jjj �	U
 req � cnf �U� AgentI � 	A
 req � cnf �A� loc�A

The correctness of the Data
part can be shown as follows�

�	Q
 qry �Q�
���

�R	�

� upd �r req � cnf �R���

U �r U � upd �r req � cnf

�R���

U �r U � U �r U �R��

U �r U � upd �U �r req � cnf �U �R�	�

� 	U
 upd �U �r 	U
 req � cnf �U �R���

� DataS �
r DataI

The correctness of the Agent
part is proved in analogous fashion�

� As a �nal point	 the correctness of the combined system again follows by
application of algebraic derivation rules	 which allow to prove�

� �DataS jjupd AgentS��upd � �DataI jjreq�cnf AgentI��req � cnf

Note that we can as easily derive another	 incomparable but equally correct im

plementation for DataS by �rst rewriting its speci�cation to the observationally
congruent 	D
qry �D�upd �D	 and applying syntactic substitution to that term�
This yields Data �

I � 	D
qry �D�req � cnf �D	 where the qry
action is not possible
in between req and cnf �

Using the �traditional� approach to action re�nement	 where re�nement is
treated as an operator	 one can also show that DataI implements DataS and
AgentI implements AgentS � In fact	 the implementations can even be derived
algebraically� ���� gives conditions under which syntactic substitution coincides
with semantic re�nement	 and it so happens that these conditions are satis�ed
in the present example� Still	 in comparison to the traditional approach	 vertical
implementation o�ers the following advantages�



� Vertical implementation is based on an interleaving semantics	 which means
that the results are equally valid when expressed using the transition systems
in which the original problem was posed as using the corresponding language
description� Not so for traditional action re�nement	 where a more �precise�
speci�cation has to be given than can be done using transition systems� either
a term or a more expressive semantic model� That more precise speci�cation
will then allow either DataI or Data �

I as an implementation �or possibly
yet something di�erent�� under no circumstances will it allow both� In other
words	 in the traditional approach	 the design decision is taken at an earlier
stage	 namely as soon as the re�nement function is given�

� More importantly	 vertical implementation �collapses� back to horizontal
implementation� having derived DataI and AgentI 	 we can compose them	
hide the interface actions and get a system that is correct in the well
known	
standard interleaving sense� This means that our notion of vertical imple

mentation can be integrated into existing interleaving
based design methods�
There is no similar concept in the traditional approach to action re�nement�

A problem in the context of action re�nement that we have mentioned in the
Introduction but ignored thereafter is that traditional re�nement is too strict �
it forces all abstract causalities to be inherited in the implementation� To some
degree	 we have solved this problem by �closing up to observation congruence	�
so that apparent abstract causalities may sometimes be turned into independen

cies� In fact	 vertical bisimulation allows a bit more than that	 since �r already
satis�es the following rule�

� � a vr u��u�� t v
r v �u�X

� � a� t vr u�� �u� jjj v�

This states that activities that on an abstract level were speci�ed completely
after a	 may in the implementation overlap the �tail� of the implementation of
a� However	 to be really useful	 the following rule would be preferable�

� � a vr u��u�� t v
r v�� v� �u�X

� � a� t vr u�� �u� jjj v��� v�

which expresses that the start of the implementation of t may overlap with the
tail of the implementation of a� This latter rule unfortunately does not hold for
�r� We intend to study this issue in the future�

References

�� L� Aceto and M� Hennessy� Termination� deadlock� and divergence� J� ACM�
�����
�������� Jan� �����

�� L� Aceto and M� Hennessy� Towards action
re�nement in process algebras� I�C�
���
�������� �����



�� L� Aceto and M� Hennessy� Adding action re�nement to a �nite process algebra�
I�C� ���
�������� �����

�� E� Brinksma� B� Jonsson� and F� Orava� Re�ning interfaces of communicating sys

tems� In Abramsky and Maibaum� eds�� TAPSOFT ���� Volume �� vol� ��� of
LNCS� pp� �������� Springer� �����

�� L� Castellano� G� De Michelis� and L� Pomello� Concurrency vs� interleaving
 An
instructive example� Bull� EATCS� ��
������ �����

�� I� Czaja� R� J� van Glabbeek� and U� Goltz� Interleaving semantics and action
re�nement with atomic choice� In Rozenberg� ed�� Advances in Petri Nets �����
vol� ��� of LNCS� pp� ������� Springer� �����

�� P� Degano and R� Gorrieri� A causal operational semantics of action re�nement�
I�C� ���
������� �����

�� P� Degano� R� Gorrieri� and G� Rosolini� A categorical view of process re�nement�
In De Bakker� De Roever� and Rozenberg� eds�� Semantics	 Foundations and Ap


plications� vol� ��� of LNCS� pp� �������� Springer� �����
�� R� J� van Glabbeek� The linear time � branching time spectrum II
 The semantics

of sequential systems with silent moves� In Best� ed�� Concur ���� vol� ��� of LNCS�
pp� ������ Springer� �����

��� R� J� van Glabbeek and U� Goltz� Re�nement of actions in causality based mod

els� In De Bakker� De Roever� and Rozenberg� eds�� Stepwise Re�nement of Dis


tributed Systems 
 Models� Formalisms� Correctness� vol� ��� of LNCS� pp� ����
���� Springer� �����

��� U� Goltz� R� Gorrieri� and A� Rensink� Comparing syntactic and semantic action
re�nement� I�C� ������
�������� Mar� �����

��� R� Gorrieri� A hierarchy of system descriptions via atomic linear re�nement� Fund�
Informaticae� ��
�������� �����

��� M� Huhn� Action re�nement and property inheritance in systems of sequential
agents� In Montanari and Sassone� eds�� Concur ���	 Concurrency Theory� vol�
���� of LNCS� pp� �������� Springer� �����

��� W� Janssen� M� Poel� and J� Zwiers� Actions systems and action re�nement in the
development of parallel systems� In Baeten and Groote� eds�� Concur ���� vol� ���
of LNCS� pp� �������� Springer� �����

��� R� Milner� Communication and Concurrency� Prentice
Hall� �����
��� M� Nielsen� U� Engberg� and K� G� Larsen� Fully abstract models for a process

language with re�nement� In De Bakker� De Roever� and Rozenberg� eds�� Linear
Time� Branching Time and Partial Order in Logics and Models for Concurrency�
vol� ��� of LNCS� pp� �������� Springer� �����

��� A� Rensink� Methodological aspects of action re�nement� In Olderog� ed�� Pro

gramming Concepts� Methods and Calculi� pp� �������� IFIP� �����

��� A� Rensink� An event
based SOS for a language with re�nement� In Desel� ed��
Structures in Concurrency Theory� pp� �������� Springer� �����

��� W� Vogler� Failures semantics based on interval semiwords is a congruence for
re�nement� Distributed Computing� �
�������� �����

��� W� Vogler� Bisimulation and action re�nement� TCS� ���
�������� �����
��� H� Wehrheim� Parametric action re�nement� In Olderog� ed�� Programming Con


cepts� Methods and Calculi� pp� �������� IFIP� �����

This article was processed using the LATEX macro package with LLNCS style


