Constraint Propagation:
The Heart of Constraint Programming

Zeynep KIZILTAN
Department of Computer Science
University of Bologna

Email: zeynep@cs.unibo.it
URL: http://zeynep.web.cs.unibo.it/
What is it about?

- 4-6 hour lectures about constraint programming in general and constraint propagation in specific.
 - Part I: Overview of constraint programming
 - Part II: Constraint propagation
 - Part III: Some useful pointers

- Aim:
 - Teach the basics of constraint programming.
 - Emphasize the importance of constraint propagation.
 - Point out the advanced topics.
 - Inform about the literature.
Warning

- We will see how constraint programming works.
- No programming examples.
PART I: Overview of Constraint Programming
Outline

- Constraint Satisfaction Problems (CSPs)
- Constraint Programming (CP)
 - Modelling
 - Backtracking Tree Search
 - Local Consistency and Constraint Propagation
Constraints are everywhere!

- No meetings before 9am.
- No registration of marks before April 2.
- The lecture rooms have a capacity.
- Two lectures of a student cannot overlap.
- No two trains on the same track at the same time.
- Salary > 45k Euros 😊
A constraint is a restriction.

There are many real-life problems that require to give a decision in the presence of constraints:
- flight / train scheduling;
- scheduling of events in an operating system;
- staff rostering at a company;
- course time tabling at a university …

Such problems are called Constraint Satisfaction Problems (CSPs).
Sudoku: An everyday-life example
A CSP is a triple \(<X,D,C>\) where:
- \(X\) is a set of decision variables \(\{X_1,\ldots,X_n\}\).
- \(D\) is a set of domains \(\{D_1,\ldots,D_n\}\) for \(X\):
 - \(D_i\) is a set of possible values for \(X_i\).
 - usually assume finite domain.
- \(C\) is a set of constraints \(\{C_1,\ldots,C_m\}\):
 - \(C_i\) is a relation over \(X_j,\ldots,X_k\), giving the set of combination of allowed values.
 - \(C_i \subseteq D(X_j) \times \ldots \times D(X_k)\)

A solution to a CSP is an assignment of values to the variables which satisfies all the constraints simultaneously.
CSPs: A simple example

- **Variables**
 \[X = \{X_1, X_2, X_3\} \]

- **Domains**
 \[D(X_1) = \{1,2\}, \quad D(X_2) = \{0,1,2,3\}, \quad D(X_3) = \{2,3\} \]

- **Constraints**
 \[X_1 > X_2 \quad \text{and} \quad X_1 + X_2 = X_3 \quad \text{and} \quad X_1 \neq X_2 \neq X_3 \neq X_1 \]

- **Solution**
 \[X_1 = 2, \quad X_2 = 1, \quad X_3 = 3 \quad \text{alldifferent}([X_1, X_2, X_3]) \]
Sudoku: An everyday-life example

- A simple CSP
 - 9x9 variables \((X_{ij})\) with domains \{1,...,9\}
 - Not-equals constraints on the rows, columns, and 3x3 boxes. E.g.,
 - `alldifferent([X_{11}, X_{21}, X_{31}, ..., X_{91}])`
 - `alldifferent([X_{11}, X_{12}, X_{13}, ..., X_{19}])`
 - `alldifferent([X_{11}, X_{21}, X_{31}, X_{12}, X_{22}, X_{32}, X_{13}, X_{23}, X_{33}])`
Job-Shop Scheduling: A real-life example

- Schedule jobs, each using a resource for a period, in time D by obeying the precedence and capacity constraints.
- A very common industrial problem.
- CSP:
 - variables represent the operations;
 - domains represent the start times;
 - constraints specify precedence and exclusivity.
CSPs

- Search space: $D(X_1) \times D(X_2) \times \ldots \times D(X_n)$
 - very large!
- Constraint satisfaction is NP-complete:
 - no polynomial time algorithm is known to exist!
 - I can get no satisfaction 😞
- We need general and efficient methods to solve CSPs:
 - Integer and Linear Programming (satisfying linear constraints on 0/1 variables and optimising a criterion)
 - SAT (satisfying CNF formulas on 0/1 variables)
 - ...
 - Constraint Programming

How does it exactly work?
Core of CP

- CP is composed of two parts that are strongly interconnected:
The CP user models the problem as a CSP:
- define the variables and their domains;
- specify solutions by posting constraints on the variables:
 - off-the-shelf constraints or user-defined constraints.
- a constraint can be thought of a reusable component with a propagation algorithm.

WAIT TO UNDERSTAND WHAT I MEAN 😊
Modelling is a critical aspect.

Given the human understanding of a problem, we need to answer questions like:
- which variables shall I choose?
- which constraints shall I enforce?
- shall I use off-the-self constraints or define and integrate my own?
- are some constraints redundant, therefore can be avoided?
- are there any implied constraints?
- among alternative models, which one shall I prefer?
A problem with a simple model

- A simple CSP
 - 9x9 variables \((X_{ij})\) with domains \(\{1,...,9\}\)
 - Not-equals constraints on the rows, columns, and 3x3 boxes, eg.,
 \[\text{alldifferent}([X_{11}, X_{21}, X_{31}, ..., X_{91}])\]
 \[\text{alldifferent}([X_{11}, X_{12}, X_{13}, ..., X_{19}])\]
 \[\text{alldifferent}([X_{11}, X_{21}, X_{31}, X_{12}, X_{22}, X_{32}, X_{13}, X_{23}, X_{33}])\]
A problem with a complex model

- Consider a permutation problem:
 - find a permutation of the numbers \(\{1, \ldots, n\} \) s.t. some constraints are satisfied.
- One model:
 - variables \((X_i) \) for positions, domains for numbers \(\{1, \ldots, n\} \).
- Dual model:
 - variables \((Y_i) \) for numbers \(\{1, \ldots, n\} \), domains for positions.
- Often different views allow different expression of the constraints and different implied constraints:
 - can be hard to decide which is better!
- We can use multiple models and combine them via channelling constraints to keep consistency between the variables:
 - \(X_i = j \leftrightarrow Y_j = i \)
The user lets the CP technology solve the CSP:

- choose a search algorithm:
 - usually backtracking tree search.
- integrate local consistency and propagation.
- choose heuristics for branching:
 - which variable to branch on?
 - which value to branch on?
Backtracking Tree Search

- A possible efficient and simple method.
- Variables are instantiated sequentially.
- Whenever all the variables of a constraint is instantiated, the validity of the constraint is checked.
- If a partial instantiation violates a constraint, backtracking is performed to the most recently instantiated variable that still has alternative values.
- Backtracking eliminates a subspace from the cartesian product of all variable domains.
- Essentially performs a depth-first search.
Backtracking Tree Search

- $X_1 \in \{1,2\}$ $X_2 \in \{0,1,2,3\}$ $X_3 \in \{2,3\}$
- $X_1 > X_2$ and $X_1 + X_2 = X_3$ and alldifferent([X_1, X_2, X_3])

Backtracking tree search

Fails 8 times!
Backtracking Tree Search

- Backtracking suffers from thrashing 😞:
 - performs checks only with the current and past variables;
 - search keeps failing for the same reasons.

\[x_1 \leq x_2 \]
Constraint Programming

- Integrates local consistency and constraint propagation into the backtracking search. Consequently:
 - we can reason about the properties of constraints and their effect on their variables;
 - some values can be filtered from some domains, reducing the backtracking search space significantly!
Constraint Programming

- $X_1 \in \{1,2\}$ $X_2 \in \{0,1,2,3\}$ $X_3 \in \{2,3\}$
- $X_1 > X_2$ and $X_1 + X_2 = X_3$ and alldifferent([X_1, X_2, X_3])

Backtracking tree search + local consistency/propagation
Constraint Programming

- $X_1 \in \{1,2\}$ $X_2 \in \{0,1\}$ $X_3 \in \{2,3\}$
- $X_1 > X_2$ and $X_1 + X_2 = X_3$ and alldifferent($[X_1, X_2, X_3]$)

Backtracking tree search + local consistency/propagation
Constraint Programming

- $X_1 \in \{1, 2\}$ $X_2 \in \{0, 1, 2, 3\}$ $X_3 \in \{2, 3\}$
- $X_1 > X_2$ and $X_1 + X_2 = X_3$ and $\text{alldifferent}([X_1, X_2, X_3])$

Backtracking tree search + local consistency/propagation
Constraint Programming

- $X_1 \in \{1, 2\}$
- $X_2 \in \{0, 1\}$
- $X_3 \in \{2, 3\}$

- $X_1 > X_2$ and $X_1 + X_2 = X_3$ and alldifferent($[X_1, X_2, X_3]$)

Backtracking tree search + local consistency/propagation

Fails only once!
Local consistency & Propagation & Heuristics

- Central to the process of solving CSPs which are inherently intractable.
Programming, in the sense of mathematical programming:
- the user states declaratively the constraints on a set of decision variables.
- an underlying solver solves the constraints and returns a solution.

Programming, in the sense of computer programming:
- the user needs to program a strategy to search for a solution.
- otherwise, solving process can be inefficient.
solve Sudoku using CP!

http://www.cs.cornell.edu/gomes/SUDOKU/Sudoku.html

- very easy, not worth spending minutes 😊
- you can decide which newspaper provides the toughest Sudoku instances 😊
CP

• Constraints can be embedded into:
 – logic programming (constraint logic programming)
 • Prolog III, CLP(R), SICStus Prolog, ECLiPSe, CHIP, …
 – functional programming
 • Oz
 – imperative programming
 • often via a separate library
 • ILOG Solver, Gecode, Choco, Minion, …

NOTE: We will not commit to any CP language/library, rather use a mathematical and/or natural notation.
PART II: Constraint Propagation
Local Consistency & Constraint Propagation

PART I: The user lets the CP technology solve the CSP:
- choose a search algorithm (usually backtracking tree search);
- design heuristics for branching;
- integrate local consistency and propagation.

What exactly are they?
How do they work?
Outline

- Local Consistency
 - Arc Consistency (AC)
 - Generalised Arc Consistency (GAC)
 - Bounds Consistency (BC)
 - Higher Levels of Consistency

- Constraint Propagation
 - Propagation Algorithms

- Specialised Propagation Algorithms
 - Global Constraints
 - Alldifferent Constraint
 - Other Examples of Global Constraints

- Generalised Algorithms
 - GAC Schema
Local Consistency

- Backtrack tree search aims to extend a partial instantiation of variables to a complete and consistent one.
 - The search space is too large!
- Some inconsistent partial assignments obviously cannot be completed.
- Local consistency is a form of inference which detects inconsistent partial assignments.
 - Consequently, the backtrack search commits into less inconsistent instantiations.
- Local, because we examine individual constraints.
 - Remember that global consistency is NP-complete!
Local Consistency: An example

- $D(X_1) = \{1,2\}$, $D(X_2) = \{3,4\}$, $C_1: X_1 = X_2$, $C_2: X_1 + X_2 \geq 1$
- $X_1 = 1$
- $X_1 = 2$
- $X_2 = 3$
- $X_4 = 4$
 - no need to check the individual assignments.
 - no need to check the other constraint.
 - unsatisfiability of the CSP can be inferred without having to search!
Several Local Consistencies

- Most popular local consistencies:
 - Arc Consistency (AC)
 - Generalised Arc Consistency (GAC)
 - Bounds Consistency (BC)

- They detect inconsistent partial assignments of the form $X_i = j$, hence:
 - j can be removed from $D(X_i)$ via propagation;
 - propagation can be implemented easily.
Arc Consistency (AC)

- Defined for binary constraints.
- A binary constraint C is a relation on two variables X_i and X_j, giving the set of allowed combinations of values (i.e. tuples):
 - $C \subseteq D(X_i) \times D(X_j)$
- C is AC iff:
 -forall $v \in D(X_i)$, exists $w \in D(X_j)$ s.t. $(v,w) \in C$.
 - $v \in D(X_i)$ is said to have a support wrt the constraint C.
 -forall $w \in D(X_j)$, exists $v \in D(X_i)$ s.t. $(v,w) \in C$.
 - $w \in D(X_j)$ is said to have a support wrt the constraint C.
- A CSP is AC iff all its binary constraints are AC.
AC: An example

- \(D(X_1) = \{1,2,3\} \), \(D(X_2) = \{2,3,4\} \), \(C: X_1 = X_2 \)
- AC(C)?
 - \(1 \in D(X_1) \) does not have a support.
 - \(2 \in D(X_1) \) has \(2 \in D(X_2) \) as support.
 - \(3 \in D(X_1) \) has \(3 \in D(X_2) \) as support.
 - \(2 \in D(X_2) \) has \(2 \in D(X_1) \) as support.
 - \(3 \in D(X_2) \) has \(3 \in D(X_1) \) as support.
 - \(4 \in D(X_2) \) does not have a support.
- \(X_1 = 1 \) and \(X_2 = 4 \) are inconsistent partial assignments.
- \(1 \in D(X_1) \) and \(4 \in D(X_2) \) must be removed to achieve AC.
- \(D(X_1) = \{2,3\} \), \(D(X_2) = \{2,3\} \), \(C: X_1 = X_2 \)
 - AC(C)

Propagation!
Generalised Arc Consistency

- Generalisation of AC to n-ary constraints.
- A constraint C is a relation on k variables X_1, \ldots, X_k:
 - $C \subseteq D(X_1) \times \cdots \times D(X_k)$
- A support is a tuple $<d_1, \ldots, d_k> \in C$ where $d_i \in D(X_i)$.
- C is GAC iff:
 - forall X_i in $\{X_1, \ldots, X_k\}$, forall $v \in D(X_i)$, v belongs to a support.
- AC is a special case of GAC.
- A CSP is GAC iff all its constraints are GAC.
GAC: An example

- $D(X_1) = \{1,2,3\}$, $D(X_2) = \{1,2\}$, $D(X_3) = \{1,2\}$

 C: alldifferent([X_1, X_2, X_3])

- GAC(C)?
 - $X_1 = 1$ and $X_1 = 2$ are not supported!

- $D(X_1) = \{3\}$, $D(X_2) = \{1,2\}$, $D(X_3) = \{1,2\}$

 C: $X_1 \neq X_2 \neq X_3$
 - GAC(C)
Bounds Consistency (BC)

- Defined for totally ordered (e.g. integer) domains.
- Relaxes the domain of X_i from $D(X_i)$ to $[\min(X_i) .. \max(X_i)]$.
- Advantages:
 - it might be easier to look for a support in a range than in a domain;
 - achieving BC is often cheaper than achieving GAC;
 - achieving BC is enough to achieve GAC for monotonic constraints.
- Disadvantage:
 - BC might not detect all GAC inconsistencies in general.
Bounds Consistency (BC)

- A constraint C is a relation on k variables X_1, \ldots, X_k:
 - $C \subseteq D(X_1) \times \ldots \times D(X_k)$

- A bound support is a tuple $<d_1, \ldots, d_k> \in C$ where $d_i \in [\min(X_i), \max(X_i)]$.

- C is BC iff:
 - For all X_i in $\{X_1, \ldots, X_k\}$, $\min(X_i)$ and $\max(X_i)$ belong to a bound support.
GAC > BC: An example

- $D(X_1) = D(X_2) = \{1,2\}$, $D(X_3) = D(X_4) = \{2,3,5,6\}$, $D(X_5) = \{5\}$, $D(X_6) = \{3,4,5,6,7\}$
- $C: \text{alldifferent}([X_1, X_2, X_3, X_4, X_5, X_6])$
- BC(C): $2 \in D(X_3)$ and $2 \in D(X_4)$ have no support.
GAC > BC: An example

- $D(X_1) = D(X_2) = \{1,2\}$, $D(X_3) = D(X_4) = \{2,3,5,6\}$, $D(X_5) = \{5\}$, $D(X_6) = \{3,4,5,6,7\}$
 - C: alldifferent([X_1, X_2, X_3, X_4, X_5, X_6])
- GAC(C): \{2,5\} $\in D(X_3)$, \{2,5\} $\in D(X_4)$, \{3,5,6\} $\in D(X_6)$ have no support.

![Original](image1.png) ![BC](image2.png) ![GAC](image3.png)
GAC = BC: An example

- $D(X_1) = \{1,2,3\}$, $D(X_2) = \{1,2,3\}$, $C: X_1 < X_2$
- $BC(C)$:
 - $D(X_1) = \{1,2\}$, $D(X_2) = \{2,3\}$
- $BC(C) = GAC(C)$:
 - a support for $\min(X_2)$ supports all the values in $D(X_2)$.
 - a support for $\max(X_1)$ supports all the values in $D(X_1)$.
Higher Levels of Consistencies

- Path consistency, k-consistencies, (i,j) consistencies, ...
- Not much used in practice:
 - detect inconsistent partial assignments with more than one <variable,value> pair.
 - cannot be enforced by removing single values from domains.
- Domain based consistencies stronger than (G)AC.
 - Singleton consistencies, triangle-based consistencies, ...
 - Becoming popular:
 - shaving in scheduling.
Outline

- Local Consistency
 - Arc Consistency (AC)
 - Generalised Arc Consistency (GAC)
 - Bounds Consistency (BC)
 - Higher Levels of Consistency

- Constraint Propagation
 - Constraint Propagation Algorithms

- Specialised Propagation Algorithms
 - Global Constraints
 - AllDifferent Constraint
 - Other Examples of Global Constraints

- Generalised Algorithms
 - GAC Schema, AC Algorithms
Constraint Propagation

- Can appear under different names:
 - constraint relaxation
 - filtering algorithm
 - local consistency enforcing, …

- Similar concepts in other fields:
 - unit propagation in SAT.

- Local consistencies define properties that a CSP must satisfy after constraint propagation:
 - the operational behaviour is completely left open;
 - the only requirement is to achieve the required property on the CSP.
Constraint Propagation: A simple example

Input CSP: $D(X_1) = \{1,2\}$, $D(X_2) = \{1,2\}$, $C: X_1 < X_2$

Output CSP: $D(X_1) = \{1\}$, $D(X_2) = \{2\}$, $C: X_1 < X_2$

We can write different algorithms with different complexities to achieve the same effect.

A constraint propagation algorithm for enforcing AC
A constraint propagation algorithm propagates a constraint C.
- It removes the inconsistent values from the domains of the variables of C.
- It makes C locally consistent.
- The level of consistency depends on C:
 - GAC might be NP-complete, BC might not be possible, …
Constraint Propagation Algorithms

- When solving a CSP with multiple constraints:
 - propagation algorithms interact;
 - a propagation algorithm can wake up an already propagated constraint to be propagated again!
 - in the end, propagation reaches a fixed-point and all constraints reach a level of consistency;
 - the whole process is referred to as constraint propagation.
Constraint Propagation: An example

- \(D(X_1) = D(X_2) = D(X_3) = \{1,2,3\} \)
 \[C_1: \text{alldifferent}([X_1, X_2, X_3]) \quad C_2: X_2 < 3 \quad C_3: X_3 < 3 \]
- Let’s assume:
 - the order of propagation is \(C_1, C_2, C_3 \);
 - each algorithm maintains (G)AC.
- Propagation of \(C_1 \):
 - nothing happens, \(C_1 \) is GAC.
- Propagation of \(C_2 \):
 - \(3 \) is removed from \(D(X_2) \), \(C_2 \) is now AC.
- Propagation of \(C_3 \):
 - \(3 \) is removed from \(D(X_3) \), \(C_3 \) is now AC.
- \(C_1 \) is not GAC anymore, because the supports of \(\{1,2\} \subseteq D(X_1) \) in \(D(X_2) \) and \(D(X_3) \) are removed by the propagation of \(C_2 \) and \(C_3 \).
- Re-propagation of \(C_1 \):
 - \(1 \) and \(2 \) are removed from \(D(X_1) \), \(C_1 \) is now AC.
Properties of Constraint Propagation Algorithms

- It is not enough to remove inconsistent values from domains.
- A constraint propagation algorithm must wake up when necessary, otherwise may not achieve the desired local consistency property.
- Events that trigger a constraint propagation:
 - when the domain of a variable changes;
 - when one variable is assigned a value;
 - when the minimum or the maximum values of a domain changes.
Outline

- Local Consistency
 - Arc Consistency (AC)
 - Generalised Arc Consistency (GAC)
 - Bounds Consistency (BC)
 - Higher Levels of Consistency

- Constraint Propagation
 - Propagation Algorithms

- Specialised Propagation Algorithms
 - Global Constraints
 - Alldifferent Constraint
 - Other Examples of Global Constraints

- Generalised Propagation Algorithms
 - GAC Schema, AC Algorithms
A constraint propagation algorithm can be general or specialised:
- general, if it is applicable to any constraint;
- specialised, if it is specific to a constraint, exploiting the constraint semantics.

Many real-life constraints are complex and non-binary.

A global constraint is a complex and non-binary constraint which encapsulates a specialised propagation algorithm.
Benefits of Global Constraints

- Modelling benefits
 - Reduce the gap between the problem statement and the model.
 - Capture recurring modelling patterns.
 - May allow the expression of constraints that are otherwise not possible to state using primitive constraints (semantic).

- Solving benefits
 - More inference in propagation (operational).
 - More efficient propagation (algorithmic).
Alldifferent Constraint

- Alldifferent constraint
 - useful in a variety of assignment problems
 - e.g. permutation, timetabling, production problems, ...
 - alldifferent ([X₁, X₂, ..., Xₙ]) holds iff
 \[X_i \neq X_j \text{ forall } i < j \in \{1,\ldots,n\} \]
Alldifferent Constraint

- Modelling Benefits
 - One constraint instead of \(X_i \neq X_j \) for all \(i < j \in \{1,\ldots,n\} \)

- Solving Benefits
 - Efficient algorithms to maintain GAC, BC, … (algorithmic)
Alldifferent Constraint

- Solving Benefits (operational)
 - GAC > AC on the decomposition

\[X_1 \in \{1,2\} \]
\[X_2 \in \{1,2\} \]
\[X_3 \in \{1,2\} \]

\[\neq \]

logically equivalent

\[\text{Not GAC } \]
\[\text{alldifferent} \]

\[X_2 \in \{1,2\} \]
\[X_3 \in \{1,2\} \]
Alldifferent Constraint

- GAC algorithm based on matching theory.
 - Establishes a relation between the solutions of the constraint and the properties of a graph.
 - Runs in time $O(dn^{1.5})$.
- Value graph: bipartite graph between variables and their possible values.
- Matching: set of edges with no two edges having a node in common.
- Maximal matching: largest possible possible matching.
Alldifferent Constraint

- An assignment of values to the variables X_1, X_2, ..., X_n is a solution iff it corresponds to a maximal matching.
 - Edges that do not belong to a maximal matching can be deleted.
- The challenge is to compute such edges efficiently.
 - Exploit concepts like strongly connected components, alternating paths, ...
Alldifferent Constraint

- $D(X_1) = \{1, 3\}$, $D(X_2) = \{1, 3\}$, $D(X_3) = \{1, 2\}$
Alldifferent Constraint

- $D(X_1) = \{1,3\}$, $D(X_2) = \{1,3\}$, $D(X_3) = \{1,2\}$

A maximal matching
Alldifferent Constraint

- $D(X_1) = \{1,3\}$, $D(X_2) = \{1,3\}$, $D(X_3) = \{1,2\}$

Another maximal matching

Does not belong to any maximal matching
Other Examples of Global Constraints

- **NValue constraint:**
 - useful in counting problems
 - NValue \([X_1, X_2, \ldots, X_n], N\) holds iff \(N = |\{X_i | 1 \leq i \leq n \}|\)
 - NValue \(([1, 2, 2, 1, 3], 3)\)

- **Element constraint:**
 - useful in variable subscripts
 - Element \((V, N, [X_1, X_2, \ldots, X_n])\) holds iff \(X_N = V\)
 - Element \((3, 2, [1, 3, 4])\)

- **Global cardinality constraint:**
 - useful in occurrence problems
 - GCC \(([X_1, X_2, \ldots, X_n], [v_1, \ldots, v_m], [O_1, \ldots, O_m])\) iff
 \(\forall j \in \{1, \ldots, m\} \ O_j = |\{X_i | X_i = v_j, 1 \leq i \leq n \}|\)
 - GCC \(([1, 1, 2], [1, 2], [2, 1])\)
Other Examples of Global Constraints

- **Lex** ([X\(_1\), X\(_2\), ..., X\(_n\)], [Y\(_1\), Y\(_2\), ..., Y\(_n\)])
 - useful in symmetry breaking
 - Lex ([X\(_1\), X\(_2\), ..., X\(_n\)], [Y\(_1\), Y\(_2\), ..., Y\(_n\)]) holds iff:
 - X\(_1\) < Y\(_1\) OR
 - (X\(_1\) = Y\(_1\) AND X\(_2\) < Y\(_2\)) OR
 - ...
 - (X\(_1\) = Y\(_1\) AND X\(_2\) = Y\(_2\) AND AND X\(_n\) < Y\(_n\)) OR
 - (X\(_1\) = Y\(_1\) AND X\(_2\) = Y\(_2\) AND AND X\(_n\) = Y\(_n\))
 - Lex ([1, 2, 3],[1, 3, 4])
Outline

- Local Consistency
 - Arc Consistency (AC)
 - Generalised Arc Consistency (GAC)
 - Bounds Consistency (BC)
 - Higher Levels of Consistency

- Constraint Propagation
 - Propagation Algorithms

- Specialised Propagation Algorithms
 - Global Constraints
 - Alldifferent Constraint
 - Other Examples of Global Constraints

- Generalised Propagation Algorithms
 - GAC Schema, AC Algorithms
Generalised Propagation Algorithms

- Not all constraints have nice semantics we can exploit to devise an efficient specialised propagation algorithm.
- Consider a product configuration problem:
 - compatibility constraints on hardware components:
 - only certain combinations of components work together.
 - compatibility may not be a simple pairwise relationship:
 - video cards supported function of motherboard, CPU, clock speed, O/S, ...
Production Configuration Problem

- 5-ary constraint:
 - Compatible (motherboard345, intelCPU, 2GHz, 1GBRam, 80GBdrive).
 - Compatible (motherboard346, intelCPU, 3GHz, 2GBRam, 100GBdrive).
 - Compatible (motherboard346, amdCPU, 2GHz, 2GBRam, 100GBdrive).
 - ...
Crossword Puzzle

- Constraints with different arity:
 - Word_1 ([X_1, X_2, X_3])
 - Word_2 ([X_1, X_{13}, X_{16}])
 - ...

- No simple way to decide acceptable words other than to put them in a table.
GAC Schema

- A generic propagation algorithm.
 - Enforces GAC on an n-ary constraint given by:
 - a set of allowed tuples;
 - a set of disallowed tuples;
 - a predicate answering if a constraint is satisfied or not.
 - Sometimes called the “table” constraint:
 - user supplies table of acceptable values.

- Complexity: $O(d^k)$ time
- Hence, k cannot be too large!
 - ILOG Solver limits it to 3 or so.
Arc Consistency Algorithms

- Generic AC algorithms with different complexities and advantages:
 - AC3
 - AC4
 - AC6
 - AC2001
 - ...
PART III: Some Useful Pointers about CP
(Incomplete) List of Advanced Topics

- Modelling
- Global constraints, propagation algorithms
- Search algorithms
- Heuristics
- Symmetry breaking
- Optimisation
- Local search
- Soft constraints, preferences
- Temporal constraints
- Quantified constraints
- Continuous constraints
- Planning and scheduling
- SAT
- Complexity and tractability
- Uncertainty
- Robustness
- Structured domains
- Randomisation
- Hybrid systems
- Applications
- Constraint systems
- No good learning
- Explanations
- Visualisation
Literature

Books

- My PhD dissertation 😊
- **Handbook of Constraint Programming**
 F. Rossi, P. van Beek, T. Walsh (eds), Elsevier Science, 2006.

Some online chapters:
Chapter 1 - Introduction
Chapter 3 - Constraint Propagation
Chapter 6 - Global Constraints
Chapter 10 - Symmetry in CP
Chapter 11 - Modelling
Literature

- **Books**
 - *Constraint Logic Programming Using Eclipse*
 - *Principles of Constraint Programming*
 - *Constraint Processing*
 - *Constraint-based Local Search*
 - *The OPL Optimization Programming Languages*
Literature

● People
 – **Barbara Smith**
 ● Modelling, symmetry breaking, search heuristics
 ● Tutorials and book chapter
 – **Christian Bessiere**
 ● Constraint propagation
 ● Global constraints
 – Nvalue constraint
 ● Book chapter
 – **Jean-Charles Regin**
 ● Global constraints
 – Alldifferent, global cardinality, cardinality matrix
 – **Toby Walsh**
 ● Modelling, symmetry breaking, global constraints
 ● Various tutorials
Literature

- Journals
 - Constraints
 - Artificial Intelligence
 - Journal of Artificial Intelligence Research
 - Journal of Heuristics
 - Intelligenza Artificiale (AI*IA)
 - Informs Journal on Computing
 - Annals of Mathematics and Artificial Intelligence
Literature

- Conferences
 - Principles and Practice of Constraint Programming
 http://www.cs.ualberta.ca/~ai/cp/
 - Integration of AI and OR Techniques in CP
 http://www.cs.cornell.edu/~vanshoeve/cpaior/
 - National Conference on AI (AAAI)
 http://www.aaai.org
 - International Joint Conference on Artificial Intelligence (IJCAI)
 http://www.ijcai.org
 - European Conference on Artificial Intelligence (ECAI)
 http://www.eccai.org
 - International Symposium on Practical Aspects of Declarative Languages (PADL)
 http://www.informatik.uni-trier.de/~ley/db/conf/padl/index.html
Literature

- **Schools and Tutorials**
 - ACP summer schools:
 - AI conference tutorials (IJCAI’07, IJCAI’05, ECAI’04 …).
 - CP conference tutorials.
 - CP-AI-OR master classes.
Literature

- **Solvers & Languages**
 - Choco (http://choco.sourceforge.net/)
 - Comet (http://www.comet-online.org/)
 - Eclipse (http://eclipse.crosscoreop.com/)
 - FaCiLe (http://www.recherche.enac.fr/opti/facile/)
 - Gecode (http://www.gecode.org/)
 - ILOG Solver (http://www.ilog.com)
 - Koalog Constraint Solver (http://www.gecode.org/)
 - Minion (http://minion.sourceforge.net/)
 - OPL (http://www.ilog.com/products/oplstudio/)
 - Sicstus Prolog (http://www.sics.se/isl/sicstuswww/site/index.html)