
 

 

 
 
 
 

Abstract 
 

While most approaches to the idea of “complexity” attempt to handle this concept as an inherent 
property of the system under observation, this article considers complexity to be a property of the 
relationship between a system and its observer.   It is argued that the concept of complexity must be used 
to measure the reliability an individual attaches to the classification model that he or she adopted in 
order to extract 'events' from empirical experiences.   Complexity cannot be defined without previously 
modelling the individual’s cognitive processes. 

By assuming a knowledge of the mental categories by which an individual perceives reality, a 
quantitative measure of complexity is defined, and it is shown that its numerical value can be used to 
evaluate alternative patterns of behaviour.   In particular, complexity is able to account for features of 
decision-making in situations where empirical reality continuously generates facts of a novel kind, as is 
usual in the social sciences. 

Finally, a comparison is drawn with theories of complexity used in physics, computer science 
and biology.   Although most of these theories handle complexity as an inherent property of the system 
under observation, it is argued that they can be considered as approximations of the concept of 
complexity presented here. 

 

 

 



 

 286 

1.  Self-Referentiality 
 

The Cretan philosopher Epimenides (VI century B.C.) left, among his writings, a 
fragment where he claims that "All Cretans are liars".   This seemingly simple statement 
originated what is known today as 'the Epimenides paradox': If Epimenides' claim is 
true, that is, if all Cretans lie, then Epimenides too, who is a Cretan, is lying.   Thus, 
Cretans tell the truth.   But if Cretans tell the truth, so does Epimenides.   Hence, all 
Cretans lie. 

That of Epimenides is only the first of a long series of self-referential paradoxes 
invented along the centuries.   Alfred Whitehead and Bertrand Russell pointed to their 
common structure, which formally consists of a set containing some elements that are 
defined in reference to the set itself.   Whitehead and Russell (1910, p.37) noted that, if 
one claims that a collection of propositions contains a proposition stating that 'all 
propositions are either true or false', such a statement could not be legitimate unless "all 
propositions" refers to some already definite collection; which is not possible, since a 
statement about "all propositions" is itself a new proposition, which can also be false. 

This article draws on the analogy between self-referentiality in formal systems 
and self-referentiality in human societies, and claims that self-referentiality is the core of 
the concept of complexity: Only when the difficulty to describe a system is due to the 
presence of a self-referential paradox are we allowed to speak of 'complexity', rather 
than of 'complication'.   Clearly, this statement is not compatible with viewing 
complexity as an intrinsic property of a system, like mass or volume.   Rather it implies 
that complexity arises from the interaction between a system and its observer, when in 
such an interaction it is in principle impossible for the observer to contemplate all the 
possible reactions of the system to the actions he could undertake upon it. 

As F.J. Varela pointed out, already at the level of molecular organisation self-
referentiality is what distinguishes living organisms from inanimate objects (Varela 
1979).   In aggregates of highly sophisticated living organisms as human societies, self-
reference arises from the very fact that the members of a society have imaginative 
capabilities about its possible arrangements.   The possibility of the emergence of new 
arrangements of society can generate a number of self-referential loops and, 
consequently, logical indeterminacy.   In order to keep the matter tractable, we will limit 
our analysis to the complexity which can arise between a generic ‘social system’ and its 
‘observer’, where one single self-referential loop can occur. 
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Instead of defining the “complexity” the system should possess, we will focus on 
the adjective 'complex' the observer of a system may attach to it: Let us say that a social 
system is viewed as “complex” by its observer, when the behaviour of the social system 
depends on what it “imagines” the observer is imagining.   A process of the kind "I think 
that you think that I think that ..." is clearly a self-referential loop; it also suggests that, 
besides the complexity of a system seen by its observer, we might speak of the 
complexity of the observer “seen” by the system as well. 

R.E. Lucas' famous statement about the impossibility of using econometric 
models to evaluate the effects of alternative economic policies (Lucas 1976) can be seen 
as derived from the recognition of the complex nature of the interaction between a 
Government and the economy it is supposed to control.   In fact, what Lucas claims is 
that the reaction of the economic system to the Government’s actions depends on what 
economic agents imagine about the possible actions of the Government, which in turn 
depends on what the Government imagines about the possible reactions of other 
economic agents, and so on endlessly like in all self-referential loops. 

The logical limits engendered by self-referential loops become clear when they 
are analysed within the framework of formal logic, where self-referential loops are 
exploited in Gödel's theorem, which states that in any formal system there are true 
propositions that cannot be proven.   However, considering self-referentiality within the 
framework of logic is important not only because we can stress the logical limits of 
decision-making, but also because it enables us to understand how a self-referential 
paradox can be overcome, and at what cost. 

J.P. Dupuy observes that, in order to overcome the paradoxes caused in decision-
making by self-referentiality, the crucial point to keep in mind is that any indecidability 
problem refers to a particular formal system: in fact, for any proposition that cannot be 
proven within some formal system, some other formal system exists where that very 
same proposition can be proven (Dupuy 1982). 

Formal systems differ in the propositions they take as axioms, just like scientific 
theories differ about what should be regarded as invariant properties, and more generally 
about which are the relevant aspects of reality.   Since a particular indecidability 
problem disappears if one frames reality in another way, the way out of self-referential 
paradoxes consists of re-defining which propositions must be regarded as “axioms”, as 
well as which rules these axioms must obey. 

Lucas takes exactly this way out of the self-referential paradox posed by 
economic policy when he wishes that the Government and the other economic agents 
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make joint decisions in accordance with the principles of neoclassical economic theory, 
so that their effects are foreseeable, in the sense that there exists an agreement between 
all the actors regarding their behaviours (Lucas 1976).   In fact, this corresponds to 
choosing neoclassical economic “laws” as “axioms”, and to fixing the way they must be 
used in social interactions.   However, Lucas’ choice is not unique, since in practice 
nothing prevents economic agents from establishing agreements which do not 
necessarily obey neoclassical prescriptions. 

In any case, self-referential loops force decision-makers to acknowledge their 
limits and to reshape the decision process.   In the framework which will be used in the 
subsequent sections, re-shaping the decision process means that the observer of a system 
re-defines the mental categories by which he perceives it. 

This is a problem which will not be tackled by this article, however.   It will 
focus instead on the reliability an individual attaches to the model of the world he is 
relies upon, a reliability which can be undermined by the indeterminacy caused by a 
self-referential loop.   Essentially, this subjective sense of the reliability of the way in 
which an observer represents a system in his own mind is what will be meant by 
“complexity”. 

Section 2 contains some basic assumptions about human cognitive processes that 
underlie the measure of complexity presented in section 3.   Section 4 analyses the 
implications of this measure of complexity for decision theory, while sections 5 and 6 
investigate the links with other concepts of complexity, used in disciplines other than 
social ones. 

 
 
 

2.  Assumptions about the Cognitive Processes 
 
The view of complexity as a property of the relationship between a system and 

its observer is originally due to R. Rosen (Rosen 1985), who argues that an observer 
sees a system as 'complex' when he has more than one single description of it, and these 
descriptions cannot be reduced to only one.   The point is not to have some alternative 
models of the same system, each with a certain probability to turn out to be the right 
one; rather, a system is seen as “complex” by its observer when, due to the presence of a 
self-referential loop, the observer can never compile a finite list of the behaviours the 
system will exhibit. 
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In this situation it is not possible to neglect the distinction between the system’s 
behaviour, which can exhibit unpredictable and novel features, and the relatively stable 
mental categories by which the observer perceives this very behaviour.   When dealing 
with complex systems, "events" cannot be considered as objects existing by themselves 
in empirical reality; rather, they must be recognised as the product of the classifying 
activity of the human mind.   Individuals must first of all decide which phenomena are 
repetitions of a smaller number of abstractly defined 'events': only thereafter can they 
apply inferential methods to discover statistical or deterministic laws, and eventually 
revise the adopted definition of events depending on the extent to which these laws fit 
reality.   For example, F.H. Knight pointed out that it is up to the entrepreneur to form 
categories of investment types, before calculating anything like a probability distribution 
of successes and failures (Knight 1921). 

In our framework ‘events’ are mental categories constructed by the mind of 
individuals in order to classify empirical facts that are not only very large in number, but 
also unknown and unpredictable because in the social system a number of novel 
qualities continuously emerge.   These categories do change in order to be able to 
discriminate the relevant features of qualitatively new empirical facts, yet at a slower 
time scale than empirical facts themselves: otherwise, they could not be used as 
classification devices.   We will claim that the observer of a system says it is “complex” 
when empirical facts are such that they do not fit well into the categories by which he 
tries to understand the system. 

Thus, complexity can be quantified upon description of the mental categories 
employed by an individual, of the relationships occurring between them, and of the 
extent to which they are appropriate in providing an orientation to the individual’s 
decision-making.   In order to provide a clear framework for this task, let us first of all 
define a few key-concepts: 
action:  The behaviour of an individual towards the rest of the social system.   An 

individual’s actions can undergo unpredictable qualitative changes; in this respect, 
our “actions” are basically different from Savage’s “acts” (Savage 1954). 

result:  The reaction of the social system to an individual’s action on it.   Like actions, 
results can undergo unpredictable qualitative changes; thus, they are basically 
different from Savage’s “consequences” (Savage 1954). 

empirical fact:  An ‘empirical fact’ is a pair constituted by an action and a result.   Being 
composed of actions and results, empirical facts can also undergo unpredictable 
qualitative changes (e.g. emergence of new ideas, new technologies, etc.). 
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mental category:  Mental categories have the purpose of enabling the individual to 
distinguish actions and results according to the features which are relevant to the 
problems he has to face; they can be seen as “containers” to classify the facts 
provided by empirical experience.   However, mental categories should not be 
conceived as containers operating according to some similarity criteria fixed once 
and for all; rather, the categories the mind forms depend on the empirical facts it 
receives as input, and the shape of these mental categories may not even be 
precisely defined, since the boundaries between them can be fuzzy.   Furthermore, 
although most mental categories are organised around a prototype, not all the 
members of a category need to be similar to one another: sometimes, they have 
some similarity with only some of the other members of the category, but not with 
all of them (Lakoff 1987). 

event:  An 'event' is a pair constituted by an action category and a result category: note 
that events are the product of the classifying activity of human mind, they are not 
givens in the empirical reality.   We say that the same event occurred two times, if 
and only if two empirical facts occurred, which differed only in features which 
were felt to be irrelevant for the decision problems at hand, so that they could be 
classified in the same mental category. 

mental model:  P.N. Johnson-Laird showed that human behaviour can be more easily 
explained by assuming that the mind constructs mental models of reality, rather 
than by assuming the existence of a “mental logic” (Johnson-Laird 1983).   Such 
mental models must not be thought of as being able to produce the correct 
behaviour in any possible situation, but only in most of the situations the individual 
usually encounters.   With reference to the basic ideas of connectionism (Hebb 
1949; von Hayek 1952), we can think mental categories as implemented by paths in 
which information flows in closed loops, and mental models as connections 
between these categories (Hayek calls “map” the set of the mental categories, and 
“model” the set of the connections between them). 

At this point, let us make the following assumptions about the social system and 
about the cognitive processes of its members: 

A. 1 
We will consider the point of view of a single individual towards the rest of the 

social system.   This is the simplest application of the system-observer scheme; eventual 
extensions to more detailed analyses would require: 1) Consideration of observers, like 
firms or governments, composed by many individuals; 2) Consideration of the single 
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members of the social system, and of their points of view as observers of what they 
define as “social system” in turn. 

Our individual-observer interacts with the social system by undertaking ‘actions’ 
and obtaining ‘results’ which can undergo unpredictable qualitative changes with time; 
therefore, no “set of the states of the world” can be specified.   On the other hand, 
description of the individual’s mental categories allows specifying the “set of the states 
of the mind” by which the world is understood. 

A. 2 
As time goes by, the individual who observes the social system may change the 

categories he uses to understand reality, creating sub-categories and re-defining the 
criteria by which actions and results are assigned to existing categories.   However, it 
seems reasonable to assume that the categories by which an individual understands the 
world change on a slower time scale than the world itself: otherwise it would be hard to 
imagine how the individual could detect changes of the external reality.   For 
simplifying purposes, let us make this assumption in its extreme form, assuming that the 
mental categories by which the individual perceive reality do not change at all. 

Let  { }I21 AAA K,,=A  be the finite set of mental categories available to 

the individual-observer to classify the actions he undertakes; let us denote them by an 

index  I21i K,,= .   Let  { }J21 RRR K,,=R   be the finite set of mental categories 

available to the individual-observer to classify the results he obtains; let us denote them 
by an index J21j K,,= .   The other individuals or organisations of individuals which 

constitute the social system may have different categories; however, when information 
is transferred from the social system to the individual who is observing it, this 
information is classified according to the individual’s categories. 

A. 3 
The individual is endowed with a memory of finite length L where he stores the 

data relative to the actions he undertook and to the results he obtained during the last L 
interactions with the social system.   The finiteness of the memory dimension, as well as 
the finiteness of the number of categories of actions and of results, is an assumption of 
“bounded rationality” (Simon 1964, 1972). 

The data contained in the memory can be used to measure the probabilities of 
obtaining a result belonging to category j, provided an action belonging to category i has 

been undertaken:  { }ji RA →p .   Let us also assume that some utility function is defined 

on sets A  and R .   Then, as far as the individual deems that his mental categories 
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appropriately describe the world, traditional decision theory applies, and some objective 
function (e.g. expected utility) can be evaluated.   Up to this point, the only difference 
with established decision theory (e.g. Savage 1954) is that these utilities are defined on 
mental categories, instead of on objects that belong to empirical reality. 

However, at each interaction between the individual and the social system he 
observes, information relative to the action that has been undertaken and to the result 
that has been obtained enters his memory; at the same time, information that refers to 
the oldest pair action-result exits it.   In this way, the contents of the categories of 
actions and results change with time, even if the categories themselves do not change. 

A. 4 
Mental categories are shaped by empirical experience along with the mental 

model that connects them in order to provide the individual with an orientation device 
for decision-making.   This orientation device consists of specifying which are the 
categories of results expected from actions belonging to a certain category.   In more 
formal terms, we can say that mental categories are such that some connections between 
them is expected to occur much more often than the others, and that these connections 

are what we call ‘model of the world’: ∀ A i ,  RR ∈∃ i :   

{ } { }ijji
e

ijji
e R :RAR :RA RR ∉→>>∈→ pp ,  where ep  are probabilities the 

individual is confident will hold in the future, but that do not necessarily coincide with 
the probabilities measured in the past. 

A. 5 
For simplicity, let us assume that the number of categories of actions equals the 

number of categories of results, and that the model of the world consists of a one-to-one 
correspondences between them.   Fig.(1) shows such a model of the world. 
 

A                                           R

A                                           R

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .
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  2
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    1

 
Fig. 1 

 
This model of the world says to the individual that if he undertakes an action belonging 
to category A 2, a result belonging to category R 2  is the “normal” outcome (e.g. the 
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expected return of an investment belonging to some category).   Let us call this basic 
model of the world the ‘fundamental description’ of the system. 

A. 6 
When correspondences other than those of the fundamental description occur 

(e.g. A 2 causes R1), the individual may think that this is just a case which seldom 

occurs, but which was already considered in the distribution of probabilities 
{ }ji RA →p .   This would indeed be the only possibility if elementary events were 

objectively defined in a context where the identification of possible empirical facts was 
self-evident, as traditional decision theory does. 

But in the context we are considering, there is also the possibility that our 
individual thinks that the mental categories and the model of the world he is using are 
no longer appropriate to discriminate the relevant features that are emerging in the 
empirical reality.   That is, the individual may think that actions and results underwent 
such deep qualitative changes, that the categories used to classify them are no longer 
able to lay stress on the relevant features and to neglect the irrelevant ones.   In this 
situation, the occurrence of correspondences between categories of actions and of results 
other than those of the fundamental description, can be interpreted as a consequence of 
the generation of qualitatively new empirical facts (e.g. in the case of investment 
decision-making, new goods and new technologies may cause the usual return prospects 
to not hold).   Consequently, a measure of the tightness of the correspondences between 
categories of actions and categories of results can be taken as a measure of complexity. 

A. 7 

Individuals calculate probabilities  { }ji RA →p   using all the data at disposal in 

their memories, because in this part of the evaluation of empirical information they lay 
stress on the similarities among empirical facts.   But as far as they cast doubts on the 
appropriateness of the classification criteria that underly these probability distribution, 
they use the most recent data only, since only these data contain the novel features that 
are emerging in the empirical reality. 

Let us assume that, if M is the number of the most recent memory positions the 
individual uses to detect eventual novel features of reality, it is  M L<< .   Looking at 

the most recent empirical facts, the individual observes whether any correspondences 
between action categories and result categories occurred, which are not those specified 
by the fundamental description.   If this happened, he measures a complexity greater 
than zero. 
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3.  Computation of Complexity 
 

Let us now expose the details of the computation of complexity from the most 
recent M pairs action-result the individual stored in his memory.   It might be worth 
noting that, although the computation of complexity will take the form of an algorithm, 
Church's thesis is not necessarily implied: as a number of researchers already pointed 
out (Smolensky 1986; Harnad 1990; Mitchell and Hofstadter 1990) algorithmic 
computation on abstract symbols defined by the human mind in order to perform high 
level tasks is perfectly compatible with categorisation, generalisation and induction at a 
more basic level. 

Let us assume that the fundamental description is always at hand in the mind of 

the individual, no matter whether the pairs ( )A R,  constituting it are present in his 

memory, or not.   If, in the mind of the individual, some connections between action 
categories and result categories are recorded, which are not those of the fundamental 
description, then the correspondences between action categories and result categories 
which the individual knows might be for example those depicted in fig.(2): 
 

A                                           R

A                                           R

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

A                                           R
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  2
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    2

    J  
Fig. 2 

 
Let us recall Rosen’s definition of complexity reported at the beginning of the 

previous section: an observer sees a system as 'complex' when he has more than one 
single description of it.    Let us define as ‘description of reality’ any set of 
correspondences between action categories and result categories, so that the 
“fundamental description” we chose as “model of the world” is only one of the many 
possible descriptions of reality (for simplicity, we assumed that the model of the world 
coincides with the simplest possible description).   Then, complexity is greater than zero 
when, by selecting some of the correspondences between mental categories that are 
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present in the first M locations of the individual’s memory, more than one single 
description can be constructed.   Thus, complexity can be measured by how tightly the 
A-R relations contained in the first M memory locations are intertwined. 

Note incidentally that what matters for complexity computation is whether a pair 
( )A R,  is present at least one time among the last M data of the individual’s memory, 

while it does not matter whether a pair is present one, two, three times, or more.   This is 
a very important point, because it shows that the crucial issue is whether the individual 
has been surprised by the emergence of some novel feature of reality, while it does not 
matter at all how many times this novel feature occurred. 

In order to measure the tightness of weaves of the kind shown in fig. (2) we will 
resort to a work of R. Atkin (1975, 1981), who used algebraic topology to represent 
hierarchical relations between the individuals of a society.   Since algebraic topology is 
also a fundament of Category Theory (Rosen 1991), it makes sense to apply Atkin’s 
studies to the context of the hierarchies of action categories and of result categories in an 
individual’s mind.   The hierarchies investigated herein actually border triviality, having 
just one single level of action categories and one single level of result categories. 

To see the world as complex, that is to consider other descriptions apart from the 
fundamental one as equally possible, means that at least one action category A i  has 

correspondences with more than one result category.   Let us denote by A  and R  the 

sets of action categories and respectively of result categories, and let us denote by  iR  

the subset of  R  constituted by the result categories that are in correspondence with 

A i , and by  jA  the subset of A  constituted by the action categories that are in 

correspondence with R j .   In more formal terms we can say that the individual 

introduces a relation λ  between A  and R  such that  ( )A Ri j, ∈ λ   when A i  is in 

correspondence with a subset of R  which contains R j . 

A 'Simplicial complex'  ( )λ,RAKKKK  represents geometrically the relation λ  

between sets A  and R .   It is made of so many simplices as elements in A ; vertices 

of simplex  A i  are the elements of R  which belong to subset iR  (see appendix A).   If 

the only connections between categories of actions and categories of results are those of 
the fundamental description, simplices are not connected to one another.   On the 
contrary, if there are also other connections, at least two of the corresponding simplices 
have at least one vertex in common. 
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Furthermore, let us represent relation λ  also by an incidence matrix ΛΛΛΛ  of 
dimensions  I J× , whose generic element λ i j takes the values: 

 



 ∈∈=λ

                              otherwise        0 
R   and  A   if   1 ijji

ji
RA                                      (1) 

 

Let us now consider the dual relation λ∗ , defined inverting the roles of sets 

A and R : now  ( ) ∗λ∈ij AR ,   when to R j  corresponds a subset of A  containing A i .   

Dual relation λ∗  can be represented by the dual simplicial complex  ( )*, λARKKKK , 

which has incidence matrix  ΛΛΛΛT .   The reason for introducing the dual simplicial 

complex is that element (i,i') of matrix  ΛΛΛΛ ΛΛΛΛT  equals the number of vertices that 

simplices  A i  and  A i' have in common.   Then, element (i,i') of matrix  ΛΛΛΛ ΛΛΛΛT minus one 

is the dimension of the eventual common face between simplices A i  and  A i'.   If such a 

number is negative, then simplices  Ai and  Ai'   have no common point. 

Let us define the following I I×  matrix: 

 

L 11: T= −ΛΛΛΛ ΛΛΛΛT                                                (2) 

 
where 1  denotes a  I×1 vector of ones.   The dimension of the eventual common face 

between simplices  A i  and  A i' is then equal to element  l i i '  of matrix L . 

Two simplices having no point in common may nonetheless have common 
points with other simplices, which in turn do have common points.   We say that 

simplices  A i  and  A i' are  'q-connected'  in  ( )λ,RAKKKK   if there exists a chain of 

simplices  { }
r21 hhh AAA K,,   such that   { } 0lllq ihhhhi r211

≥= ′,,,min K . 

Let Q be the dimension of the simplex of  ( )λ,RAKKKK   which has the largest 

dimension.   By inspection of matrix L  we can partition the set of simplices that 

compose  ( )λ,RAKKKK  according to connection level q for 0 ≤ ∀ ≤q Q.    

Let us introduce a 'structure vector' q , of dimensions  ( )Q + ×1 1, and let us 

denote its q-th component by qq .   In general, for any connection level q there is some 

number of disjoint classes of simplices, such that the simplices belonging to a class are 
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connected at that level: the q-th component of structure vector q  is the number of 

disjoint classes of simplices that are connected at level q. 
Simplices connected at level q are obviously connected at level q −1, too.   

However, in order to avoid repetitions, we do not consider a class of simplices 
connected at level q to be also a class of simplices connected at levels  q −1,  q − 2,  etc.   

For example, let simplices A1 and A2  be connected at level  q = 2,  and let simplex A3  

be connected at level  q = 1  with A2 .   Then,  { }A A1 2,   is a class of simplices 

connected at  q = 2  and  { }A A A1 2 3, ,   is a class of simplices connected at  q = 1;  

however,  { }A A1 2,   is not a class of simplices connected at level  q = 0. 

The measure of complexity of a simplicial complex is a measure of the extent to 
which the simplicial complex is connected.   Thus, let us consider only the case where 
the simplices of a simplicial complex are at least connected at level  q = 0, i.e. where 

each of them has at least one common point with another simplex.   Otherwise, i.e. if  

( )λ,RAKKKK   is made of parts having no point in common, let us agree to take as 

complexity of  ( )λ,RAKKKK  the largest among the complexities of its parts. 

An evaluation of the complexity of Atkin's simplicial complexes can be found in 
J. Casti (Casti 1989, p.410).   Here I propose a slight modification of this measure since 
Casti’s formula, for low values of complexity, can attach the same value to very 
different simplicial complexes: 
 

( )
( )
















≡
=

∑
= ≠∀

Q

0q 0q

otherwise              q+1

   if                                  0  
c

qq
q

IΛΛΛΛ
K                                    (3) 

 
This measure of complexity is zero when the simplicial complex reduces to 

single simplices, each of them being just a point.   On the other hand, the largest value 
complexity can attain depends on the number of categories of actions and of results, 
which is also the largest possible number of simplices and of their vertices, respectively. 

The interpretation of  ( )q +1  terms is straightforward: the tighter connected the 

simplices are, the more “complex” the situation is felt by the decision-maker.   But 
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decision problems may be very complex in some parts and still very simple in others, in 
which case only a few simplices are tightly connected, the others being connected pretty 
much like in the fundamental description.   Intuitively, it does not only matter how 
tightly connected the faces of the simplicial complex are on average, but also whether 
the simplicial complex looks much like a ball or it has bumps, instead.   Terms qq  take 

account of this second effect on complexity. 
Each member of summation (3) represents the contribution to complexity 

provided by the class of simplices connected at level q, for Q21q K,,= .   Let us 

stipulate that, whithin each class of simplices, the contributions of single action 
categories are proportional to the dimensions of the corresponding simplices.   If at 
connection level q there is only one class of simplices, this rule gives immediately the 
contribution to complexity of single action categories.   If there are two or more classes 
of simplices, formula (3) works as if at any q only one of these classes contributes to 

complexity: in this case, let us stipulate that the corresponding term  ( )1+ q qq   be 

further divided by the number of classes qq  to obtain the contribution of the single 

classes of simplices, and the resulting complexity be attributed to the single action 
categories according to the dimensions of their simplices.   In this way we obtain the 
contribution to complexity by category A i  at connection level q, which we denote by 

( )c Aq i .   Contribution to complexity by category A i  is then 

 

( ) ( )c A c Ai q i
q

Q

:=
=
∑

0
                                               (4) 

 
Appendix A contains a numerical example of the calculation of the complexity 

of a simplicial complex. 
 
 
 
4.  Influence of Complexity Evaluation on Decision-Making 

 
The purpose of this section is to connect the theory of complexity exposed above 

to established decision theory, and to point to some possible fields of application. 
Complexity measures the confidence an individual attaches to the way he 

decided to define events by neglecting some features of empirical facts, while stressing 
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others.   Once events are defined, usual decision theory applies, and some objective 
function must be maximised.   Let us assume that the most simple objective function, 
subjective expected utility, is appropriate to evaluate the decision problem as it is 
defined by the existing mental categories, and let us examine how complexity influences 
decision-making. 

To this aim, let us derive from the complexity attached to a single action 

category ( )c A i  a ‘degree of confidence’ in the appropriateness of a single action 

category to the decision problem at hand. 
We want this degree of confidence to increase when complexity decreases, and 

vice versa.   Furthermore, we require that it ranges within  0 1,  in order to take account 

of it by means of a simple multiplication with expected utility.   Consequently, let us 

define the degree of confidence ω attached to action category A i  as follows: 

 

( ) ( )
( )Kc
Ac

1:A i
i −=ω                                               (5) 

 
The objective function the individual attempts to maximise thus becomes 

 

( ) ( )[ ] ( ) ( ) ( ) ( )AuRuARA:A
J

1j
jj

Ak −ω= ∑
=

pJ                          (6) 

 

where exponents ( )k Ai  have a twofold meaning: 

1) The importance that an individual attaches to the degree of confidence depends on 
his personal attitudes, as well as on the decision problem he faces.   For example, 
investment decisions are much more risky than purchase decisions at the 
supermarket; consequently, economists speak of the "animal spirits" of entrepreneurs 
(Keynes 1936), not of consumers. 

2) Degree of confidence should have opposite effects on individual decisions when it 
refers to a result that is worse than the one foreseen by the fundamental description, 
and when it refers to a result that is better than the one foreseen by the fundamental 
description.   In the first case, when the degree of confidence is  < 1  the objective 
function should decrease, while in the second case, when the degree of confidence is  
< 1  the objective function should increase. 
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Since the fundamental description is a one-to-one corresponcence between 
categories of actions and of results, let us denote by R i the result category which the 

fundamental description associates to A i .   Given the disutility associated with A i , if 

utility function has on R i a value above (under) the average on iR , the degree of 

confidence should be such that the value of objective function is lower (higher) than 
without taking account of it. 

From these considerations it is immediate to derive the following expression for 
the exponent of the degree of confidence: 
 

( ) ( ) ( ) ( ) ( )( ) ( )
( ) ( )[ ] R

R
card∑ ∈

−
−

ζ=ξζ=
ijR j

F

AuRu
AuARu

AAAAk                              (7) 

 

where ( )ζ Ai  takes account of the individual’s attitude towards the degree of confidence 

on action category A i , while the second term takes account of the possibility that ( )ω A i  

can be referred to a result with utility above or under the average. 
It is important to remark that objective function (6) differs from the ones usually 

used in decision theory, since its arguments are mental categories of actions and of 
results instead of “acts” and “consequences” given once and for all (like in Savage 
1954).   This means that preferences are supposed to be defined on the mental structures 
by which individuals perceive objects, rather than on the objects themselves. 

As long as the model of the world and the underlying mental categories are not 
discarded, the effect of the degree of confidence is that of introducing sudden jumps in 
the individual’s behaviour, which occur at the moments where correspondences between 
categories, which are different from those of the fundamental description, enter or exit 
the first M memory locations.   In these moments the degrees of confidence in the action 
categories can change abruptly to different degrees, making suddenly some action 
category preferable to the others. 

However, an even more important consequence for decision theory is the effect 
of large values of the overall complexity (3), which refers to the whole representation of 
reality of an individual.   When complexity is high, the mental model and the underlying 
mental categories do not provide anymore an orientation in a world whose qualitative 
features continuously change.   The individual must re-formulate his mental categories, 
as well as the model of the world defined upon them; this can lead to the decision to 
postpone decision-making until the problem will be framed in a more proper way.   
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However, this article does not deal with the modellisation of how mental categories and 
mental models of the world evolve over time, but only with the recognition of the need 
to re-formulate them. 

A comparison can be drawn with classifier systems (Holland 1975, 1986), 
provided we accept a reductive view of mental categories as collections of objects that 
share some common properties.   Then, classifiers can be taken as rudimentary mental 
categories, the connections between classifiers induced by their “strengths” as the 
connections between categories that constitute the model of the world, while genetic 
algorithm is the process whereby categories can be re-formulated.   As long as this 
metaphor holds, we can say that complexity evaluation has the purpose to decide when 
the genetic algorithm must be activated.   However, it is important to stress that, unlike 
classifier systems, the model presented in this article neither needed to specify the set of 
the input characters which carry information from empirical reality, nor the length of the 
strings of these characters.   This is an important issue, since if the set of possible input 
characters and the length of their strings is fixed once and for all, the set of the possible 
“novelties” which can be discovered is fixed once and for all, too. 

Another comparison can be drawn with R. Heiner’s remark that an individual 
may prefer to exclude some action “a” from his repertoire, if he is not always able to 
discriminate the information which should trigger “a” from the rest, and if undertaking 
“a” in the wrong occasions causes substantial losses (Heiner 1983).   Even if only in the 
most recent work Heiner indirectly refers to mental categories instead of to actions 
specified once and for all (Heiner 1986), to exclude “a” from the set of the possible 
actions can be easily interpreted as a particular case of category reformulation.   
However, Heiner himself (Heiner 1986, p.67) points out that the probability that an 
individual is able to process correctly the information he receives, which has a crucial 
importance in his theory, can only be evaluated ex post by the experimenter who 
observes decision-making; it cannot be evaluated by the decision-maker himself while 
he is taking a decision.   On the contrary, the complexity and the degree of confidence 
defined in this article aim to describe the decision process from the point of view of the 
decision-maker himself. 

Situations where self-referential loops generate novel features occur very often in 
the social sciences; whenever novel features emerge, it makes sense to attach a degree of 
confidence to the probability distribution of the categories of the results which can be 
obtained from the action which a decision-maker undertakes. 
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The theory developed above was referred to the rather abstract situation of a 
social system observed by a single individual; in reality, agents that observe and attempt 
to control social systems are more often organisations of individuals.   Many scholars in 
cognitive science, however (Bateson 1972; Hutchins 1995), stress the similarity between 
the mind of a single individual and the “collective mind” of an organisation of 
individuals.   Thus, let us point to situations where it is useful to consider the 
complexity and the degree of confidence defined above, with the understanding that the 
same theory applies to collective agents as well: 
1) Self-referentiality in the relationship between a Government and the rest of society 

has been already discussed in §(1), although the argument was limited to the 
economic domain.   The case is actually much more general, ‘power’ being according 
to N. Luhmann the capability to reduce complexity by restricting the set of 
alternatives available to the subordinates (Luhmann 1975).   If the power of a 
Government resides in its ability to overcome political deadlocks by casting the 
decision problem in terms such that a unique solution appears feasible, our model 
says that political decisions are likely to be postponed until the main actors agree on a 
simple model of the world, of the kind of the “fundamental description” shown in 
fig.(1). 

2) The evaluation of the environmental impact of human activities is open to very many 
interpretations, since it depends on a huge number of variables, many of them not 
directly observable.   A self-referential loop arises between environmental scientists 
and the society they are part of, with the consequence that scientists stick on a 
conventional consensus about the values of some critical magnitudes as they had 
been estimated at the beginning of environmental research (van der Sluijs 1997).   On 
the other hand, practical users often attach little confidence to the environmental 
predictions scientists produce; for example, insurance companies often refuse to 
stipulate policies against catastrophic environmental risks on the ground that 
scientifical estimates are not reliable enough (Kunreuther 1996).   This kind of 
behaviour can be explained by the need to reformulate the mental categories the 
decision problem is cast into, postponing any decision until this task will be 
accomplished. 

3) A firm’s behaviour depends on what competing firms do.   Due to a self-referential 
loop between a firm and the industrial system it is part of, strategic decision-making 
often cannot be univocally determined.   If a firm is uncertain about the categories by 
which it interprets information about current technologies and customers’ needs, the 
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sudden jumps of the degree of confidence defined above produce a high variability in 
decision-making that reminds of the “animal spirits” J.M. Keynes spoke of (Keynes 
1936).   Also in this case, in extreme situations an absolute lack of confidence in the 
model of the world may lead to the decision to postpone any decision.   Appendix B 
discusses this example in detail. 

 
 
 
5.  Relationship to Complexity in Classical Physics and in Computer Science 

 
The objects studied by classical physics belong to a class of particularly simple 

systems; essentially, macroscopic bodies moving according to the laws of Newtonian 
mechanics and thermodynamic systems.   Scientific tradition established a univocal 
identification of elements which, for specific aims, can be considered as the ultimate 
constituents of these systems.   What these constitutive elements do are the 'elementary 
events' one is concerned with (e.g. positions and velocities of moving bodies); in this 
context, consideration of the observer's cognitive processes is usually omitted. 

Consequently, the relationship between system and observer is trivial; scientific 
inquiry can focus upon properties of the system which can be considered to be 
"objective".   Computer science also finds itself in a similar situation, since the 
definition of the set of symbols a computer will manipulate is equivalent to the 
definition of some “elementary events” all the others are constructed upon. 

Since in this situation the observer considers a set of exhaustive events the 
system can produce, the intuitive idea of complexity as "capacity of a system to surprise 
its observer" (or similar statements), can be expressed in probabilistic terms.   It turns 
out that, in this context, the traditional concept of 'entropy' is a good starting point for 
the meaning one would intuitively attach to the term 'complexity', although these two 
concepts cannot be taken as equivalent. 

In fact, let us recall that the immediate meaning of thermodynamic entropy is 
that of being a measure of the “disorder” of a system: "disorder", in intuitive terms, is 
supposed to be more "complex" than "order", at least up to the point where disorder is 
so large that one gives up the hope to understand its laws.   Information entropy, in its 
turn, measures the “disorder” of the information that arrives at the end of a 
communication channel; it is thus a measure of “lack of information”, which is another 
meaning one would intuitively attach to “complexity”.   Furthermore, L. Brillouin 
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showed that thermodynamic entropy and information entropy are closely linked, since it 
is not possible to decrease one without increasing the other: in order to obtain less 
“disordered” information about a system, we must increase the “disorder” of the system 
itself (Brillouin 1956). 

Entropy is also linked to the concept of 'computational complexity' of a sequence 
of characters, introduced by R.J. Solomonoff (1964), A.N. Kolmogorov (1965) and G.C. 
Chaitin (1966).   The computational complexity of a sequence of characters Y, given a 
sequence of characters U, is the minimal length of the program h which computes Y 
knowing U: computational complexity is maximal when there is no simpler way to 
describe Y than by listing all its characters, because there are no regular patterns in it; 
which is equivalent to saying that the sequence is “disordered”, or that its entropy is 
maximal. 

On the other hand, even if we limit our concern to the systems studied by 
classical physics, entropy is not a completely satisfactory measure of the meaning we 
would like to attach to the term “complexity” since some completely disordered systems 
can only be described by means of statistical averages, like e.g. the molecules of a gas, 
and are not intuitively perceived to be “complex”.   Rather, it seems that maximal 
complexity should lie somewhere between zero and maximal entropy, in the zone where 
a system is neither so completely ordered that it can be described by simple 
deterministic laws, nor so completely disordered that it can be described by simple 
stochastic laws.   In this zone, the system does exhibit some structure, which an observer 
finds very “complex” to describe. 

Some measures of complexity have been proposed that take minimum value 
when entropy is either minimal or maximal, and take maximal value in between; most 
widely accepted magnitudes are ‘logical depth’ proposed by C.H. Bennett (1988) and 
‘statistical complexity’ proposed by J.P Crutchfield and K. Young (1989) (see also 
Crutchfield 1994). 

The point I make in this article is that these measures of complexity, although 
correct for the context they have been thought for, are of no use in the social sciences, 
for the basic reason that they assume the knowledge of the “elementary events” the 
system can exhibit.   In the social sciences this circumstance is negated, and it is 
necessary to consider the mental categories by which information is perceived, and the 
different “events” which are defined when categories are formed. 

The model presented in the previous sections does not contrast with the ideas 
that underly Bennett’s or Crutchfield’s measures of complexity, however.   Rather, it 
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can be used to re-interpret their idea of a complexity that is maximal at intermediate 
entropy values. 

In fact, the crucial point of the whole theory of complexity presented in this 
article is that the individual who is observing a system needs a simple and reliable 
model of it.   When entropy increases over a certain limit, he will re-define the 
categories by which he is trying to understand the system, switching e.g. from a 
deterministic microscopic description to a stochastic macroscopic description.   Using 
the new categories, e.g. the macroscopic magnitudes thermodynamics defines, it is easy 
to describe the system by a simple and reliable model; in other words, the system does 
not appear “complex” anymore, once the mental categories to understand it have been 
changed.   In this way, we have zero complexity at the two extremes of zero entropy and 
maximal entropy; on the contrary, complexity is maximal when entropy has already 
increased up to quite a high level, while the mental categories are still the initial ones. 

Note that a distinctive feature of the “subjective” concept of complexity 
presented in this article is that it implies that complexity varies through discontinuous 
jumps.   Minor jumps occur whenever correspondences between categories, which are 
different from those of the fundamental description, enter or exit the first M locations of 
the individual’s memory.   Besides, more dramatic jumps occur when new mental 
categories are defined (e.g. at the passage from a deterministic microscopic description 
to a stochastic macroscopic description of a physical system).   In any case, whereas 
“objective” measures of complexity like logical depth or statistical complexity vary with 
continuity, the “subjective” approach presented in this article accounts for abrupt 
changes in an individual’s attitude towards the system he is observing. 

 
 
 

6.  Relationship to Complexity in Biology 
 
The first attempt to define complexity in biology was that of H. Atlan (1972), 

who proposed an extension of information theory (Shannon 1949; Khinchin 1957) 
which rests on the unconventional assumption that, in a transmission system, the 
receiver does not know all the words that the source can emit.   This assumption has 
non-trivial implications for a transmission system which uses a redundant codification: 
if random disturbances modify the original words transforming them into some of the 
words that in a redundant codification are not used, the receiver is no longer able to 
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distinguish between the words generated by the random disturbances, and the words 
actually emitted by the source. 

In this way, Atlan can interpret evolution within the framework of information 
theory, with DNA’s nucleic acids as the characters emitted by the source of some 
transmission system, the living species as the "words", or sequences of these characters 
(i.e. sequences of nucleic acids of a given length), genetic mutations as the effect of a 
noisy channel between source and receiver and, finally, the natural environment as the 
receiver of such a transmission system.   Of course, this is a rough schematisation which 
does not take any account of the very many environmental constraints that influence the 
passage from phenotype to genotype; however, in principle it would be possible to take 
account of these constraints by assuming that some “words” cannot be produced, 
without any need to change the conceptual framework. 

The interesting remark is that, given a certain word length (length of the amino 
acid sequences), random mutations can create new “species” only at the expense of the 
words the redundant codification had left unused.   For any word length fixed once and 
for all, the more new words (new species) are generated, the more difficult evolution 
becomes. 

Atlan captures this property of evolutionary dynamics by means of mean mutual 
information between source and receiver.   If any two distant parts of a system are taken 
as ‘source’ and ‘receiver’ and their behaviour is analysed by means of information 
theory, mean mutual information measures how related these parts are, in the sense that 
it measures how similarly they behave.   It is thus somehow a measure of the structures 
that are present in the system, and for this reason many other scholars who work on 
information theory take mean mutual information as a measure of complexity (see 
Bennett 1990 for a thorough discussion of this topic). 

In the context of Atlan’s theory, mean mutual information first increases with 
time, because of the generation of useful species that diffuse quickly over the whole 
population; then it decreases, due to the random generation of useless mutants, which is 
the most that can happen after the redundancy of DNA codification has been exploited.   
Maximal mean mutual information corresponds to an optimal balance between 
replication of existing phenotypes, and experimentation with new mutants. 

This is consistent with Stuart Kauffman's studies of the shape of the "fitness 
landscapes" where evolution takes place (Kauffman 1993).   In fact, Kauffman argues 
that evolution is most effective when the frequency of mutations and the shape of the 
fitness landscape are balanced in such a way as to avoid on the one hand that the 
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population spreads over all the possible species, no matter how fit they are, and on the 
other hand to avoid that the whole population concentrates on some species that are far 
from being the fittest ones.   Such a balanced situation, bordering chaos on one side and 
order on the other, is denoted by Kauffman as a 'complex' one.   In other words a 
"complex" situation, according to Kauffman, is one where mutations do occur, but they 
are not too many, a situation which corresponds to the maximum of mean mutual 
information in Atlan. 

The concept of complexity defined in this article can be linked to these theories 
of complexity, too. 

From the point of view of an individual who observes a biological system, 
mutations are novelties that may cause the model of the world not to function anymore, 
thereby increasing the complexity by which the world is seen.   Complexity, as it has 
been defined in this article, increases by discrete amounts whenever new traits emerge 
that make the old mental model useless, and decreases abruptly whenever the mental 
categories are re-formulated and a new model of the world is constructed. 

In Atlan’s theory, mean mutual information reproduces this pattern, although 
without the abrupt upward and downward jumps that characterise the measure of 
complexity presented in this article.   Actually even mean mutual information increases 
by discrete amounts any time a new word is created, although this aspect has not been 
emphasised by Atlan himself. 

The difference with the subjective view of complexity presented in this article 
derives from the circumstance that in biology, like in classical physics but unlike in the 
social sciences, it is possible to identify some ultimate particles (nucleic acids) from 
whose combination all possible novelties can be generated.   This allows to construct a 
theory of complexity which is as “objective” as the ones used in classical physics and in 
computer science, and which measures complexity by means of a smooth function that 
does not take account of the observer’s cognitive processes. 

On the other hand, Atlan’s hypothesis actually introduces a subjective aspect into 
the theory by allowing the receiver of a transmission system to evaluate the information 
carried by “new” words: the surprise caused by new words reminds of the 
misfunctioning of the model of the world caused by novel features of reality.   Like in 
the social sciences, in Atlan’s theory “complexity” is the observer’s difficulty to 
understand the system, but like in classical physics this complexity can be quantified 
without resorting to the description of what happens in the observer’s mind.   Under this 
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respect, biology can be ascribed to a status which is somehow intermediate between that 
of classical physics on one hand, and that of the social sciences on the other. 

 
 
 

Appendix  A 

 
Let relation λ  be given by the following incidence matrix: 

 

 

 
 
Here A1 is the two-dimensional simplex of vertices  R R R1 3 4, , ; A2  is the one-dimensional 

simplex of vertices R1 and R2, and so on.   The simplicial complex can be drawn as follows: 
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The tethraedron shown in this picture is simplex A4 , its faces being simplices A1, A2  and A3.   Matrix L 
is: 
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In this case it is  Q = 2 .   In order to build structure vector q we note that: 

at  q = 0   there is a single class of simplices { }321 AAA ,, ,  so that  q0 1= ; 

at  q =1   there is a single class of simplices { }4321 AAAA ,,, ,  so that  q1 1= ; 

at  q = 2  there is a single class of simplices { }41 AA , ,  so that  q2 1= . 

Thus, the structure vector is  [ ]qT= 1 1 1 .   At this point it is trivial to calculate complexity, 

obtaining  ( ) 6c =K . 
Contribution to complexity by the single simplices is computed as follows. 

at  q = 0 class of simplices { }321 AAA ,,  contributes to complexity with ( )0 1 1 1+ = .   Their relative 
dimensions are 2:1:3, so at this connection level they contribute to complexity with 

( )c A0 1 1 3= , ( )c A0 2 1 6= , ( )c A0 4 1 2= ; 

at  q =1  class of simplices { }4321 AAAA ,,,  contributes to complexity with ( )1 1 1 2+ = .   Their 
relative dimensions are 2:1:1:3, so at this connection level they contribute to complexity with 

( )c A1 1 4 7= , ( )c A1 2 2 7= , ( )c A1 3 2 7= , ( )c A1 4 6 7= ; 

at  q = 2 class of simplices { }41 AA ,  contributes to complexity with ( )2 1 1 3+ = .   Their relative 

dimensions are 2:1, so at this connection level they contribute to complexity with ( )c A2 1 2= , 

( )c A2 3 1= . 

Thus  ( ) ( ) ( ) ( )c A c A c A c A1 0 1 1 1 2 1 61 21= + + = ,  ( ) ( ) ( )c A c A c A2 0 2 1 2 19 42= + =   and  

( ) ( ) ( )c A c A c A3 1 3 2 3 9 7= + = ,  ( ) ( ) ( )c A c A c A4 0 4 1 4 19 14= + = ,  that sum up to  ( ) 6c =K . 

 

 

 

Appendix  B 

 
Let us consider a firm’s investment decision in a situation where new technologies continuously 

emerge, and let us model the firm’s cognitive apparatus by two categories of actions and two categories of 
results: 
A −   is a category for actions that imply low investments, generally carried out by the firm with its own 

means; these actions usually do not lead to production and profit expansion, but rather to their 
stagnation or fall. 

A +   is a category for actions that imply large investments, generally possible only through bank financing; 
actions of this kind are undertaken because one expects from them a much better result than from 
actions of category A − . 
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R −   is the category of mediocre results normally expected from actions of category A − , while obtaining a 
result of category R −  from an action of category A +  means the failure of the investment. 

R+   is the category of good results one expects from actions of category A + , while receiving a result of 
category R+ from an action of category A −  is a particularly favourable and unexpected event. 

Let us assume that past experience be such that it is reasonable to classify actions into “actions 
implying low investments” and “actions implying high investments”, because this leads to a simple model 
of the world: low investments caused low gain, high investments caused high gain.   If this does not 
happen anymore, managers may think the causes are some relevant qualitative changes of the production 
technologies, which are not captured by the extremely rough categories “high investments” and “low 
investments”.   Four configurations are possible: 
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In case (a), only the connections foreseen by the fundamental description occurred, and the firm 

casts no doubt upon it.   In the other cases, the model of the world is not validated: in case (b) our firm has 
doubts about the usefulness of the probability distribution of success and failures when it undertakes an 
action of category A + , in case (c) when it undertakes an action of category A − , while in case (d) doubts 
are present whatever the firm does. 

Degrees of confidence in the four cases take the following values: 
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Case (a) is trivial: the firm has full confidence in the classification criteria of empirical facts it is 

using, only the probability distribution of successes and failures influences its decision, traditional 
decision theory applies. 

In cases (b) and (c) the decision taken by the firm is strongly influenced by the degree of 
confidence. 
Case (d) is apparently like (a), because in both cases all what matters is the probability distribution of 
successes and failures.   Yet the difference is that in case (d) a process of category re-formulation is likely 
to set in, possibly together with the decision to postpone any decision. 
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