
The role of architecture
in the software lifecycle

Prof. Paolo Ciancarini
Corso di Architettura del Software

CdL M Informatica �
Università di Bologna

Agenda

n What is a software development
process and how it is described

n The role of architecture in the software
development process

Software: the product of a process

n Many kinds of software products à
many kinds of development processes

n The development process has the goal of
satisfying “most” stakeholders’ concerns

n Improve the process to improve the product

n Examples of process models:
waterfall, iterative, agile, model-driven, …

Lifecycles

n A lifecycle is a process for creating or using a system
or a product

n Systems/products and their lifecycles can be
evaluated for quality

n Software systems/products result from several
entangled lifecycles:
n Industrial lifecycle
n Development lifecycle (eg.: reqs, build, test)
n Operational lifecycle (eg.: portal with CMS)
n Reengineering lifecycle (eg. legacy system)

The lifecycle, traditional
Stakeholders

Requirements

Development

Agreement

Quality

implementation

Detailed design

Architecture

The software development process

n Software process: set of roles,
activities, and artifacts necessary to
create a software product

n Possible roles: designer, developer,
tester, maintenance, ecc.

n Possible artifacts: source code,
executables, specifications, comments,
test suite, etc.

Sw
development
processes:
examples

Control variables of sw processes

n Time – duration of the project
n Quality – satisfying the stakeholders
n Resources – personnel, equipment, etc.
n Scope – what is to be done; the features to be

implemented

n These control variables are very difficult to
control all; the simplest and most effective to
control is scope

n The theory of software process models has the
goal of controlling the other variables as well

Models for the software process

n Waterfall (planned, linear)
n Spiral (planned, iterative)
n Agile (unplanned, test driven)

Waterfall development
n Delays risk resolution
n Measures progress by

assessing work-products
that are poor predictors
of time-to-completion

n Delays and mixes
integration and testing

n Precludes early
deployment

n Frequently: major
unplanned iterations

Code and unit test

Design

Subsystem integration

System test

Waterfall Process
Requirements

analysis

Horseshoe: reengineering process for legacy sw

Iterative Development

Initial
Planning

Planning

Requirements

Analysis & Design

Implementation

Deployment

Test

Evaluation

Management
Environment

Each iteration
results in an

executable release

Benefits of Iterative Development

A software project evolves in iterations to:
n Mitigate risk, because each iteration

includes user validation
n Accommodate change of requirements
n Learn along the way
n Improve the quality of the artifacts
n Exploit reuse, thus increasing productivity

Problems with iterative processes

n How iterative? How many rounds?
n Flexible (agile) or rigid?
n Heavy weight (many rules, practices

and documents) vs. lightweight (few
rules and practices)

n Disciplined vs ad hoc (or chaotic)

A story
A pig and a chicken are walking down a road.
The chicken looks at the pig and says, "Hey, why don't
we open a restaurant?" The pig looks back at the
chicken and says, "Good idea, what do you want to call
it?" The chicken thinks about it and says, "Why don't we
call it 'Ham and Eggs'?" "I don't think so," says the pig,
"I'd be committed but you'd only be involved."

Committed vs involved

n The core roles in development teams
are those committed to the project in
the process - they are the ones
producing the product: product owner,
team, project manager

n The other roles in teams are those with
no formal role and infrequent
involvement in the process - and must
nonetheless be taken into account

Agile developments methods

Some agile sw development methods
n Dynamic System Development Methodology and

RAD (www.dsdm.org, 1995)
n Scrum (Sutherland and Schwaber, 1995)
n XP - eXtreme Programming (Beck, 1999)
n Feature Driven Development (DeLuca, 1999)
n Adaptive Sw Development (Highsmith, 2000)
n Lean Development (Poppendieck, 2003)
n Crystal Clear (Cockburn, 2004)
n Agile Unified Process (Ambler, 2005)

Agile ethics

n www.agilemanifesto.org

n Management can tend to prefer the things on
the right over the things on the left

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we prefer the items on the left.

Traditional vs agile team

Agile development

n Agile development uses feedback to make
constant adjustments in a highly collaborative
environment

n There are many agile development methods;
most minimize risk by developing software in
short amounts of time

n Software developed during one unit of time is
referred to as an iteration, which typically
lasts from hours or few days

n Each iteration passes through a full software
development cycle

The Generic Agile Lifecycle

Agile practices

Agile: eXtreme Programming
The ethic values of eXtreme Programming
n Communication
n Simplicity
n Feedback
n Courage
n Respect (added in the latest version)

eXtreme Programming (XP)
n “Extreme Programming is a discipline of software

development based on values of simplicity,
communication, feedback, courage, and respect”

n Proponents of XP and agile methodologies regard
ongoing changes to requirements as a natural and
desirable aspect of sw projects

n They believe that adaptability to changing requirements
at any point during the lifecycle is a better approach than
attempting to define all requirements at the beginning
and then expending effort to control changes to the
requirements

www.extremeprogramming.org

Kent Beck

XP values

n Communication: simple designs, common metaphors,
collaboration of users and programmers, frequent verbal
communication

n Simplicity: start with the simplest solution; extra functionality can
then be added later

n Feedback: from the system (unit tests), the customer (acceptace
tests), the team (estimations during the planning game)

n Courage: reviewing the existing system and modifying it so that
future changes can be implemented more easily. Refactoring

n Respect: Programmers should never commit changes that break
compilation, that make existing unit-tests fail, or that otherwise delay
the work of their peers

Working Software
Delivered

Requirements
Prioritised Requirements &
Features �Backlog�Requirements

Requirements
Requirements

Requirements

Prioritised
Iteration
Scope

Daily Scrum Meeting:
15 minutes
Each teams member answers 3 questions:
1) What did I do since last meeting?
2) What obstacles are in my way?
3) What will I do before next meeting?

Team-Level
Planning Every 24hrs

Every Iteration
4-6 weeks

Applying Agile:
Continuous integration; continuously monitored progress

SCRUM

Agile development: architecture-centric

The agile
architect

A framework for agile
software architecture.
The architect’s involvement
during project execution
helps to achieve the project
objectives

www.infoq.com/articles/agile-architecture

Architecture-centric processes

Architectural principles

n Quality (“non-functional”) requirements inspire the design
of the software architecture
n Quality attribute requirements stem from business goals
n Key quality attributes need to be characterized in a system-specific way
n Scenarios are a powerful way to characterize quality attributes and

represent stakeholder views

n Sw architecture guides development throughout the life cycle
n the architecture is central to all development activities
n The development activities must have an explicit focus on quality attributes
n The development activities must directly involve stakeholders, not just the

architects

33

The inputs for architecting

The lifecycle, architecture-centric
Stakeholders

Requirements

Agreement

Architecture

Quality

Development

A model of the sw architecture process

Analyze
problem
domain

Design &
describe

architecture

Evaluate
architecture

Evolve
architecture

Realize
architecture

Twin peaks process model
The early phases of a development process can be described by
the twin peaks process model, where the specification of
requirements and architecture proceed together

38

community.ispma.org/the-reciprocal-twin-peaks-lucassen-dalpiaz-werf-and-brinkkemper/

The role of architecture in sw lifecycle

Architecting enables requirements reuse

n Software reuse is the process of reusing existing
artifacts (code, documents) in building a new system

n Typical reusable artifacts: libraries, standard
components, user interfaces (eg. browsers),
document structures (eg. layouts)

n Also requirements can be reused, if put in the
context of a domain and a reference architecture

41

Source: Designing Sw Architectures,
Cervantes & Kazman 2016

Attribute-
Driven
Design

(ADD 3.0)

DevOps
n DevOps is a set of practices intended to reduce the time between

committing a change to a system and the change being placed into
normal production, while insuring high quality

n The DevOps main practices are:
n Engaging operations as a customer and partner, “a first-class stakeholder”, in

development. Understanding and satisfying requirements for deployment, logging,
monitoring and security in development of an application.

n Engaging developers in incident handling. Developers taking responsibility for their
code, making sure that it is working correctly, helping (often taking the role of first
responders) to investigate and resolve production problems.

n Ensuring that all changes to code and configuration are done using automated,
traceable and repeatable mechanisms – a deployment pipeline.

n Continuous Deployment of changes from check-in to production, to maximize the
velocity of delivery, using these pipelines.

n Infrastructure as Code. Operations provisioning and configuration through software,
following the same kinds of quality control practices (versioning, reviews, testing) as
application software.

Microservices and DevOps
n DevOps work is done by small agile cross-functional teams solving end-

to-end problems independently, which means that they will build small,
independent services

n microservices introduce many points of failure; resilience has to be
designed and built into each service. Services cannot trust their clients
or the other services that they call out to. You need to anticipate failures
of other services, implement time-outs and retries, and fall back
alternatives or safe default behaviors if another service is unavailable.
You also need to design your service to minimize the impact of failure on
other services, and to make it easier and faster to recover/restart.

n Microservices also increase the cost and complexity of end-to-end
system testing; run-time performance and latency degrade due to the
overhead of remote calls.

n monitoring and troubleshooting in production can be much more
complicated, since a single action often involves many microservices
working together (an example at LinkedIn, where a single user request
may chain to as many as 70 services).

Conclusions (from R. Kazman)

n If you are building a large, complex system with relatively
stable and well understood requirements and/or distributed
development, doing a large amount of architecture work up-
front will likely pay off.

n On larger projects with unstable requirements, start by quickly
designing a candidate architecture even if it leaves out many
details. Be prepared to change and elaborate this architecture
as circumstances dictate, as you perform your spikes and
experiments, and as functional and quality attribute
requirements emerge and solidify.

n On smaller projects with uncertain requirements, at least try to
get agreement on the major patterns to be employed. Don’t
spend too much time on architecture design, documentation,
or analysis up front.

45

Self-test questions

n What is the role of architecture in a
traditional, waterfall process ?

n Describe and compare the use of
architecture in Waterfall, Iterative and
Agile processes

n What is the relationship between
functional requirements and architecture?

n What is the relationship between non-
functional requirements and architecture?

References

n Cervantes and Kazman, Designing software
architectures, AW 2016

n Coplien & Bjørnvig, Lean Architecture, Wiley, 2010
n Babar & Brown, Agile software architecture, MK 2013
n Schmidt, Architecture-driven Software Development,

Elsevier, 2013
n Bass, Weber, and Zhu, DevOps: A Software

Architect’s Perspective, SEI, 2015

Useful sites

n www.infoq.com/articles/agile-software-architecture-sketches-NoUML
n www.sei.cmu.edu/architecture/tools/define/add.cfm
n www.agilearchitect.org
n www.holistic-software.com/agile-architecture

Questions?

