The role of architecture
In the software lifecycle

Agenda

= \What is a software development
process and how it is described

s [he role of architecture in the software
development process

Software: the product of a process

Many kinds of software products -
many kinds of development processes

The development process has the goal of
satisfying “most” stakeholders’ concerns

Improve the process to improve the product

Examples of process models:
waterfall, iterative, agile, model-driven, ...

Lifecycles

= A lifecycle is a process for creating or using a system
or a product

= Systems/products and their lifecycles can be
evaluated for quality

= Software systems/products result from several
entangled lifecycles:

= Industrial lifecycle

= Development lifecycle (eg.: regs, build, test)
= Operational lifecycle (eg.: portal with CMS)
= Reengineering lifecycle (eg. legacy system)

The lifecycle, traditional

Stakeholders

s —

Requirements Quality

Agreement
l Architecture
Development l

Detailed design

\ 4

implementation

The software development process

s Software process: set of roles,
activities, and artifacts necessary to
create a software product

= Possible roles: designer, developer,
tester, maintenance, ecc.

= Possible artifacts: source code,
executables, specifications, comments,
test suite, etc.

Prototyping

Sw
development
pProcesses:
examples

y
o 5
,;"e
Test —Jp» Impement

Analysis Evaluation

Waterfall ﬁ:\,\

Requirements 7 QQ/

Design .
7 Planning Development

Implementation /‘2
Verification 7

Maintenance

Determine Objectives —Jp»

Control variables of sw processes

Time — duration of the project
Quality — satisfying the stakeholders
Resources — personnel, equipment, etc.

Scope — what is to be done; the features to be
implemented

These control variables are very difficult to
control all; the simplest and most effective to
control is scope

The theory of software process models has the
goal of controlling the other variables as well

Iron Triangle Paradigm Shift

Risk declines as project progresses

Fixed Time

Fixed Scope

(Requirements) Quality

Quality (Features)

Est. Time

Subject to cost, time, and quality risks

Waterfall Agile

NO)HN

N
N\

NN

\NO S

%/////////////////////%

—J

(=

—
N
%////////////////////////

\
N UERANN
%

N\
SO\

N

-
y//////////////////////////,

aLOW

EXPENSIVE

Qg

//////////////////////%

N
//////////////////////%

A
%////////////////////M//

Models for the software process

= Waterfall (planned, linear)
= Spiral (planned, iterative)
= Agile (unplanned, test driven)

Waterfall development

Waterfall Process

Requirements
analysis \

Design \

Code and unit test

N

Subsystem integration

N

System test

Delays risk resolution

Measures progress by
assessing work-products
that are poor predictors
of time-to-completion

Delays and mixes
integration and testing

Precludes early
deployment
Frequently: major
unplanned iterations

Architecture-recovery / conformance

Horseshoe: reengineering process for legacy sw

Architecture transformatior> Desired
architecture

Base
architecture

Architecture
Representation

Functional

Representation“

Code structure ;-

Representation

Source text
representation

Legacy
source

New
Source

Juswdol|anap paseq-ain}oa)yoly

Iterative Development

Requirements

Analysis & Design
Planning
Implementation
Management
Environment

Test

Initial
Planning

Evaluation

Each iteration Deployment

results in an

executable release

Benefits of lterative Development

A software project evolves in iterations to:

= Mitigate risk, because each iteration
Includes user validation

= Accommodate change of requirements

= Learn along the way

= Improve the quality of the artifacts

= EXploit reuse, thus increasing productivity

Problems with iterative processes

= How iterative”? How many rounds?
= Flexible (agile) or rigid?

= Heavy weight (many rules, practices
and documents) vs. lightweight (few
rules and practices)

= Disciplined vs ad hoc (or chaotic)

A story

A pig and a chicken are walking down a road.

The chicken looks at the pig and says, "Hey, why don't
we open a restaurant?" The pig looks back at the
chicken and says, "Good idea, what do you want to call
it?" The chicken thinks about it and says, "Why don't we
call it 'Ham and Eggs'?" "l don't think so," says the pig,
"I'd be committed but you'd only be involved."

HEY PiG, | WAS THINKIN' WE
SHOULD OPEN A RESTAURANT.

NO THANKS, I'D BE
COMMITTED, BUT YOU'D ONLY
g iwoLvep!
| I DON'T KNOW. '
| WHAT WOULD WE

2y Clark & Vizdos

Committed vs involved

= [he core roles in development teams
are those committed to the project in
the process - they are the ones
producing the product: product owner,
team, project manager

= [he other roles in teams are those with
no formal role and infrequent
involvement in the process - and must
nonetheless be taken into account

Agile developments methods

Some agile sw development methods

Dynamic System Development Methodology and
RAD (www.dsdm.org, 1995)

Scrum (Sutherland and Schwaber, 1995)

XP - eXtreme Programming (Beck, 1999)
Feature Driven Development (DelLuca, 1999)
Adaptive Sw Development (Highsmith, 2000)
Lean Development (Poppendieck, 2003)
Crystal Clear (Cockburn, 2004)

Agile Unified Process (Ambler, 2005)

Agile ethics

» www.agllemanifesto.org

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we prefer the items on the left.

= Management can tend to prefer the things on
the right over the things on the left

Traditional vs agile team

Traditional
Silos

Integrated

Extended
Project Team

Agile Team

Agile development

Agile development uses feedback to make
constant adjustments in a highly collaborative
environment

There are many agile development methods;
most minimize risk by developing software in
short amounts of time

Software developed during one unit of time is

referred to as an iteration, which typically
lasts from hours or few days

Each iteration passes through a full software
development cycle

The Generic Agile Lifecycle

Start work on release N+1

I A
1
1
Release
Iteration 0 Development (End Game) Erodicsen
(Warm Up) Iterations
Initiate the Deliver a working Deploy Release N Su o'::g;::d N
Project system which meets into Production PR e
the changing needs
of stakeholders
- Active stakeholder participation - Active stakeholder participation - Active stakeholder participation - Operate system
- Obtain funding and support - Collaborative development - Final system testing 3 SUPP_O“ system
- Start building the team - Model storming - Final acceptance testing - Identify defects and enhancements
- Initial requirements envisioning - Test driven design (TDD) - Finalize documentation
- Initial architecture envisioning - Confirmatory testing - Pilot test the release
- Setup environment - Evolve documentation - Train end users
- Internally deploy software - Train production staff

- Deploy system into production
Copyright 2006-2007 Scott W. Ambler

Agile practices

Model
Storming
Test-Driven

Design (TDD)

Requirements

Active Stakeholder
Participation

Iteration
Modeling

Just Barely
Good Enough
Executable Document Multiple
Specifications Late Models

M

Single Source
Information

Envisioning \7 R:{;LC;:I:;Z?“S

Architecture
Envisioning

Model a bit
Ahead

| The Best Practices of Agile Modeling '

Copyright 2005-2007 Scott W. Ambler

Agile: eXtreme Programming

The ethic values of eXtreme Programming

= Communication

Simplicity

Feedback

Courage

Respect (added in the latest version)

P < :J Extreme Programming Project

Extreme Programming

o

User Stories MNews User Story
wmems Project Velocity Bugs
FReI;D //L;st\ Customer

. System
Arcl'utecturalMetaphm Release Plan Iterat:lon version Acceptance Approval Small

Test Scenarios

Spike * Planning 4 & Tests ~ 'Releases
Uncertain Confident MNext lteration
Estimates Estimates
Spikc Copynght 2000 J. Deavan Wells

eXtreme Programming (XP)

= "Extreme Programming is a discipline of software ?” Ny
development based on values of simplicity, iy)/// 1z
communication, feedback, courage, and respect’ KentBeck

= Proponents of XP and agile methodologies regard
ongoing changes to requirements as a natural and
desirable aspect of sw projects

= They believe that adaptability to changing requirements
at any point during the lifecycle is a better approach than
attempting to define all requirements at the beginning
and then expending effort to control changes to the
requirements

www.extremeprogramming.org

XP values

Communication: simple designs, common metaphors,
collaboration of users and programmers, frequent verbal
communication

Simplicity: start with the simplest solution; extra functionality can
then be added later

Feedback: from the system (unit tests), the customer (acceptace
tests), the team (estimations during the planning game)

Courage: reviewing the existing system and modifying it so that
future changes can be implemented more easily. Refactoring

Respect: Programmers should never commit changes that break
compilation, that make existing unit-tests fail, or that otherwise delay
the work of their peers

Daily Scrum Meeting:

15 minutes
Team 'Level Each teams member answers 3 questions:

. 1) What did | do since last meeting?

P Ia nnin g § 2) What obstacles are in my way?

3) What will | do before next meeting?

N Every lteration
4-6 weeks

Prioritised .
lteration
SCO pe Requirements

[4
Prioritised Requirements &

Features “Backlog”

Requirements

Applying Agile:
Continuous integration; continuously monitored progress

Agile development: architecture-centric

Identify the high-level scope InitiaEI Roiq_uir_ements Initi;l A-rc_hit_ectural
Identify initial “requirements stack” nvisioning ‘ ’ nvisioning
(days) (days)

Identify an architectural vision

Iteration 0: Envisioning

l

Modeling is part of iteration planning effort
Need to model enough to give good estimates
Need to plan the work for the iteration

Work through specific issues on a JIT manner
Stakeholders actively participate

Requirements evolve throughout project

Model just enough for now, you can always come
back later

Develop working software via a test-first approach
Details captured in the form of executable specifications

Iteration Modeling B
(hours)

'

Model Storming
(minutes)

I

Test Driven
Development (TDD)
(hours)

Iteration 1: Development

Iteration 2: Development

Iteration n: Development

Reviews
(optional)

All Iterations

(hours)

Copyright 2003-2007
Scott W. Ambler

The agile
architect

A framework for agile
software architecture.

The architect’s involvement
— | | during project execution
I [ij helps to achieve the project

S " : | objectives
Hardware and sofiware stack

Communication

planation of the elements in a hybrid framework

www.infoq.com/articles/agile-architecture Category Item Description
Interaction 1. Up-front planning Setting the architectural direction in much the same way as sequential projects
pRes 2. Storyboarding Structuring the business need and architectural work, and getting everyone on board
3. Sprint Building the functionality as part of the team when direct participation is valuable
4. Working software Reviewing what’s actually delivered to measure the architectural state
1. Sprintable form Breaking architectural work into small, measurable units
2. Product owner Quantifying the architecture in terms of clear business value
3. Architecture backlog Tracking architectural concerns and balancing them with business priorities
4. Enterprise architecture Knowing the larger architectural picture and using each project to advance it
Architectural 1. Communication Keeping all stakeholders informed about the architecture’s value and state
e 2. Quality attributes Measuring maintainability, scalability, extensibility, and similar *ilities”
3. Design patterns Outlining the structures that give form to implementation work

4. Hardware and software stack Choosing appropriate hardware and software for the project

Applying architectural functions at agile interaction points

Architectural
function

Up-front planning

Storyboarding

Working software

Communication

m Understand business
objectives.

m Getinput from the techni-
cal team.

m Communicate the general
direction to everyone.

m Actively facilitate story-
boarding sessions.

m Work architectural user
stories into the backlog,
particularly the types in
the three cells immediately
below:

m Attend daily stand-ups.

m Build functionality as a
means of gaining under-
standing.

m Mentor and assist as
expertise allows.

m Attend the sprint review.

m Review documentation.

m Advocate refactoring for
architectural value with the
team and product owner.

Quality m Set approximate target m Add stories to improve m Build attributes into code, m Verify that the delivered
attributes ranges for attributes. specific attributes, includ- explicitly and as a norm for solution meets target
m Establish which attributes ing refactoring. build work. ranges.
dominate in trade-offs. m Assist in designing or m Adjust target ranges if
building to improve attri- build work indicates a need
butes. for adjustment.
Design m Choose important design m Add stories to build design = Solve for detailed design m Verify that the delivered
patterns patterns. patterns, including refac- patterns. design patterns are valid.
m Outline general interac- toring. m Assist in building the most = Adjust design patterns as
tions among significant critical design patterns. build work indicates.
patterns.
Hardware and m Reuse the corporate stack. = Add stories designed to m Validate hardware and m Verify hardware and
software stack m Prototype early to verify validate hardware and software selection in early software by continually
assumptions. software. sprints. delivering business func-
m Plan carefully; hardware m Change early and quickly if tionality on it.
and software changes are stack needs adjusting. m Deploy to other environ-

inherently nonagile.

ments routinely.

Architecture-centric processes

Architectural principles

= Quality ("non-functional”) requirements inspire the design
of the software architecture
= Quality attribute requirements stem from business goals
« Key quality attributes need to be characterized in a system-specific way

= Scenarios are a powerful way to characterize quality attributes and
represent stakeholder views

= Sw architecture guides development throughout the life cycle
= the architecture is central to all development activities

= The development activities must have an explicit focus on quality attributes

= The development activities must directly involve stakeholders, not just the
architects

33

The inputs for architecting

Design Concepts

(Documented) Structures
resulting from
Architectural Drivers The Architect design decisions

Stakeholders
Business models
Market place
Technology
Organizational structures

Stakeholders
©OOOOOO Influences @nplementation\
1101011010
Unstructured Wants 1010110101
and Needs 0101001010
1010110101
o =4
Analysis Construction
Software
Architect
Architectural :> . :>
Drivers
Design Design -
Forces Decisions Architecture
Design
Chaos Dissemination Adaption Harvest Sunset
Time

The lifecycle, architecture-centric

Stakeholders

Requirements Quality

—

Architecture

l

Agreement

|

Development

A model of the sw architecture process

Analyze
problem
domain

N

Design &
describe
architecture

Evaluate
architecture

Realize
architecture

Evolve
architecture

Twin peaks process model

The early phases of a development process can be described by
the twin peaks process model, where the specification of
requirements and architecture proceed together

General
C Specification
Level
of
detail
' . Requirements \ Architecture
Detailed
Independent Dependent
e L

Implementation
dependence

General

: Artifacts :
----- E Product 5 Responsibilities
L requirements SERREAREEEEEEEEAE S '
3 gl Requirement \ Determine
§ EC’L g markets feedback development
.G and grow roadmap
L Architectural :
: product knowledge fitness
_____ ,5-.-.-...-...-------.---:-Iriggers-..-...-
Level '
of Creat Release definition
0 reate a D
il g L . evelop
detall| 5. : winning product kDO”I“a('j”
Q! and business nowecge e
case
i - - ./ [raccomplished by
= : Architectural _
= Deliver design decisions Design
D value to ~—>-Systems
; % ; customers Be a leader
Q
' (‘D '
v . - .
Detailed (Product Requirements) (" Product Architecture)
Independent Dependent

Implemententation dependence

community.ispma.org/the-reciprocal-twin-peaks-lucassen-dalpiaz-werf-and-brinkkemper/

The role of architecture in sw lifecycle

Domain Understanding | Understanding Relevant Domains

--¥ foeds ...
P 4 .. ‘
) ‘_ -~ Requirements J Roqt;liomemé Engineering
""---—-—:::-"“; ———————————————— > drive l 4——-———-——--——--;.;*ftjr-;':

Prmm e = L ~
| |
[. Architecture Definition .
: Architecture Architecture Evaluation |
| - {r '.\ ~. :
i e specifies components . _ :
| Rt " Make/BuylMinelCommission Analysis N . :
: . ” - - ,{, \\ N -~ N |
I ’ / \ - |
| £ £ 3 N :
i [Make Buy] Mine] [Commission] :
: | | I :

1 | ! .
| Component COTS Mining [Developing an :
: Development Utilization Existing Acquisition :
| ! . Assets Strategy] '
| | | |
e J ! S ——— !

existing : : organizational
talent | | policy
market availability

v legacy base

Software System Integration Components Testing

Architecting enables requirements reuse

= Software reuse is the process of reusing existing
artifacts (code, documents) in building a new system

= [ypical reusable artifacts: libraries, standard
components, user interfaces (eg. browsers),
document structures (eg. layouts)

= Also requirements can be reused, if put in the
context of a domain and a reference architecture

41

Primary functional Architectural

requirements \CATNS

-- - - - Step 1: Review Inputs

Attribute-

Li

- Precedence
(Refined) Software
-------------- Architecture Design - g Artifact flow
J

1
1
1
1 .
: Step 2: Establish iteration goal Driven
by selecting drivers .
- Design
[
:E Step 3: Choose one or more elements of the system 1o (ADD 30)
14 refine
| Source: Designing Sw Architectures,
: 5 Cervantes & Kazman 2016
12 Step 4: Choose one or more design concepts that satisfy
.? g g the selected drivers
1
" g 2
lo - Step 5: Instantiate architectural elements, allocate
'3 3 g responsibilities and define interfaces
15
i
1
1 s Step 6: Sketch views and record design decisions d:
153 i g
: B oiver
: Step 7: Perform analysis of current design and review [Architecture design
" iteration goal and achlevement of design purpose
[- Process Step
[
[
[

DevOps

DevOps is a set of practices intended to reduce the time between
committing a change to a system and the change being placed into
normal production, while insuring high quality

The DevOps main practices are:

Engaging operations as a customer and partner, “a first-class stakeholder”, in
development. Understanding and satisfying requirements for deployment, logging,
monitoring and security in development of an application.

Engaging developers in incident handling. Developers taking responsibility for their
code, making sure that it is working correctly, helping (often taking the role of first
responders) to investigate and resolve production problems.

Ensuring that all changes to code and configuration are done using automated,
traceable and repeatable mechanisms — a deployment pipeline.

Continuous Deployment of changes from check-in to production, to maximize the
velocity of delivery, using these pipelines.

Infrastructure as Code. Operations provisioning and configuration through software,
following the same kinds of quality control practices (versioning, reviews, testing) as
application software.

Microservices and DevOps

DevOps work is done by small agile cross-functional teams solving end-
to-end problems independently, which means that they will build small,
independent services

microservices introduce many points of failure; resilience has to be
designed and built into each service. Services cannot trust their clients
or the other services that they call out to. You need to anticipate failures
of other services, implement time-outs and retries, and fall back
alternatives or safe default behaviors if another service is unavailable.
You also need to design your service to minimize the impact of failure on
other services, and to make it easier and faster to recover/restart.

Microservices also increase the cost and complexity of end-to-end
system testing; run-time performance and latency degrade due to the
overhead of remote calls.

monitoring and troubleshooting in production can be much more
complicated, since a single action often involves many microservices
working together (an example at LinkedIn, where a single user request
may chain to as many as 70 services).

Conclusions (from R. Kazman)

= If you are building a large, complex system with relatively
stable and well understood requirements and/or distributed
development, doing a large amount of architecture work up-

front will likely pay off.

= On larger projects with unstable requirements, start by quickly
designing a candidate architecture even if it leaves out many
details. Be prepared to change and elaborate this architecture
as circumstances dictate, as you perform your spikes and
experiments, and as functional and quality attribute
requirements emerge and solidify.

= On smaller projects with uncertain requirements, at least try to
get agreement on the major patterns to be employed. Don't
spend too much time on architecture design, documentation,
or analysis up front.

45

Self-test questions

= What is the role of architecture in a
traditional, waterfall process ?

= Describe and compare the use of
architecture in Waterfall, lterative and
Agile processes

= What is the relationship between
functional requirements and architecture?

= What is the relationship between non-
functional requirements and architecture?

References

Cervantes and Kazman, Designing software
architectures, AW 2016

Coplien & Bjgrnvig, Lean Architecture, Wiley, 2010
Babar & Brown, Agile software architecture, MK 2013

Schmidt, Architecture-driven Software Development,
Elsevier, 2013

Bass, Weber, and Zhu, DevOps: A Software
Architect’s Perspective, SEI, 2015

Useful sites

www.infog.com/articles/agile-software-architecture-sketches-NoUML
www.sei.cmu.edu/architecture/tools/define/add.cfm
www.agilearchitect.org

www.holistic-software.com/agile-architecture

Questions?

