
Modeling a
Software Architecture

Paolo Ciancarini

2

Agenda
n Describing software architectures
n Architectural frameworks
n Models based on architectural languages
n Models based on UML
n Main architectural views

Why document the architecture?
In the software life cycle we:
n Create an architecture

n Using architectural patterns, design patterns, experience
n Evaluate the architecture

n Using ATAM for example (see lecture on SA evaluation)
n Refine, update, and refactor the architecture

along the way
n Use the architecture to guide the implementation
n (Try to) enforce the architecture during the

implementation and throughout maintenance

3

Creating a software architecture
n The architecture of a software system is closely

related to its quality attributes
n Architectures allow or preclude nearly all of the

system’s quality attributes
n Without a proper architecture the quality of a

system cannot be ensured or can be highly
expensive, or even impossible, to implement

4

Sw architecture and function
n Qualities are attributes of the system, while the

function is the purpose of the system
n Functionality describes what the system does;

the quality “functional suitability” describes how
well the system does its function

n Functional suitability: “the capability of a software
product to provide functions which meet stated and
implied needs when the software is used under
specified conditions” (ISO 25010 Systems and software Quality
Requirements and Evaluation)

5

Architecture and structure
A software architecture includes multiples structures

n Each structure represents a different view of the system
n Each structure focusses on one aspect of the system

Analogy: the architecture of a building has many structures:
- Building structure
- Electricity supply structure
- Water supply structure
and so on

Static and dynamic structures
• The static structures of a system define its internal

design-time elements and their arrangement
• The dynamic structures of a system define its run-

time elements, their behaviors and interactions

7

Example
• Structure: the source code of an operating system

like Linux has a structure, that separates the kernel
(eg. concerning processes and scheduling) from
the services (eg. concerning the file system)

• Behavior: the operation of an operating system
like Linux can be described as a set of concurrent
processes which can invoke system calls; each call
can raise events which can suspend or activate
processes; we can say that a running Linux system
is made of processes coordinated by events

8

Structure vs behavior

9

Structure Behavior

Architectural views

Sw architecture and responsibility
n The distinction between function and quality sometimes is vague

n for instance, if the function of a software is to control engine behavior,
how can it be correctly implemented without considering timing behavior?

n the ability to control access through requiring a user name/password
combination is a function even though it is not the purpose of any system

n The word “responsibility” describes better the computations that a
system must perform

n Questions such as “What are the timing constraints on that set of responsibilities?”,
“What modifications are anticipated with respect to that set of responsibilities?”, and
“What class of users is allowed to execute that set of responsibilities?” make sense
and have value

n Thus, the achievement of qualities induces a definition of responsibility

11

Responsibility-driven design
Responsibility-driven design is inspired by contracts
(interfaces) between objects:
n DOING: what actions is this object responsible for?
n KNOWING: what information does this object share?

Example: who should be responsible for creating a new instance of a
class? An object of class A can create objects of class B if

A aggregates objects B
A contains objects B
A can initialize objects B (A has the complete data for initialize B)

12

Models and views
n It is not possible to capture the functional features and the

quality properties of a complex system in a single model
that is understandable by and of value to all stakeholders

n A software architecture is modeled by many structures
n Code units, their decomposition and dependencies
n Processes and how they interact
n How software is deployed on hardware

n A view is a representation of a structure
n It illustrates how the architecture addresses one or more

concerns held by one or more of its stakeholders

13

Architectural description
• An architectural description (AD) is a set of artifacts

which collectively document an architecture in a way
understandable by its stakeholders, and demonstrates that
the architecture meets their concerns

• The artifacts in an AD include views, models, decisions,
principles, constraints, etc., to present the essence of the
architecture and its details, so that it can be validated and
the described system can be built

• The AD can include other relevant information like business
drivers, scope or requirements overview

14

Conceptual architecture view

15http://ruthmalan.com/ByTopic/Architecture/ConceptualArchitecture.htm

The architecture document: template
� Architectural goals
� Significant requirements

� Functional
� Nonfunctional

� Decisions and justifications
� Key abstractions (Domain model)
� Architectural description

� Logical component model
� Process model
� Physical components and layers
� Development model

� Deployment model

16

The ISO Standard 42010
This standard, the most recent version of IEEE 1471,
makes a distinction between Architectures and
Architecture Descriptions
• Architecture description, identification and overview
• Identification of stakeholders and concerns
• Selection of architecture viewpoints
• Architecture views
• Consistency and correspondences among architectural

views
• Architectural rationale

17

A Conceptual Model of Architecture Description

18http://www.iso-architecture.org/ieee-1471/cm/

Documenting sw architectures: views

n A view is a description of a system according to
the perspective (viewpoint) of some stakeholder,
who has to satisfy some interest (concern)

n Example: a user view describes the typical
scenarios where a system can be used

n An architectural view is a description of some
relevant issues of a software architecture

n Example: the architectural view of packages
necessary to install a software system, depicting
their dependencies

Template for an
architectural

view

20

Example: context view

21

Example: context view

22http://avandeursen.com/author/avandeursen/#Content

Example: context view

23

24

Example: requirements view
n Purpose: documenting the system requirements
n Stakeholders: architects, developers, customers,

management, testers, project lead, domain experts
n Concerns:

n What does the business context of the system looks like?
n What are the essential requirements the system must satisfy?

n Artifacts:
n problem description and business opportunities
n stakeholders
n business processes
n requirements
n guidelines

25

Example: a module view

26

Module view: summary
n Modules are implementation units, each providing a

coherent set of responsibilities
n Relations

n Is part of
n Depends on
n Is a

n Goals:
n Providing a blueprint for constructing the code
n Facilitating impact analysis
n Supporting traceability analysis
n Supporting the definition of of work assignments

27

Example: a C2 view

28

What we put in a C&C view
• components and component types
• connectors and connector types
• component interfaces representing points of interaction between a C&C compo-

nent and its environment
• connector interfaces (or roles)
• systems as graphs of components and connectors
• decomposition: a means of representing substructure and selectively hiding

complexity
• properties: attributes (such as execution time or thread priority) that allow to

analyze the performance or reliability of a system
• styles: defining a vocabulary of component and connector types together with

rules for how instances of those types can be combined to form an architecture
in a given style. Common styles include pipe-and-filter, client-server, and
publish-subscribe

29

Architectural views and concerns

Pre-runtime vs runtime views
Architectural views can be classified into:

• Pre-runtime views: Module and some Allocation
views. E.g. an implementation structure where
implementation files are mapped to a file structure

• Runtime views: Component-and-connector (C2)
and some Allocation views. E.g. a deployment
view, involving mobile code (e.g. mobile agents)

Researcher vs practitioners
§ The researchers’ community in the academia
§ The practitioners’ community in the industry
use different approaches to describe software

architectures

Researchers: use ADL
n Researchers advocates using architecture

description languages (ADLs), which represent
formal notations for describing architectures in
terms of coarse-grained components and
connectors

n ADLs are usually domain-specific languages
n ADLs provide solid support for formal verification

and correction but it are considerably more difficult
to use than UML

ADL: examples
n ACME (ACMEStudio)
n Darwin
n Archimate

34

Practitioners: use UML
n UML is a very general purpose modeling language,

as it can be used for any software product and
even for hardware systems

n UML has become a standard de facto for
documenting software systems

n UML 2.0 includes some extensions from the ADL
world

n UML has been extended to SysML for
documenting system engineering artfacts

Example:
component
diagram

36http://msdn.microsoft.com/en-us/library/dd490886.aspx

A component diagram for a large system might include:
• Presentation. The component that provides access to the user,

typically running on a Web browser.
• Web service. Provides connection between clients and servers.
• Use case controllers. Conduct the user through each scenario.
• Business core. Contains classes based on the requirements model,

implements the key operations, and imposes business constraints.
• Database. Stores the business objects.
• Logging and error handling components.

UML: disadvantages

n The descriptions can be ambigous

n Weak tool support for detecting inconsistencies

n Inability to establish traceability between design
and code

n Incomplete architectural details (most of the times
reverse engineering is needed to detect them)

n Lack of an architectural theory: which views are
more important to represent?

I.Jacobson on agile modeling
n It is not smart to model everything in UML

(happened often for enterprise architecture
projects).

n It is not smart to model nothing and go straight to
code.

n It is however smart to find exactly that something
that is of importance to model and code.

38

The theory of sw architecting
The theory of sw architecting studies how
architectures are described or built

n Architectural models (eg. UML/SysML)
n Architectural tools (eg. Archi, ACMEstudio)
n Architectural mechanisms in programming models
(eg. Coordination-based or agent-based)

39

Typical architectures to study
• World wide web
• Mobile applications (eg. Games + advertising)
• Cloud-based services (eg. Elastic clouds)
• Multiagent systems
• Adaptive systems
• Software ecosystems (eg. App Store)
• Social applications (eg. Facebook, Twitter)
• Embedded social software (eg. Traffic

management based on social recommendations)

40

Architectural frameworks

Architectural frameworks are methods for creating,
interpreting, analyzing and using architectural models
within a domain of application or a stakeholder community

• Kruchten’s 4+1 Views framework
• Hofmeister & Nord & Soni’s framework
• Rozanski & Woods’ framework
• Clements & Bass’ framework
• C4 framework by Simon Brown
•TOGAF framework

Which views are available?

42

Which views are more useful?
n An architect usually considers at least four

perspectives of the system:
1. How is it structured as a set of code units?

Module Views
2. How is it structured as a set of elements that have runtime

presence?
Runtime Views

3. How are artifacts organized in the file system and how is
the system deployed to hardware?

Deployment Views
4. What are the data entities and their relationships?

Data Model

43

Views (Krutchen 4+1)

44pkruchten.wordpress.com/architecture/

Logical view

45

Physical view

46

47

n Soni, Nord, and Hofmeister of Siemens Corporate
Research described some views of software
architectures they observed in use in industrial practice

n The conceptual view describes a system in terms of its
major design elements and the relationships among
them

n The module interconnection view combines two
orthogonal structures: functional decomposition and
layers

n The execution view describes the dynamic structure of a
system

n Finally, the code view describes how the source code,
binaries, and libraries are organized in the development
environment

Siemens approach

Rozanski and Woods approach
n Context viewpoint: describes the relationships, dependencies, and

interactions between the system and its environment (the people,
systems, and external entities with which it interacts).

n Functional viewpoint: models the runtime elements which deliver
functionality, including their responsibilities, interfaces and interactions

n Information viewpoint: how the architecture stores, manipulates,
manages, and distributes information

n Concurrency viewpoint: state-related structure and constraints
n Development viewpoint: module organization and related tools
n Deployment viewpoint: physical environment in which the system runs
n Operational viewpoint: how the system will be operated, administered,

48www.viewpoints-and-perspectives.info/

Rozanski and Woods viewpoints

49

Context Viewpoint

Functional Viewpoint

Information Viewpoint

Concurrency Viewpoint

Development Viewpoint

Deployment Viewpoint

Operational Viewpoint

Perspectives and views (Rozanski & Woods)

50

Impact of perspectives on viewpoints
(Rozanski & Woods)

Viewpoints Security Performance Availability Evolution
Context High Low Medium High
Functional Medium Medium Low High
Information Medium Medium Low High
Concurrency Low High Medium Medium
Development Medium Low Low High
Deployment High High High Low
Operational Medium Low Medium Low

51

Example: most important views for
typical system types

(Rozanski & Woods)

Informatio
n system

Middleware Military inf.
system

High
volume

Web portal

Entreprise
package

Context High Low High Medium Medium
Functional High High Low High High
Information Medium Low High Medium Medium
Concurrency Low High Low Medium variable
Development High High Low High High
Deployment High High High High High
Operational variable Low Medium Medium High

52

Relationships among views
(Rozanski & Woods)

53

Dependencies among views
(Rozanski & Woods)

54

C4 (contexts containers components classes)

n Context: a simple block diagram showing your
system as a box in the centre, surrounded by its
users and the other systems that it interfaces with

n A container is anything that can host code or data;
it’s an execution environment or data storage

n The components diagram is used to zoom in and
decompose a container

n The class diagram is an optional level of detail used
to explain how a particular pattern or component will
be (or has been) implemented.

55www.voxxed.com/blog/2014/10/simple-sketches-for-diagramming-your-software-architecture/

Context

56

Containers

57

Components

58

Clements and Bass approach
n Module views: organization of source code
n Components-and-connectors views: description

of the main functional parts of a system and of their
dependencies

n Allocation views: mapping between software and
physical components

59wiki.sei.cmu.edu/sad

Dependencies among views
(Clements and Bass)

60

C&C views

Structural views Allocation views

C1

C1
<<implement>>

<<artifact>>
C1.jar

<<build>>

<<manifest>>

<<host>>
PC

<<execution env>>
JVM

<<deploy>>

Architectural description

Views and
stakeholders

61

Conclusions

Views can be organized in three different categories:

• Module: module views represent structures including units
of functionality as elements. E.g. module decomposition
and the class inheritance view

• Component-and-connector: represent structures
containing runtime elements such as processes and
threads. E.g. concurrency and communication processes
views

• Allocation: represent structures involving assignment
relations. E.g. In a deployment structure, software
elements are assigned to hardware elements

Summary
n Creating a software architecture starts from non

functional qualities, then we deal with features and
functions

n Different architectural theories prescribe different
views and approaches to the description of
software architectures

n Software architecture is a matter of social
consensus, its description has the goal to facilitate
the consensus

63

Self test

n What is an architectural view?
n Which are the main approches to describing a

software architecture?
n What is the C2 view?
n Describe the approach by Rozanski and Woods
n Describe some dependencies among views

64

References
n Bass, Sw architecture in practice, 3ed. AW 2013
n Rozanski, Software Systems Architecture, 2ed. AW 2012
n Bass, Documenting Software Architectures, 2ed. AW 2010
n Taylor, Foundations of Software Architecture, Wiley 2009
n Spinellis, Beautiful Architecture, O’Reilly 2009

65

Examples of software architecture models
n www.ecs.csun.edu/~rlingard/COMP684/Example2SoftArch.htm
n aosabook.org/en/index.html Architecture of open source systems
n delftswa.github.io Delft students on Software architecture

66

Sites
n www.sei.cmu.edu/architecture
n wiki.sei.cmu.edu/sad
n www.iso-architecture.org
n www.viewpoints-and-perspectives.info
n www.softwarearchitectureportal.org
n aosabook.org/en/index.html
n enterprise-architecture-wiki.nl
n www.bredemeyer.com/definiti.htm
n www.booch.com/architecture
n www.ivencia.com/index.html?/softwarearchitect/
n stal.blogspot.com
n softwarearchitecturezen.blogspot.com
n www.gaudisite.nl

67

Questions?

