Modeling a
Software Architecture

Paolo Ciancarini

Agenda

Describing software architectures
Architectural frameworks

Models based on architectural languages
Models based on UML

Main architectural views

Why document the architecture?

In the software life cycle we:

= Create an architecture
= Using architectural patterns, design patterns, experience

= Evaluate the architecture
= Using ATAM for example (see lecture on SA evaluation)

= Refine, update, and refactor the architecture
along the way

= Use the architecture to guide the implementation

= (Try to) enforce the architecture during the
implementation and throughout maintenance

Creating a software architecture

= The architecture of a software system is closely
related to its quality attributes

= Architectures allow or preclude nearly all of the
system’s quality attributes

= Without a proper architecture the quality of a
system cannot be ensured or can be highly
expensive, or even impossible, to implement

Sw architecture and function

= Qualities are attributes of the system, while the
function is the purpose of the system

= Functionality describes what the system does;
the quality “functional suitability” describes how
well the system does its function

= Functional suitability: “the capability of a software
product to provide functions which meet stated and
implied needs when the software is used under

specified conditions” (1So 25010 Systems and software Quality
Requirements and Evaluation)

Architecture and structure

A software architecture includes multiples structures
= Each structure represents a different view of the system
= Each structure focusses on one aspect of the system

Analogy: the architecture of a building has many structures:
- Building structure
- Electricity supply structure
- Water supply structure
and so on

Rainwater utilization High-efficiency heating
systems equipment

Static and dynamic structures

The static structures of a system define its internal
design-time elements and their arrangement

The dynamic structures of a system define its run-
time elements, their behaviors and interactions

Ignition

Copyright 1998

Example

. Structure: the source code of an operating system
like Linux has a structure, that separates the kernel
(eg. concerning processes and scheduling) from
the services (eg. concerning the file system)

. Behavior: the operation of an operating system
like Linux can be described as a set of concurrent
processes which can invoke system calls; each call
can raise events which can suspend or activate
processes; we can say that a running Linux system
IS made of processes coordinated by events

Structure vs behavior

GNU Compiler Collection (GCC)

GNU binutils

Exec
Init

Linux applications

| GNU run-time environment

Linux kernel
Amhitecwre g z| [Network protocols|[File systems]|
independent gE| |8¢
code £ 88 —
= é a § Generic drivers
HW dependent layer [§| [& HW dependent drivers

Structure

init init

> Eor)T > o) T
init{ 4223 initg 7125

init init

Exec Exec
getty getty
getty &4223 getty 7125 sombic 7125
Exec Exec
Login Login
login q, 7125
Exec| Shell
login 4223
gin Shell 7135 CExitD
Behavior

Behavioral View

Structural View

: |
Conceptual / & 55
. [
Architecture
y Informal
(abstract) Collaboration trace Architecture Component
Diagram Specs (CRC-R)
Logical 3 =
Architecture TrEl
(detaled) Collaboration Diagrams ARENICEI il by
gram Diagram with I/Fs Specs
4 sh—
. -3
Execution

Architecture

(Process View and
Deployment View)

| 3.
SU."’ 'f " ’3,—-

w

Collaboration Diagrams
showing processes

Architecture Diagram
showing Active Components

Sw architecture and responsibility

The distinction between function and quality sometimes is vague

» for instance, if the function of a software is to control engine behavior,
how can it be correctly implemented without considering timing behavior?

= the ability to control access through requiring a user name/password
combination is a function even though it is not the purpose of any system
The word “responsibility” describes better the computations that a
system must perform

= Questions such as “What are the timing constraints on that set of responsibilities?”,
“What modifications are anticipated with respect to that set of responsibilities?”, and
“What class of users is allowed to execute that set of responsibilities?” make sense
and have value

Thus, the achievement of qualities induces a definition of responsibility

11

Responsibility-driven design

Responsibility-driven design is inspired by contracts
(interfaces) between objects:

= DOING: what actions is this object responsible for?
= KNOWING: what information does this object share?

Example: who should be responsible for creating a new instance of a
class? An object of class A can create objects of class B if
A aggregates objects B

A contains objects B
A can initialize objects B (A has the complete data for initialize B)

12

Models and views

= |tis not possible to capture the functional features and the
quality properties of a complex system in a single model
that is understandable by and of value to all stakeholders
= A software architecture is modeled by many structures
= Code units, their decomposition and dependencies
= Processes and how they interact
= How software is deployed on hardware
= Aview is a representation of a structure

It illustrates how the architecture addresses one or more
concerns held by one or more of its stakeholders

13

Architectural description

An architectural description (AD) is a set of artifacts
which collectively document an architecture in a way
understandable by its stakeholders, and demonstrates that
the architecture meets their concerns

The artifacts in an AD include views, models, decisions,
principles, constraints, etc., to present the essence of the
architecture and its details, so that it can be validated and
the described system can be built

The AD can include other relevant information like business
drivers, scope or requirements overview

14

Conceptual architecture view

C-'.’aul\s laker \JM&‘ ‘kaf -
3o oo HEE
an E

Cx \ove o(gw\\b;ﬂj exp\o!l. album:k\ves Gﬂd pr\g"ﬂ

COECOPUS i 3 o?ho}\s iuﬁ?

Bl o ¥ L“““"f)- How m(a'-\l.’ W buld Bus ? ww}wtéz
{akional 14

C" o ek e JOLIM)

http://ruthmalan.com/ByTopic/Architecture/Conceptual Architecture.htm 15

®

The architecture document: template

Architectural goals

Significant requirements
® Functional
@ Nonfunctional

Decisions and justifications
Key abstractions (Domain model)

Architectural description

@ Logical component model

@ Process model

® Physical components and layers
@ Development model

Deployment model

16

The ISO Standard 42010

This standard, the most recent version of IEEE 1471,
makes a distinction between Architectures and

Architecture Descriptions

. Architecture description, identification and overview
. ldentification of stakeholders and concerns

. Selection of architecture viewpoints

. Architecture views

. Consistency and correspondences among architectural
views

. Architectural rationale

17

A Conceptual Model of Architecture Description

System-of- exhibits P

Interest 1 1

Architecture

1 <« identifies

A has interests in A expresses

1.” 1

Stakehold identifies 1 Architecture
takeholder 1. Description
- Architecture
1 O 1.* Rationale
has <« identifies
v
’ 0.* 0.*
Corre?lﬁ:dence Correspondence
Concern
1.%
frames A
1.* 1>
Architecture governs b Architecture
Viewpoint 1 1 View
1.7 1.%
1.%
Model 1 Architecture
Kind Model
governs

http://www.iso-architecture.org/ieee-1471/cn/

Documenting sw architectures: views

A view is a description of a system according to
the perspective (viewpoint) of some stakeholder,
who has to satisfy some interest (concern)

Example: a user view describes the typical
scenarios where a system can be used

An architectural view is a description of some
relevant issues of a software architecture

Example: the architectural view of packages

necessary to install a software system, depicting
their dependencies

Template for an
architectural
view

Template for a View

Section 1. Primary Presentation

@) (@) (]
o O _O

Section 2. Element Catalog
Section 2.A. Elements and Their Properties
Section 2.B. Relations and Their Properties
Section 2.C. Element Interfaces
Section 2.D. Element Behavior

Section 3. Context Diagram

O 0O —

Section 4. Variability Guide
Section 5. Rationale

Example: context view

|'—3
— Actors
asystems Credit Card Authorization Systern
Hotel Reservation System

Resarves I

l‘ b.

<ACTOr >
Point Redempeion System

l_

C: -0 O O
2N A ZoN ; i\—
Potentidl Frequent Hotel Registration

Guest Travcler Manager Clerk

Example: context view

Ruby
User database)
N
MysQL/ — Ruby on
Postgres .
- Rails
External AN
pods \\ — | Twitter
\ DBME\ User data Relying on functionality
User data \\
00O . Other
%pmne data, pos ~ social Facebook
@ e GK" . Copying posts of users t—;_H
Users Diaspora* networks
O Keeping th d_—/’
eeping the system up to date
Qo)w/// // — | Tumblr
/
. / i
POd mins Image processing /) eem el
/ Continuous integration
Authentication
Geolocation of posts, users, etc
Testing
frameworks
ImageMagick / l
¥ TravisCl | I |
Devise . Rspec Jasmine Cucumber
Google
Maps
22

http://avandeursen.com/author/avandeursen/#Content

Example: context view

- Network status
- Event lists
| - Performance - :

\ A‘igurations \

<<SNMP>> /

/
Network ﬁ

management
system

\

- Network and use
changes

Administrator Network devices

23

Network Management System

UC-1: Monitor network status »

B

UC-2: Detect fault

Time /(UC-3: Display event history

UC-4: Manage network device

UC-5: Configure network device

UC-6: Restore configuration

TECh/r;'Cla . '000, UC-7: Collect performance data

\\/7/

UUUU\{\(W\)

Network
device
UC-8: Display information
UC-9: Visualize performance data Key: UML

Fault Mgml
e Config Mgmt
UC-10: Log in Accounting
s Peri. Mgmt

Administrator \< UC-11: Manage users Security

Example: requirements view

Purpose: documenting the system requirements

Stakeholders: architects, developers, customers,
management, testers, project lead, domain experts

Concerns:
= What does the business context of the system looks like?
= What are the essential requirements the system must satisfy?

Artifacts:

= problem description and business opportunities
stakeholders
= business processes

= requirements
guidelines

25

Example: a module view

o e SR >—A|cﬂve Model |- 2527 | Active Record
Action Pack I
I
= = N
<<instantiate>> [<<yse>>
P e e A R R [R S R :. > Active Support | - - - - -

<<access>>
action_view action_dispatch |- - - _ _ _ _3 action_controller

' |

| |

| |

| |

: : extends

| |

| |

: : extends
extends

<<yses>

e o e e e e e W e e e e e e e W W W W W R W R e R e R R R e W W W W W W W W W eE We WE e W Wm we W e W W e = -

26

Module view: summary

= Modules are implementation units, each providing a
coherent set of responsibilities

s Relations
= |s part of
= Depends on
= |sa

s Goals:
= Providing a blueprint for constructing the code
= Facilitating impact analysis
= Supporting traceability analysis
= Supporting the definition of of work assignments

27

Example: a C2 view

<<component>>
Active Resource

<<component>>
Web-Server a

Request Forward

Action Pack

«compo:em» a

A

Delegate

Action Dispatch
Loads
-
<<component>> a <<component>> @
Action Controller Renders Action View
=S
Response + CRUD operations Delegates Request Handling

Delegate Operation

<<component>> a

Active Model
Response

<<component>> a

Active Record

<<component>> a

Action Mailer

What we put in a C&C view

components and component types
connectors and connector types

component interfaces representing points of interaction between a C&C compo-
nent and its environment

connector interfaces (or roles)
systems as graphs of components and connectors

decomposition: a means of representing substructure and selectively hiding
complexity

properties: attributes (such as execution time or thread priority) that allow to
analyze the performance or reliability of a system

styles: defining a vocabulary of component and connector types together with
rules for how instances of those types can be combined to form an architecture
in a given style. Common styles include pipe-and-filter, client-server, and
publish-subscribe

29

Architectural views and concerns

Code Distribution
Data Storage

Data Transmission
Deployment
Function/Logic/Services
Events

Hardware

Network

System Interface
User Interface
Usage

Concerns

— _ﬂ
0’:’:’0
R
RIS
oeetetetetetel

Accuracy
Availability
Concurrency
Consumability
Customization Points
Environment (Green)
Internationalization
Layering/Partitioning
Maintenance
Operations

Quality

Performance
Regulations
Reliability

Reuse

Security
Serviceability
Support

Timeliness

Usability

Validation

Pre-runtime vs runtime views

Architectural views can be classified into:

. Pre-runtime views:. Module and some Allocation
views. E.g. an implementation structure where
implementation files are mapped to a file structure

. Runtime views: Component-and-connector (C2)
and some Allocation views. E.g. a deployment
view, involving mobile code (e.g. mobile agents)

Researcher vs practitioners

- The researchers’ community in the academia
- The practitioners’ community in the industry

use different approaches to describe software
architectures

Researchers: use ADL

» Researchers advocates using architecture
description languages (ADLSs), which represent
formal notations for describing architectures in
terms of coarse-grained components and
connectors

= ADLs are usually domain-specific languages

= ADLs provide solid support for formal verification
and correction but it are considerably more difficult
to use than UML

ADL: examples

= ACME (ACMEStudio)
= Darwin

pdio - pl-instance.acme - Acme Studio Archit Environment

= Archimate [—~~===

K

34

Practitioners: use UML

UML is a very general purpose modeling language,
as it can be used for any software product and
even for hardware systems

UML has become a standard de facto for
documenting software systems

UML 2.0 includes some extensions from the ADL
world

UML has been extended to SysML for
documenting system engineering artfacts

Exa m ple - A component glagram for a large system ml-ght include:
Presentation. The component that provides access to the user,

com ponent typically running on a Web browser.
. - Web service. Provides connection between clients and servers.
d |ag ram - Use case controllers. Conduct the user through each scenario.
Business core. Contains classes based on the requirements model,
¥ «components $:| implements the key operations, and imposes business constraints.
Web Browser . Database. Stores the business objects.
Logging and error handling components.

I
I HTTP @ «component» {l

Customer Website DinnerNow Web Service

->0—

—L O

sales Kitchen Website
[-
3]
Customer Web Server ...
1 i
PaymentAuthonzation MealOrderning KitchenWorkQueue
PaymentAuthonzation J
| MealOrdering E
>] Kitchen Server -...

http://msdn.microsoft.com/en-us/library/dd490886.aspx 3

UML: disadvantages

The descriptions can be ambigous
Weak tool support for detecting inconsistencies

Inability to establish traceability between design
and code

Incomplete architectural details (most of the times
reverse engineering is needed to detect them)

Lack of an architectural theory: which views are
more important to represent?

|.Jacobson on agile modeling

= Itis not smart to model everything in UML
(happened often for enterprise architecture

projects).
= |tis not smart to model nothing and go straight to
code.

= Itis however smart to find exactly that something
that is of importance to model and code.

38

The theory of sw architecting

The theory of sw architecting studies how
architectures are described or built

= Architectural models (eg. UML/SysML)
= Architectural tools (eg. Archi, ACMEstudio)

» Architectural mechanisms in programming models
(eg. Coordination-based or agent-based)

39

Typical architectures to study

. World wide web

. Mobile applications (eg. Games + advertising)
. Cloud-based services (eg. Elastic clouds)

. Multiagent systems

. Adaptive systems

. Software ecosystems (eg. App Store)

. Social applications (eg. Facebook, Twitter)

. Embedded social software (eg. Traffic
management based on social recommendations)

40

Architectural frameworks

Architectural frameworks are methods for creating,
iInterpreting, analyzing and using architectural models
within a domain of application or a stakeholder community

- Kruchten’s 4+1 Views framework

- Hofmeister & Nord & Soni’s framework
- Rozanski & Woods’ framework

. Clements & Bass’ framework

. C4 framework by Simon Brown

-TOGAF framework

Which views are available?

Kruchten’s 4+1: Rozansky and Woods TOGAF:
* Logical view * Functional viewpoint * Business architecture views
* Process view * Information viewpoint * Data architecture views
* Development view * Concurrency viewpoint * Application architecture views
* Physical view * Development viewpoint * Technology architecture views
* “Plus one” view * Deployment viewpoint Siemens Four Views model:
RM-ODP: * Operational viewpoint * Conceptual view
* Enterprise viewpoint Philips CAFCR * Module interconnection view
* Information viewpoint * Customer view * Execution view
* Computational viewpoint * Application view * Code view
* Engineering viewpoint * Functional view Garland and Anthony
* Technology viewpoint * Conceptual view * Conceptual and analysis viewpoints
* Realization view * Logical design viewpoints

* Environment/physical viewpoints

42

Which views are more useful?

An architect usually considers at least four
perspectives of the system:

- How is it structured as a set of code units?
Module Views

- How is it structured as a set of elements that have runtime

presence?
Runtime Views

- How are artifacts organized in the file system and how is
the system deployed to hardware?
Deployment Views

- What are the data entities and their relationships?
Data Model

43

Views (Krutchen 4+1)

Logical & Development
view view
“A A
Scenarios
4 Y
V System V
’ & environment :
Process i Physical
view view

pkruchten.wordpress.com/architecture/ 44

Logical view

operator

CellKeeper

Cell id Authentication i
generator server 1 Reposiioy
1 | authentication 1
key supplier <<SMTP>> 3
sends messages tah
. 0.n 0.n
communicates with P 4 s
Session- r >
createsp control createsp Delta sends updates toP>
0.n 0.n 0.n
L Meain
gets network configuration from
v
Executor \1
sends network 1 .
y 1 conﬁgugtion to_) Physical
og <<implicit>> | UpdateScheduleQ
« stores changes in

«sends result updates to

mail_server

cellular network

_—

http

Physical view

/

direct access
with terminals

—

Cellular Application Server

1 <<process>>
main
1 <<process>>
login server

CORBA

Database Server

1 <<process>>
database
0..n <<process>>
Log

46

Siemens approach

Soni, Nord, and Hofmeister of Siemens Corporate
Research described some views of software
architectures they observed in use in industrial practice

The conceptual view describes a system in terms of its
major design elements and the relationships among
them

The module interconnection view combines two
orthogonal structures: functional decomposition and
layers

The execution view describes the dynamic structure of a
system

Finally, the code view describes how the source code,
binaries, and libraries are organized in the development
environment

47

Rozanski and Woods approach

Context viewpoint: describes the relationships, dependencies, and
interactions between the system and its environment (the people,
systems, and external entities with which it interacts).

Functional viewpoint: models the runtime elements which deliver
functionality, including their responsibilities, interfaces and interactions

Information viewpoint: how the architecture stores, manipulates,
manages, and distributes information

Concurrency viewpoint: state-related structure and constraints
Development viewpoint: module organization and related tools
Deployment viewpoint: physical environment in which the system runs
Operational viewpoint: how the system will be operated, administered,

www.viewpoints-and-perspectives.info/ 48

Rozanski and Woods viewpoints

/ Context Viewpoint \
[Functional Viewpoint } ﬂ)evelopment Viewpoinq
{Information Viewpoint } r{Deploymenthwpomt }
{Concurrency Viewpoint} ;{Operational Viewpoint}

49

Perspectives and views (Rozanski & Woods)

(Security Perspective) C Accessibility Perspective)

(Performance Perspective) < Location Perspective)

(Availability Perspective > (Regulation Perspective)

< Maintenance Perspective)

-

Impact of perspectives on viewpoints
(Rozanski & Woods)

Context High Medium High
Functional Medium Medium Low High
Information Medium Medium Low High
Concurrency Low High Medium Medium
Development Medium Low Low High
Deployment High High High Low

Operational Medium Low Medium Low

51

Example: most important views for
typical system types

(Rozanski & Woods)

Informatio | Middleware | Military inf. High Entreprise
n system volume package
Web portal

Context High Low High Medium Medium
Functional High High Low High High
Information Medium Low High Medium Medium
Concurrency Low High Low Medium variable
Development High High Low High High
Deployment High High High High High
Operational variable Low Medium Medium High

52

Relationships among views

(Rozanski & Woods)

Deployment defines operation of

View

defines
deployment of

defines implementation

Software constraints for

Operational
View

Structure

0

Functional View

Information Concurrency
View View

53

Development
View

Dependencies among views

(Rozanski & Woods)

Functional
/A A RS Development
V
Information
A Deployment
VvV I A
V
Concurrency
Operational

C4 (contexts containers components classes)

Context: a simple block diagram showing your
system as a box in the centre, surrounded by its
users and the other systems that it interfaces with

A container is anything that can host code or data;
it's an execution environment or data storage

The components diagram is used to zoom in and
decompose a container

The class diagram is an optional level of detail used
to explain how a particular pattern or component will
be (or has been) implemented.

www.voxxed.com/blog/2014/10/simple-sketches-for-diagramming-your-software-architecture/ 95

Context

Anonymous l)ser Aggregated User

{sign-in with Twitter ID)

'
Admin User
(sign-in with Twitter ID)

Manage user profile and

tribe membership.

View people, tribes
(businesses, communities
and interest groups),
content, events, jobs, etc
from the local tech, digital
and IT sector.

Add people, add tribes and
manage tribe membership.

Y
techtribes.je)
C
00
\ J

Gets profile
information and
tweets from
Gets information
about code
repositories from

- - = = = = =
1 <<external system>»>

Twitter

L

- - = = = = =
1 <<external system»>

GitHub

®

. - = = =
- = = o =
. = ®» o =

Gets content
from RSS and
Atom feeds from

- e ® o e o = .

1 <<external system»>

Blogs

N

- o = = o = = *

- = = o =
> = ® = =
- = = o =

techtribes.je - Context

56

Containers

s

&

etc.

Anonymous User Aggregated User Admin User
[HTTPS) [HTTPS] [HTTPS]
=Y V. 4
<<container»»
Web Application
Apache Tomcat 7.x
Allows users to view people,
tribes, content, events,
jobs, etc from the local
tech, digital and IT sector.
Reads from and writes data to I Reads from
[SQL/JDBC, port::&} Reads from [Mongo DB Wire Protocol, port 27017]
<<container>>» v <<container>>» <<container>>»
Relational Database File System NoSQL Data Store
MySQL 5.5.x MongoDB 2.2.x
Stores people, tribes, tribe Stores search indexes. Stores content from RSS/
membership, talks, events, Atom feeds (blog posts)
jobs, badges, GitHub repos, and tweets.

Reads from and writes data to

[SQL/JDBC, port 3306)

Writes to

Reads from and writes data to

[Mongo DB Wire Protocol, port 27017]

<<container»»

Content Updater
Standalone Java 7 process

Updates profiles, tweets,
GitHub repos and content
on a scheduled basis.

Gets data from Gets data from
techtnbes.)je [HTTP] Gets data from [H-ITP]
system boundary [HTTP]
|
¥ <<external system>> ‘. ¥ <<external system>> ‘. ¥ <<external system>> ‘.
' Twitter i GitHub I Blogs

- =" = " = = = =

- = = =" = = = =

- = = =" = = = =

techtribes.je - Containers

S7

Components

<<container»» <<container»»

<<container»»

Relational File System NoSQL Data Store
Database MongoDB 2.2.x
MySQL 5.5.x
Up&ates A 4 U|;dates
Updates Updates
(AR A\
< -:component:- o < -.component:- g < -:componen(:- > (< -:component:- >
GitHub Search News Feed Entry Twitter
Component Component Component Component
Spring Bean + JDBC Spring Bean + Lucene Spring Bean + MongoDB Spring Bean + MongoDB
Provides access to the Search facilities for Provides access to blog Provides access to
set of GitHub repos. news feed entries and entries and news. tweets.
tweets.
Updates search Stores tweets
indexes using using
Updates GitHub
repos using Stores blog
entries using
<<Components: Wiy e P
techtribes.je "
Inchirioes.je Scheduled Logging g,
Content Updater Component
Content Updater Spring Bean + logd)
Spring Scheduled Task
. " Provides logging
Refreshes information facilities to all other
from external systems components.

every 15 minutes.

/ <<component>>

GitHub Connector
Eclipse Mylyn

<<Ccomponent>>
Twitter Connector
Twitter4)

Retrieves information
about public repos.

Retrieves profile
information and
tweets {using the REST
and Streaming APls).

Uses Uses Uses

.

<<Ccomponent>>
News Feed

Connector
ROME

Retrieves content from
RSS and Atom feeds.

Gets data from Gets data from
- == N - . m m wm w = N
¥ <<external system>> ¥ <<external system>>
I Twitter ' GitHub

- = = e e = - = " " e e ==

Gets data from

- = ===
1 «<<external system>»
' Blogs

- = " " e " ==

techtribes.je - Components - Content Updater

e Used by all . Standalone Java Process
= all componen

58

Clements and Bass approach

= Module views: organization of source code

= Components-and-connectors views: description
of the main functional parts of a system and of their
dependencies

= Allocation views: mapping between software and
physical components

wiki.sei.cmu.edu/sad 59

Dependencies among views

(Clements and Bass)

Architectural description

C&C views
<<implement>>
- E _____ L - = C1 gl
A}
\
\\ <<manifest>>
\
\
! \
Structural views A¥gcation views
| <<build>> Y
ui A
CI1| o [<]host>>
_________ _ | <<artifact> <<deploy>3 =)
(C1.jar ﬁ - = > c <<execution env:

60

C&C

Module Views Views | Allocation Views Other Documentation
a
. = =
Views and 3 § £
- s c
stakeholders | _ : S| E 2 8 § 2 8
S S = Elg 5 £ 3 2 ©E
‘B = > T S o2l a & &8 ¢ 2 =«
8 N = @ £ B | o O 2 T o
o = o o » = 2 O = g = 2
£ T o = = g- E - = x £ = ® =
Q 7] o) [© 2 = =2 &8 x| T . a S 3T 2
8§ 8 § 2 8| 5 |2 2 % B5|€£ §E &8 5 & §
a D & a o — o £ £ = E£E o = > <«
Project managers s s d d o s
Members of development team d d d d d s s d d d d d
Testers and integrators d d d d d s S d d d
Designers of other systems s d o
Maintainers d d d d d d s s d d d d d
Product-line application builders d d s o s S s s s s d s d s
Customers o o o s
End users s s o s
Analysts d d s d d s d s d d s d s
Infrastructure support personnel s s s s d d o s
New stakeholders X X X X X X X X X X | X X X X X X
Current and future architects d d d d d d s d s|d d d d d d

61

Key: d = detailed information, s = some details, 0 = overview information, x = anything

Conclusions

Views can be organized in three different categories:

Module: module views represent structures including units
of functionality as elements. E.g. module decomposition
and the class inheritance view

Component-and-connector: represent structures
containing runtime elements such as processes and
threads. E.g. concurrency and communication processes

views
Allocation: represent structures involving assignment

relations. E.g. In a deployment structure, software
elements are assigned to hardware elements

Summary

s Creating a software architecture starts from non
functional qualities, then we deal with features and
functions

m Different architectural theories prescribe different
views and approaches to the description of
software architectures

s Software architecture is a matter of social
consensus, its description has the goal to facilitate
the consensus

63

Self test

What is an architectural view?

Which are the main approches to describing a
software architecture?

What is the C2 view?
Describe the approach by Rozanski and Woods
Describe some dependencies among views

64

References

Bass, Sw architecture in practice, 3ed. AW 2013
Rozanski, Software Systems Architecture, 2ed. AW 2012
Bass, Documenting Software Architectures, 2ed. AW 2010
Taylor, Foundations of Software Architecture, Wiley 2009
Spinellis, Beautiful Architecture, O'Reilly 2009

65

Examples of software architecture models

www.ecs.csun.edu/~rlingard/ COMP684/Example2SoftArch.htm
aosabook.org/en/index.ntml Architecture of open source systems
delftswa.github.io Delft students on Software architecture

66

Sites

www.seli.cmu.edu/architecture
wiki.sei.cmu.edu/sad
www.lso-architecture.org
www.viewpoints-and-perspectives.info
www.softwarearchitectureportal.org
aosabook.org/en/index.html
enterprise-architecture-wiki.nl
www.bredemeyer.com/definiti.htm
www.booch.com/architecture
www.ivencia.com/index.html?/softwarearchitect/
stal.blogspot.com
softwarearchitecturezen.blogspot.com

www.gaudisite.nl

67

Questions?

