Quality attributes
of software architectures

Paolo Ciancarini

Agenda

= EXxercise: Architectural qualities
s /1SO25010: System and software quality models

= A model for expressing and testing architectural
requirements

Quality attributes

What is quality?
When a new system (eg. a software) is built,
customers have wishes and want “quality”

Some wishes are functional requirements
Quality wishes are non functional requirements

examples

= | wish a software to play chess (functional wish) so
that | can win versus the world champion (quality

wish)

= | wish an app to call people (functional wish) so
that | save money (quality wish)

= | wish a system to drive my car (functional wish) so
that | have no accidents (quality wish)

Requirements (definition)

= A Requirement is a condition or capability that
must be met by a system or component to satisfy a
contract, standard, specification, or other form of
request

= Non-Functional Requirements are requirements
specifying general properties of a system, not its
specific functional behaviour

Non functional requirements

= Requirements are sometimes described as being
part of the FURPS spectrum, meaning Functional,
Usability (UX), Reliability, Performance and
Supportability

= [he latter 4 types — URPS - are collectively called
non-functional requirements.

= The spectrum is usually expanded to FURPS+
since there are several more important categories

of non-functionals

Non functional vs functional

= Non-Functional Requirements (NFRs) are
considered to be the most important from an
architectural perspective

= They are "architectural requirements”

= REMEMBER: a Product must meet both its
functional and non-functional requirements to
provide business value.

/

CONTEXT h

Context and design

ARCHITECTURAL DESIGN

Requirements,

Requirements
gathering

Context Development Evaluation of Decision
of alternatives alternatives making
Context
refinement Unacceptable

o

Documenting

https://www.iasaglobal.org/on-making-architectural-decisions/

High

Business value

Sufficient design

Low

Low High
Design maturity

Context and architecture

EXTENDED CONTEXT

WIDE CONTEXT

NARROW CONTEXT

have
Expe rieﬁc_:e\,____ | makeswls based on— Takes into account
: A -

Knowledge 5
Preferences ~ /-

reate.

A

Architecture

S—)
e _\</--" — Tr e' nds _\\ takes into account , ‘
/ describes
[Methodology Market ; .
Ve Economics takes into account. elicits
\ Technology
(Politics >’ ici Business Stakeholders

TN f—""me solution
—E \‘___l,; Analyst
xternal factors TN solves
~~< Budget -

e \[want to solve

Team

Infrastructure) Business

o Timid/}/ problem, need

— /

~— -

Internal factors

How to start designing an
architecture: main questions

. The sw architecture of any system is strongly

influenced by non functional requirements

. Architectural design is a set of decisions to satisfy

all requirements, both functional and non-functional

How to express the qualities we want our
architecture to provide? Eg., what does it mean to
say that a system is performant, or modifiable, or
reliable, or secure?

How do we test or measure these non functional
requirements”?

Some important qualities

Performance = [ime to market
Efficiency = Cost and benefit
Usability = Projected system
Modifiability lifetime

Security = Targeted market
Testability = Rollout schedule

Availability = Integration / Legacy

Some system qualities are “architectural”

= Qualities of the system, eg. performance or modifiability

= Business qualities (such as time to market) that are affected
by the architecture.

= Qualities, such as conceptual integrity, that are about the
architecture itself although they indirectly affect other

qualities, such as modifiability.

= Conce ptual Integ rlty the architecture is coherent

s Correctness the design is correct wrt to the requirements

= Com pleteneSS the design covers all the requirements

u Flexi blllty the architecture supports future changes to its requirements
= Reusabill Ity the architecture (re)uses existing assets

| BUIldablllty the architecture is realistic and suitable for its context

Brooks on “conceptual integrity”

[wil contend that conceptual integrity i the most
important congiaeration in system design. It is better
fo have a system omit certain anomalous teatures and
improvements, but to reflect one get of design ideas,
than fo have one that containe many qood but

indigpendent and uncoordinated ideas

Fred Brooks, The Mythical Man-Month
13

Example: usability

= Usability involves both architectural and
nonarchitectural aspects.

= [he nonarchitectural aspects include making the
user interface clear and easy to use.

= Whether a system provides the user with the ability
to cancel operations, to undo operations, or to re-
use data previously entered is architectural,
however. These requirements involve the
cooperation of multiple elements.

14

Example: modifiability

= Modifiablility is determined by how functionality is
divided (architectural) and by coding techniques
within a module (nonarchitectural

= a system is modifiable if changes impact the fewest
possible number of distinct elements..

15

http://www.ece.ubc.ca/~matei/EECE417/BASS/ch03.html

Example: performance

s Performance involves both architectural and
nonarchitectural dependencies.

= Performance depends partially on

how much communication is necessary among components
(architectural),

what functionality has been allocated to each component
(architectural),

how shared resources are allocated (architectural),

the choice of algorithms to implement selected functionality
(nonarchitectural),

how these algorithms are coded (nonarchitectural).

Tactics to
control -

performance S .
Events arrive Response within time constraints

A)

16

Example: resilience

Resilience is the property that ensures that a
system well behaves under stress:

it is the ability of a system to recover and, in some
cases, transform itself from adversity

Resilience testing ensures that applications
perform well in real-life conditions.

It is part of the non-functional sector of software
testing that also includes testing compliance,
endurance, load, recovery, etc

17

1ISO 25010: software qualities

Quality in use
= Effectiveness
= Efficiency

= Satisfaction
= Safety

= Usabillity

Product quality

-unctional suitability
Reliability
Performance
efficiency

Operability
Security
Compatibility
Maintainability
Trasferability

18

1ISO25010: sw product qualities

System/Software
Product Quality
I:Slt?tceﬂglli];l Pi}?&g:;‘;e Compatibility | | Usability Reliability Security Maal'jri'ltif;”' Portability
Functional Time-behaviour Co-existence Appropriateness Maturity Confidentiality Modularity Adaptability
completeness Resource utilisation | | Interoperability recognisability Availability Integrity Reusabillity Installability
Functional Capacity Learnability Fault tolerance Non-repudiation Analysability Replaceability
COMTECiness Operability Recoverability Accountability Modifiability
Functional User error Authenticity Testability
appropriateness protection
User interface
aesthetics
Accessibility

19

1SO25010: Quality in use

Quality

in

Use

| | |
Effectiveness | Efficiency | Satisfaction Safety Usability
Effectiveness Efficiency Likeability Economic damage risk Learnability

Pleasure Health and safety risk Flexibility

Comfort Environmental risk Accessibility
Trust Context conformity

20

ISO/IEC 25000 Software Quality Requirements and
Evaluation (SQuaRE)

/A

Evaluation

- Evaluation will help you determine to what extent has your product met its
) specified criteria

Measurement
% Measurement will satisfy the needs of developers, acquirers,

managers and other stakeholders

Quality Requirements
& By defining Quality Requirements, Planning and Development
= you will increase the success of your project

~

Activities during product development that can benefit from the use of the SQuaRE include:

Identifying software and system requirements;

Validating the comprehensiveness of a requirements definition;

Identifying software and system design objectives;

Identifying software and system testing objectives;

Identifying quality control criteria as part of quality assurance;

Identifying acceptance criteria for a software product and/or software-intensive computer system;
Establishing measures of quality characteristics in support of these activities

Qualities and trade-offs

= [he qualities are all good
= [he value of a quality is project specific
= [he qualities are not independent

Business goals Quality attributes
l

I
\'4

Non-architectural solutions Architecture

Quality attributes: in use

Safety freedom from risk: absence of catastrophic consequences on the users or
the environment

Usability is how easy it is for the user to accomplish tasks and what support the
system provides for the user to accomplish this. Dimensions:

= Learning system features

= Using the system efficiently

= Minimizing the impact of errors

= Adapting the system to the user’'s needs

= Increasing confidence and satisfaction

23

Quality attributes: product

Modifiability is about the cost of change, both in time and money.
Performance is about timeliness. Events occur and the system must
respond in a timely fashion.

Testability refers to the ease with which the software can be made to
demonstrate its faults or lack thereof. To be testable the system must
control inputs and be able to observe outputs

Maintainability is the ease with which a product can be maintained in
order to isolate and correct defects, prevent unexpected breakdowns,
meet new requirements

Availability is concerned with system failure and duration of system
failures. System failure means unreadiness for correct service, when the
system does not provide the service for which it was intended

Reliability: the ability of a system or component to function under
stated conditions for a specified period of time (=continuity of correct
service)

Dependability: availability + reliability + maintainability

24

Quality and metrics

Quality
Criteria

Metrics

&_ﬁ

5‘"\“——%

?

—
=

Quality
Factors
Correctness
% Reliability
Froduct _
Operation \ Efficiency
\ Inte grity
Usability
/ baintainability
Froduct —
Revision Testability
\ Flexibility
/ Fortability
Froduct —
Transition \ Reusability

Interoperability

*Self-descriptiveness

Traceability

Completeness
Consistency

Accuracy

Error tolerance

Execution efficiency

Storage efficiency

Access control
Access audit
Operability

Training

Communicativeness

Expandability

hadularity
software system independence —
Machine independence

Communications commaonality —

Data commanality

msritse2012.wordpress.com/2013/01/27/quality-models-in-software-engineering/

25

Quality attributes shape the architecture

= [he critical choices made during architectural
design determine the ways the system meets the

driving quality attribute goals

= A good way to discuss and prioritize quality
attribute requirements is a set of scenarios

T

-

/ >
/\ Stimulus

Source of stimulus

_

Artifact

~N

J

Environment

Response

measure

Response

26

VA

Vi.

Structuring a quality attribute scenario

Source of stimulus
Stimulus
Environment
Artifact

Response
Response measure

In the environment, the source throws the
stimulus and hits the system in the artifact;
we get a response than can be measured

How to generate a scenario

= A scenario is a system independent specification of
a requirement with a measurable quality attribute

= | his table is a framework to structure scenarios

Stimulus A condition to be considered when it arrives at a system
Response The activity undertaken at the arrival of the stimulus

Source of stimulus An entity that generates the stimulus
(human, external system, sensor, etc.)

Environment A system’s condition when a stimulus occurs

Stimulated artifact Some artifact that is stimulated; may be the whole
system or part of it

Response measure The response to the stimulus should be measurable
someway so that the quality requirement can be tested

28

Example from cars

O 4 D

/ Response

Artifact: measure:
— . -?ilrggt Deflection < N%

Stimulus: Noise <M dB
Bumps - /
Environment:
Highway driving
Source of stimulus: E Response:
Road Control maintained

Smooth ride
Low noise

Suggestions

One stimulus per scenario

One environment per scenario

One artifact per scenario

Multiple response measures are OK

Example from software: security

@

Response

/ [Artifact: Measure: No
_—) User unauthorized
Stimulus: interface : users,
Dozens o-f - J login <1 min
simultaneous Environment: :
logins Normal :
operation ;

Response:
Security maintained
Acceptable delays

Source of stimulus:
Users

Example from software: modifiability

Scenario Part

Source

Stimulus

Artifact

Environment

Response

Response Measure

Possible Values

End user, developer, system admin

Add/delete/modify/vary functionality, quality
attribute or capacity

User interface, platform, environment, other
system

Runtime, compile time, build time, design time,
setup, configuration

Places to be modified without other effect, test
change, deployment

Cost of change in number of elements, effort,
duration, money. Extent the change affects
other functionality or quality attributes

32

Qualities must be testable

= [0 be effective, quality attribute scenarios must be
testable (just like any other requirement)

= [herefore, the
= Stimulus
= Artifact
= Environment
= Response measure(s)
must be clear and specific

General availability scenario

()

Source Stimulus

Internal to Crash

system .

¥ Omission

External to .
Timing

system

No response

Incorrect response

/

System’s processors

Artifact

Communication channels

Persistent storage

-

~

/

Environment

Normal operation
Startup

Shutdown

Repair mode

Degraded (failsafe) mode

Overloaded operation

Response
Prevent the failure
Log the failure

Notify users /
operators

Disable source of
failure

Temporarily
unavailable

Continue (normal /
degraded)

Measure

Time interval
available

Availability %
Detection time
Repair time

Degraded mode
time interval

Unavailability time
interval

34

Sample availablility scenario

L)

SR
Artifact:
S rE—— e =
Stimulus: oeess Response:
Server _ / Inform
Source: Normal Continue ::espons.e
Heartbeat Operation to Operate easure.'
perauo No Downtime

Monitor

35

Availability Tactics

e //F\\\
et S

-~ R from Fault
Detect Faults ecover from Faults Prevent Faults

Availability e
tactics and Ropak l

Y \j \J
Ping / Echo Active Shadow Removal from
Redundancy Service
Monitor State
Passive Resynchronization Transactions Fault
Escalating Predictive or
DRSS Spare Restart Model Repair
Fault Sani Made
——p SBY Exception Exception >
Checking Handling Non-Stop B gt
i Forwarding o
ﬁ%‘:‘?tg': - Rollback Increase
L Soft Competence Set
Voting IS
Upgrade
Exception R
et
Detection 44
Ignore Faulty
Self-Test Behavior
Degradation

Reconfiguration

Source
End-user
Developer

System-
administrator

General modifiability scenario

L7

Stimulus

Add / delete /
modify
functionality,
quality attribute,
capacity or
technology

>

/

Artifact
Code Data Interfaces
Components Resources

Configurations

.

~

/

Environment
Runtime
Compile time
Build time
Initiation time

Design time

Response
Make modification
Test modification

Deploy
modification

Measure

Cost in effort
Cost in money
Cost in time

Cost in number,
size, complexity of
affected artifacts

Extent affects other
system functions or
qualities

New defects
introduced

Sample modifiability scenario

()

)
> éncijfact: —_— -
Stimulus: "o Response:
Wiéi:‘es _ /) Change Made lilihil:
to Change and Unit Tested
Source: the Ul Environment: Response
urce: Design Measure:
Developer Time In Three

Hours

38

Change .
Arrives

Modifiability tactics

Modifiability Tactics

0
- / \\ T

Reduc:gSize Increase Reduce
of a Module Cohesion Coupling
Y
Increase Encapsulate
Split Module Semantic P
Use an
Coherence Intermediary
Restrict
Dependencies
Refactor

Abstract Common
Services

T

Defer
Binding

Change Made
-

within Time
and Budget

General performance scenario

O / Artifact \

System

» Component

N /

Source Stimulus Environment Response Measure
Internal to the Periodic events Normal mode Process events Latency
system Sporadic events Overload mode Change level of Deadline
External to th . rvic
ernal to the Bursty events Reduced capacity mode service Throughput
system
Stochastic events Emergency mode Jitter
Peak mode Miss rate
Data loss

40

Sample performance scenario

, g
> Artifact:
Stimulus: System Response:
Initiate _ /) Transactions AN
Transactions Envi Are Processed
Saiirce: nvironment: Response
A Normal Measure:
Operation Average
Latency
of Two

Seconds

41

Event

Performance tactics

Arrives

Performance Tactics

Control Resource Demand

'

Manage Sampling Rate
Limit Event Response
Prioritize Events
Reduce Overhead
Bound Execution Times

Increase Resource
Efficiency

Manage Resources

'

Increase Resources
Introduce Concurrency

Maintain Multiple
Copies of Computations

Maintain Multiple
Copies of Data

Bound Queue Sizes

Schedule Resources

Response

.
Generated within
Time Constraints

General security scenario

(> O it)

System services

» Data within the system

Component / resource of
the system

Data produced / consumed

Qy the system /

Source Stimulus Environment Response Measure
Identified user Attempt to display Normal mode Process events Latency
Unknown user data Overload mode Change level of Deadline
Hacker from gzzmpt to modify Reduced capacity mode service Throughput
outside the :
. Emergency mode Jitter

organization Attempt to delete

data Peak mode Miss rate
Hacker from
inside the Access system Data loss
organization services

Change system’s
behavior

Reduce availability

Sample security scenario

-
Stimulus:

Attempts to
Modify Pay
Rate

Source:

Disgruntled
Employee from
Remote Location

-z

S

Artifact:
Data within
the System

8

Environment:
Normal
Operations

System

Maintains

Audit Trail Response
Measure:

Correct Data Is
Restored within a
Day and Source
of Tampering
Identified

44

Security tactics

Security Tactics

N .

-y

A-""--_ \M\"“-\
Detect Attacks Resist Attacks React to Recover
! Attacks from AttaCkS
l Identify ‘
Detect Actors Ece:::: Maintain Restore
ln H n . . a
Attack e , Authenticate OUOR 1o System Detects,
—» Detect Service Actors Lock i Fancta”
Denial Authori Computer s ; :
e MsesEGh: G e €€ | or Recovers
I*’{'“fyw g€ Actors infoi Availability
ntegri
— Actors
Detect Message -'Mit Access
Delay Limit Exposure
Encrypt Data
Separate
Entities

Change Default
Settings

Source
Unit tester

Integration
tester

System tester

Acceptance
tester

End user

Automated
testing tools

L7

Stimulus

Execution of tests
due to completion
of code increment

-

Portion of the system being
tested

Artifact

.

\

/

Environment
Design time
Development time
Compile time
Integration time
Deployment time

Run time

Response

Execute test suite &
capture results

Capture cause of
fault

Control & monitor
state of the system

General testability
scenario

Measure

Effort to find fault

Effort to achieve
coverage %

Probability of fault
being revealed by
next test

Time to perform
tests

Effort to detect
faults

Length of longest
dependency chain

Time to prepare
test environment

Reduction in risk
exposure

46

Sample testability scenario

0

~ ~

Artifact:
7 - Code Unit
Stimulus: Response:
Code Unit Results Captured
Completed B /
Environment: Response
Source:
Measure:
Unit Tester Development

85% Path Coverage
in Three Hours

47

Tests

Executed'

Testability Tactics

Control and Observe Limit Complexity
System State

! l

Specialized Limit Structural
Interfaces Complexity

Record/ Limit
Playback Nondeterminism

Localize State
Storage

Abstract Data
Sources

Sandbox

Executable
Assertions

Faults

Detected’

General usability scenario

L7

Source

End user
(possibly special
role)

Stimulus

Use the system
efficiently

Learn to use the
system

Minimize impact of
errors

Adapt the system

Configure the
system

>

-~

System

Artifact

Portion of the system with
which the user is interacting

N

N

J

Environment
Runtime

Configuration time

Response

Provide features
needed

Anticipate the
user’s needs

Measure

Task time
Number of errors

Number of tasks
accomplished

User satisfaction

Gain of user
knowledge

Ratio of successful
operations to total
operations

Amount of time /
data lost when
error occurs

Sample usability scenario

Artifact:
) al System
Stimulus: Response:
Downloads User Uses
a New \ _ / Application
Source: Application Env!ronment. Productively nﬂﬂz.:gzpes_e
lane Runtime :
Within Two
Minutes of
Experimentation

50

User

Usabillity tactics

-
Request

Usability Tactics

TS

Support User Support System
Initiative Initiative
Y
Cancel Maintain Task
Model
Undo Maintain User
Model

Pause/Resume
Maintain System
Aggregate Model

User Given
Appropriate

Feedback and
Assistance

References

ISO/IEC 25010:2011 Systems and software
engineering -- Systems and software Quality
Requirements and Evaluation (SQuaRE) -- System
and software quality models

Cervantes & Kazman, Designing sw architectures,
AW 2016

Bass, Software architecture in practice, 3° ed
http://www.ece.ubc.ca/~matei/EECE417/BASS/

Babar, Agile Software Architecture, MK 2014

52

http://www.spin.org.za/wp-content/uploads/2011/01/SPIN-21-QAS.pdf
http://sa.inceptum.eu/sites/sa.inceptum.eu/files/Content/Quality%20Attribute %2
0Generic%20Scenarios-2.pdf

Stoermer, “Moving Towards Quality Attribute Driven Software Architecture
Reconstruction”, http://www.cs.vu.nl/~x/square/qadsar.pdf

53

Questions?

