
Quality attributes
of software architectures

Paolo Ciancarini



Agenda
n Exercise: Architectural qualities
n ISO25010: System and software quality models
n A model for expressing and testing architectural 

requirements

2



Quality attributes
n What is quality?
n When a new system (eg. a software) is built, 

customers have wishes and want “quality”
n Some wishes are functional requirements
n Quality wishes are non functional requirements

3



examples
n I wish a software to play chess (functional wish) so 

that I can win versus the world champion (quality 
wish)

n I wish an app to call people (functional wish) so 
that I save money (quality wish)

n I wish a system to drive my car (functional wish) so 
that I have no accidents (quality wish)

4



Requirements (definition)
n A Requirement is a condition or capability that 

must be met by a system or component to satisfy a 
contract, standard, specification, or other form of 
request

n Non-Functional Requirements are requirements 
specifying general properties of a system, not its 
specific functional behaviour

5



Non functional requirements
n Requirements are sometimes described as being 

part of the FURPS spectrum, meaning Functional, 
Usability (UX), Reliability, Performance and 
Supportability

n The latter 4 types – URPS - are collectively called 
non-functional requirements. 

n The spectrum is usually expanded to FURPS+ 
since there are several more important categories 
of non-functionals

6



Non functional vs functional
n Non-Functional Requirements (NFRs) are 

considered to be the most important from an 
architectural perspective

n They are "architectural requirements" 

n REMEMBER: a Product must meet both its 
functional and non-functional requirements to 
provide business value. 

7



Context and design

8

https://www.iasaglobal.org/on-making-architectural-decisions/



Context and architecture

9



How to start designing an 
architecture: main questions

• The sw architecture of any system is strongly
influenced by non functional requirements

• Architectural design is a set of decisions to satisfy
all requirements, both functional and non-functional

I. How to express the qualities we want our
architecture to provide? Eg., what does it mean to 
say that a system is performant, or modifiable, or 
reliable, or secure?

II. How do we test or measure these non functional
requirements?



Some important qualities

n Performance
n Efficiency
n Usability
n Modifiability
n Security
n Testability
n Availability

n Time to market
n Cost and benefit
n Projected system 

lifetime
n Targeted market
n Rollout schedule
n Integration / Legacy 



Some system qualities are “architectural”
n Qualities of the system, eg. performance or modifiability 
n Business qualities (such as time to market) that are affected 

by the architecture.
n Qualities, such as conceptual integrity, that are about the 

architecture itself although they indirectly affect other 
qualities, such as modifiability.

n Conceptual Integrity the architecture is coherent

n Correctness the design is correct wrt to the requirements

n Completeness the design covers all the requirements

n Flexibility the architecture supports future changes to its requirements 

n Reusability the architecture (re)uses existing assets

n Buildability the architecture is realistic and suitable for its context



Brooks on “conceptual integrity”

I will contend that conceptual integrity is the most
important consideration in system design. It is better
to have a system omit certain anomalous features and
improvements, but to reflect one set of design ideas,
than to have one that contains many good but
independent and uncoordinated ideas.

Fred Brooks, The Mythical Man-Month
13



Example: usability
n Usability involves both architectural and 

nonarchitectural aspects. 
n The nonarchitectural aspects include making the 

user interface clear and easy to use. 
n Whether a system provides the user with the ability 

to cancel operations, to undo operations, or to re-
use data previously entered is architectural, 
however. These requirements involve the 
cooperation of multiple elements.

14



Example: modifiability
n Modifiability is determined by how functionality is 

divided (architectural) and by coding techniques 
within a module (nonarchitectural

n a system is modifiable if changes impact the fewest 
possible number of distinct elements..

15

http://www.ece.ubc.ca/~matei/EECE417/BASS/ch03.html


Example: performance
n Performance involves both architectural and 

nonarchitectural dependencies. 
n Performance depends partially on 

n how much communication is necessary among components 
(architectural), 

n what functionality has been allocated to each component 
(architectural), 

n how shared resources are allocated (architectural), 
n the choice of algorithms to implement selected functionality 

(nonarchitectural), 
n how these algorithms are coded (nonarchitectural).

16

Events arrive Response within time constraints

Tactics to 
control 
performance



Example: resilience
n Resilience is the property that ensures that a 

system well behaves under stress: 
n it is the ability of a system to recover and, in some 

cases, transform itself from adversity 
n Resilience testing ensures that applications 

perform well in real-life conditions. 
n It is part of the non-functional sector of software 

testing that also includes testing compliance, 
endurance, load, recovery, etc

17



ISO 25010: software qualities

Quality in use
n Effectiveness
n Efficiency
n Satisfaction
n Safety
n Usability

Product quality
n Functional suitability
n Reliability
n Performance 

efficiency
n Operability
n Security
n Compatibility
n Maintainability
n Trasferability

18



ISO25010: sw product qualities

19



ISO25010: Quality in use

20



21



Qualities and trade-offs
n The qualities are all good
n The value of a quality is project specific
n The qualities are not independent



Quality attributes: in use
n Safety freedom from risk: absence of catastrophic consequences on the users or 

the environment
n Usability is how easy it is for the user to accomplish tasks and what support the 

system provides for the user to accomplish this. Dimensions: 
n Learning system features 
n Using the system efficiently 
n Minimizing the impact of errors
n Adapting the system to the user’s needs 
n Increasing confidence and satisfaction 

23



Quality attributes: product
n Modifiability is about the cost of change, both in time and money.

Performance is about timeliness. Events occur and the system must 
respond in a timely fashion. 

n Testability refers to the ease with which the software can be made to 
demonstrate its faults or lack thereof. To be testable the system must 
control inputs and be able to observe outputs

n Maintainability is the ease with which a product can be maintained in 
order to isolate and correct defects, prevent unexpected breakdowns, 
meet new requirements

n Availability is concerned with system failure and duration of system
failures. System failure means unreadiness for correct service, when the 
system does not provide the service for which it was intended

n Reliability: the ability of a system or component to function under 
stated conditions for a specified period of time (=continuity of correct 
service)

n Dependability: availability + reliability + maintainability

24



Quality and metrics

25
msritse2012.wordpress.com/2013/01/27/quality-models-in-software-engineering/



Quality attributes shape the architecture
n The critical choices made during architectural 

design determine the ways the system meets the 
driving quality attribute goals

n A good way to discuss and prioritize quality 
attribute requirements is a set of scenarios

26

Artifact

Environment

Source of stimulus Response

Stimulus
Response
measure



Structuring a quality attribute scenario
i. Source of stimulus
ii. Stimulus
iii. Environment
iv. Artifact
v. Response
vi. Response measure

In the environment, the source throws the 
stimulus and hits the system in the artifact; 
we get a response than can be measured



How to generate a scenario 
n A scenario is a system independent specification of 

a requirement with a measurable quality attribute
n This table is a framework to structure scenarios

28

Elements Short description
Stimulus A condition to be considered when it arrives at a system
Response The activity undertaken at the arrival of the stimulus
Source of stimulus An entity that generates the stimulus 

(human, external system, sensor, etc.)
Environment A system’s condition when a stimulus occurs
Stimulated artifact Some artifact that is stimulated; may be the whole 

system or part of it
Response measure The response to the stimulus should be measurable 

someway so that the quality requirement can be tested



Example from cars

Artifact:
Tires

Environment:
Highway driving

Source of stimulus:
Road

Response:
Control maintained

Smooth ride
Low noise

Stimulus:
Bumps

Response
measure:

Deflection < N%
Noise < M dB

… 



Suggestions
n One stimulus per scenario
n One environment per scenario
n One artifact per scenario
n Multiple response measures are OK



Example from software: security

Artifact:
User

interface

Environment:
Normal

operation
Source of stimulus:

Users
Response:

Security maintained
Acceptable delays

Stimulus:
Dozens of

simultaneous
logins

Response
Measure: No 
unauthorized

users,
login < 1 min



Example from software: modifiability
Scenario Part Possible Values

Source End user, developer, system admin

Stimulus Add/delete/modify/vary functionality, quality 
attribute or capacity

Artifact User interface, platform, environment, other 
system

Environment Runtime, compile time, build time, design time, 
setup, configuration

Response Places to be modified without other effect, test 
change, deployment

Response Measure
Cost of change in number of elements, effort, 
duration, money. Extent the change affects
other functionality or quality attributes

32



Qualities must be testable
n To be effective, quality attribute scenarios must be 

testable (just like any other requirement)
n Therefore, the

n Stimulus
n Artifact
n Environment
n Response measure(s)
must be clear and specific



General availability scenario

34



Sample availability scenario

35



Availability 
tactics

36



General modifiability scenario

37



Sample modifiability scenario

38



Modifiability tactics

39



General performance scenario

40



Sample performance scenario

41



Performance tactics

42



General security scenario

43



Sample security scenario

44



Security tactics

45



General testability 
scenario

46



Sample testability scenario

47



Testability tactics

48



General usability scenario

49



Sample usability scenario

50



Usability tactics

51



References

n ISO/IEC 25010:2011 Systems and software 

engineering -- Systems and software Quality 

Requirements and Evaluation (SQuaRE) -- System 

and software quality models

n Cervantes & Kazman, Designing sw architectures, 

AW 2016

n Bass, Software architecture in practice, 3�ed
http://www.ece.ubc.ca/~matei/EECE417/BASS/

n Babar, Agile Software Architecture, MK 2014

52



n http://www.spin.org.za/wp-content/uploads/2011/01/SPIN-21-QAS.pdf 

n http://sa.inceptum.eu/sites/sa.inceptum.eu/files/Content/Quality%20Attribute%2
0Generic%20Scenarios-2.pdf 

n Stoermer, “Moving Towards Quality Attribute Driven Software Architecture 
Reconstruction”, http://www.cs.vu.nl/~x/square/qadsar.pdf

53



Questions?


