IEEE 802.11 (WLAN)

Other WGs and WLAN Implementation issues

Luciano Bononi (bononi@cs.unibo.it)

IEEE 802.11 WGs

<table>
<thead>
<tr>
<th>Gruppi di standardizzazione IEEE 802.11</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 802.11</td>
<td>lo standard originale: bitrate da 1 a 2 Mbps, spettro 2.4 Ghz, livello fisico sia radio che infrarosso</td>
</tr>
<tr>
<td>IEEE 802.11a</td>
<td>54 Mbit/s, 5 GHz, lanciato nel 2001</td>
</tr>
<tr>
<td>IEEE 802.11b</td>
<td>sviluppo di IEEE 802.11 (1999), da 5.5 a 11 Mbps</td>
</tr>
<tr>
<td>IEEE 802.11d</td>
<td>estensioni per roaming internazionale</td>
</tr>
<tr>
<td>IEEE 802.11e</td>
<td>estensioni per qualità del servizio</td>
</tr>
<tr>
<td>IEEE 802.11f</td>
<td>standard per Inter Access Point Protocol (IAPP)</td>
</tr>
<tr>
<td>IEEE 802.11g</td>
<td>54 Mbit/s, 2.4 GHz, retrocompatibile con IEEE 802.11b</td>
</tr>
<tr>
<td>IEEE 802.11h</td>
<td>selezione dinamica dei canali e controllo della potenza trasmissiva (compatibile con direttive europee)</td>
</tr>
<tr>
<td>IEEE 802.11i</td>
<td>integrazioni e estensioni per la sicurezza (2004)</td>
</tr>
<tr>
<td>IEEE 802.11j</td>
<td>estensioni per direttive giapponesi</td>
</tr>
<tr>
<td>IEEE 802.11k</td>
<td>estensioni per misurazione dei parametri radio</td>
</tr>
<tr>
<td>IEEE 802.11m</td>
<td>estensioni per throughput elevati (oltre 200 Mbps) mediante tecnologia MIMO (trasmettitori e ricevitori multipli)</td>
</tr>
<tr>
<td>IEEE 802.11p</td>
<td>accesso wireless per sistemi televisivi (WA VE)</td>
</tr>
<tr>
<td>IEEE 802.11r</td>
<td>estensioni per roaming veloce</td>
</tr>
<tr>
<td>IEEE 802.11s</td>
<td>estensioni per reti wireless mesh</td>
</tr>
<tr>
<td>IEEE 802.11t</td>
<td>metodi e metriche per misurazione e previsione delle prestazioni</td>
</tr>
<tr>
<td>IEEE 802.11u</td>
<td>internetworking con reti non 802.11 (cellulari)</td>
</tr>
<tr>
<td>IEEE 802.11v</td>
<td>gestione e amministrazione delle reti wireless</td>
</tr>
</tbody>
</table>
WLAN and WMAN Wireless Standards and technologies

<table>
<thead>
<tr>
<th>Standard</th>
<th>UWB</th>
<th>Bluetooth</th>
<th>Wi-fi</th>
<th>Wi-fi</th>
<th>WiMAX</th>
<th>WiMAX</th>
<th>WiMAX</th>
<th>EDGE</th>
<th>CDMA</th>
<th>UMTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.15.3a</td>
<td>802.15.1</td>
<td>802.11a</td>
<td>802.11b</td>
<td>802.11g</td>
<td>802.16d</td>
<td>802.16e</td>
<td>2.5G</td>
<td>3G</td>
<td>3G</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>contexto</th>
<th>WPAN</th>
<th>WPAN</th>
<th>WLAN</th>
<th>WLAN</th>
<th>WMAN (fisso)</th>
<th>WMAN (mobile)</th>
<th>WWAN</th>
<th>WWAN</th>
<th>WWAN</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>MAX bitrate</th>
<th>110-480 Mbps</th>
<th>720 Kbps</th>
<th>54 Mbps</th>
<th>11-22 Mbps</th>
<th>54-108 Mbps</th>
<th>75 Mbps (20 MHz)</th>
<th>30 Mbps (10 MHz)</th>
<th>384 Kbps</th>
<th>2,4 Mbps</th>
<th>10 Mbps</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>distanza</th>
<th>10 m</th>
<th>10 m</th>
<th>100 m</th>
<th>100 m</th>
<th>10 km</th>
<th>5 km</th>
<th>5 km</th>
<th>5 km</th>
<th>5 km</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>spettro</th>
<th>7.5 Ghz</th>
<th>2.4 Ghz (ISM)</th>
<th>5 Ghz</th>
<th>2.4 Ghz (ISM)</th>
<th>2.4 Ghz (ISM)</th>
<th>11 Ghz</th>
<th>2-6 Ghz</th>
<th>1800 Mhz</th>
<th>multi</th>
<th>multi</th>
</tr>
</thead>
</table>

Service Sets

Basic Service Set
- Access Point
- Client nodes
- Service Set Identifier (SSID): 32 char ID (network name?)
 - not a password: can be sniffed (in clear in packet headers)
 - Used for association of clients to APs (sharing the same SSID)

Extended service set
- two or more BSS connected by distribution system
 - Wireless routers (different SSID)
 - Wireless repeaters (same SSID)?

Independent Basic Service Set (IBSS)
- Ad hoc network (peer to peer nodes, no AP authentication)
Range Extension between BSS cells and DS

IEEE 802.11: Distribution System (DS)

AP: Access Point
BSS: Basic Service Set
ESS: Extended Service Set
DS: Network to transmit packets between BSSs to realize ESSs.

SSID

- **Service Set Identifier (SSID):**
 - not a password! can be sniffed
 - AirMagnet, Netstumbler, AiroPeek NX...
 - Windows Xp sniffs SSID to configure NIC devices for access
 - ...potential for attacks?
 - Admin: useless to delete SSID info from Beacon frames...
 - ...Because SSID is used for association of clients to APs
 - Many SSID are factory-defined and never changed
 - E.g. CISCO “tsunami”, Proxim “Proxim”, Symbol “Symbol”
BSS attacks

- **BSS Attacks:**
 - (Phy/MAC) layer interference (bla bla bla bla...)
 - (MAC) CTS flooding

- **Rogue access points**
 - Un-authorized access point with no security alignment
 - Man in the middle + rogue access point to re-associate the client
 - Sniff area with NetStumbler, AirMagnet WLAN analyzer
 - Use centralized applications: AirWave, CiscoWorks
 - Use TCP port scanner (SuperScan 3.0) to monitor all 80 ports (rogue AP Web server responds?)

BSS security assessment (1)

- **Review existing security policies, and monitor for rogue access points**
 - Activate WEP at the very least
 - WEP key is static and crackable with AirSnort, WEPcrack
 - Utilize pre-shared key, or dynamic key exchange mechanisms, and static IP (no DHCP)
 - IEEE 802.11i, Advanced Encryption Standard (AES) and dynamic key exchange (Wireless Protected Access, Wi-Fi Protected Access, WPA)
 - DHCP gives local IP and enable crackers for IP access to the whole network

- Ensure NIC and access point firmware is up-to-date

- Ensure only authorized people can reset the access points
 - Disable reset buttons and console programming port
BSS security assessment (2)

- Assign "strong" passwords to access points, locate in good places and and disable them when not used
- Disable SSID broadcast in Beacons (but still present in association frames)
- Adopt Access Controller over Open Network (not authenticated access)
 Access Points
 - Implement mutual authentication mechanisms
 - Authentication of clients performed with RADIUS servers, IEEE 802.1X
- Use firewalls and IPSec VPNs technologies over client devices

IEEE 802.11 AP configuration (1)

- Configuring the AP...
 - Direct cable connection (console)
 - Wireless Web server access to URL "http://192.168.0.x"
 - do it before installation of multiple APs
 - Set the IP address (static?)
 - Set the radio channel
 - 1, 6, 11 preferable for IEEE 802.11b
IEEE 802.11 AP configuration (2)

- Configuring the AP
 - Set transmission power (max 100 mw)
 - Set SSID identifier (network name?)
 - Set allowed data rates
 - Set beacon repetition interval (typical 10 ms)
 - Set RTS/CTS activation and payload threshold
 - Set fragmentation threshold
 - Set WEP encryption (>128 bit = 26 HEX char)
 - Set mutual devices authentication (no open system):
 - Pre-shared keys, 802.1x + RADIUS authentication server, WPA
 - Set admin AP interface passwords

IEEE 802.11 WLAN deployment

- Radio planning
 - Map areas and channels with coverage analysis (AirMagnet, Yellow Jacket)
 - Check pre-existing radio channels assigned (neighbor network?)
 - 75% are channel 6 (device default) (use NetStumbler)
 - Put AP high on the ceiling, with antennas vertical towards the floor (better propagation and coverage area)
 - Beware of metallic grids within walls (Faraday’s grids)
 - Use Power over Ethernet (PoE) if the plug is unpractical

- Configuring the wireless repeater (increase AP radio range)
 - Switch the AP to repeater mode (see next slides)
 - Set the SSID of the same root AP
 - Set the preferred AP and secondary AP to forward frames to
 - Clients associates with the strongest signal with the same SSID
IEEE 802.11 WLAN deployment

- Configuring the wireless bridge (connects two or more wireless networks by considering MAC addresses only)
 - AP are similar to bridges, but connect many wireless users devices (NICs) to one network (e.g. Ethernet) and forward all frames received (no filtering)
 - Workgroup Bridges. Workgroup bridges connect wireless networks to larger, wired Ethernet networks

- Configuring the wireless router (connects wireless clients to more than one network, and always consider IP addresses)
 - Setup IP address and domain name server (DNS) address, or DHCP server
 - Setup SSID, RTS/CTS, WEP, frequency channel, fragmentation, power, etc.
 - Allow wireless clients to connect to more than one wireless network in the area
 - Implement Network Address Translation (NAT) for IP address sharing
 - Improve network management options and network performance (selective forwarding, no broadcast)
 - Improve security with built-in firewalls (IP filtering), IPSec and VPN support

Cohexistence Problems: mixed mode clients b/g

- IEEE 802.11b and IEEE 802.11g technologies
 - 802.11b is DSSS (11 Mb/s) in 2.4 Ghz
 - Mbps depend on the distance from AP
 - 802.11g is OFDM (54 Mb/s) in 2.4 Ghz (extra speed)
 - New technology to deploy over 802.11b systems?
 - Mixed mode Wireless router with b/g access support?
 - Performance drawbacks
 - Low throughput (waiting the slowest technology for channel access)... Similar to the “slow car on the tunnel” problem
 - Solution: separate b and g communication with different APs connected to the network router
 - Non-overlapping channels 1, 6, 11
 - Use mixed mode protection (RTS/CTS or CTS-to-self)

- 802.11b AP (b only AP)
- 802.11g AP (g only AP)
Cohexistence Problems: mixed mode clients b/g

- E.g. homogeneous IEEE 802.11b (or IEEE 802.11g) technology
 - BSS Scenario 1: 802.11 AP streaming large files to two clients
 - Clients near to AP (both at 11 Mbps download speed)
 - One client moves far from AP (1 Mbps)
 - Results in low speed for both clients!!! (-77% = avg 7.2 to 1.6 Mbps)

- E.g. mixed IEEE 802.11g IEEE 802.11b technology
 - BSS Scenario 2: 802.11b/g AP streaming large files to two clients
 - A) two IEEE 802.11g clients (both at 54 Mbps download speed, 30 Mbps avg MAC through.)
 - B) one client IEEE 802.11g and one client IEEE 802.11b (802.11b cannot detect OFDM transmissions, and need CTS with IEEE 802.11b modulation scheme)
 - = - 64% , avg 11.2 Mbps
 - Partial solution: initial contention window size: TXOP every 16 slots (g) and every 32 slots (b)
Configuration of a Wireless Network

Access Point mode (target config)

- IP: 130.136.22.55
- 802.11 MAC addr.
 - 000b abcd 1234
- 802.11 MAC addr.
 - 000e dcba 5678
- IP: 130.136.22.56
- 802.11 MAC addr.
 - 000e dcba 5678
- 802.11 MAC addr.
 - 000c ba2e 3c4d

Operating Mode: Access Point
- IP: 130.136.22.50
- Netmask: 255.255.255.0
- SSID: "my_wlan1"
- wireless channel: 6
- WEP/WPA encryption: 256 bit mode HEX
- WEP Key: 23d43fa00be...

Ethernet MAC addr.
- 000f 6a3c bcde

802.11 MAC addr.
- 000f 33dd abcd

SSID: "my_wlan1"

Via console: attach serial cable, run client software

Configuration of a Wireless Network

Access Point mode: step 0
- connect AP and set config PC

Operating Mode: ?
- IP: 192.168.0.50 (default)
- Netmask: 255.255.255.0 (default)
- SSID: ?
- wireless channel: ?
- WEP encryption: ?
- WEP Key: ?

Ethernet MAC addr.
- 000f 33dd abcd

802.11 MAC addr.
- 000f 6a3c bcde

PC for AP config (step 0: install software, run client)
- Via LAN Network: IP: 192.168.0.51, netmask: 255.255.255.0
- Via console: attach serial cable, run client software
Configuration of a Wireless Network

- **Access Point mode: step 1**
 - set LAN IP and config. parameters
 - 802.11 MAC addr.: 000f 6a3c bcde
 - Netmask: 255.255.255.0
 - SSID: "my_wlan1"
 - wireless channel: 6
 - WEP/WPA encryption: 256 bit mode HEX
 - Ethernet MAC addr.: 000f 3364 abcd

PC for AP config (step 0: install software, run client)
Via LAN Network: IP: 130.136.22.50, netmask: 255.255.255.0
Via console: attach serial cable to AP

Access Point mode: step 2
- set WLAN client parameters
 - IP: 130.136.22.50
 - 802.11 MAC addr.: 000f 6a3c bcde
 - Netmask: 255.255.255.0
 - SSID: "my_wlan1"
 - wireless channel: 6
 - WEP encryption: 256 bit mode HEX
 - WEP Key: 23cd4f3a00be...
 - Ethernet MAC addr.: 000f 3364 abcd

IP: 130.136.22.50
- 802.11 MAC addr.: 000f 012a bd3c4d

IP: 130.136.22.50
- 802.11 MAC addr.: 020f 3364 abcd
Configuration of a Wireless Network

- **Access Point mode (target config)**
 - Operating Mode: Access Point
 - IP: 130.136.22.50
 - Netmask: 255.255.255.0
 - SSID: "my_wlan1"
 - wireless channel: 6
 - WEP encryption: 256 bit mode HEX
 - WEP Key: 23cd4f3a00be...

- **SSID**: "my_wlan1"
- **wireless channel**: 6
- **000f 6a3c bcde**

Configuration of a Wireless Network

- **Other AP operating modes: Wireless client**
 - Operating Mode: Access Point
 - IP: 130.136.22.50
 - Netmask: 255.255.255.0
 - SSID: "my_wlan1"
 - wireless channel: 6
 - WEP encryption: 256 bit mode HEX
 - WEP Key: 23cd4f3a00be...

- **SSID**: "my_wlan1"
- **wireless channel**: 6
- **000f 6a3c bcde**

© 2005 Luciano Bononi Sistemi e Reti Wireless
Configuration of a Wireless Network

- **Other AP operating modes: Wireless client**

 Operating Mode: **Wireless Client**

 IP: 130.136.22.49

 Netmask: 255.255.255.0

 Ethernet Gateway: 130.136.22.50

 SSID: "my_wlan1"

 Wireless channel: 6

 WEP encryption: 256 bit mode HEX

 WEP Key: 23cd4f3a00be...

 802.11 MAC addr: 000f 33dd abcd

Configuration of a Wireless Network

- **Other AP operating modes: Wireless Bridge Mode**

 Only two APs can wirelessly connect each other!

 SSID: "my_two_bridged_LANs"

 Wireless channel: 6

 WEP encryption: 256 bit mode HEX

 WEP Key: 23cd4f3a00be...

 802.11 MAC: 000f 6a3c bcde

 130.136.22.host/24

© 2005 Luciano Bononi Sistemi e Reti Wireless
Configuration of a Wireless Network

- Other AP operating modes: Multi-point Wireless Bridge Mode
 - Many APs can wirelessly connect multiple LANs each other
 - SSID: "my_bridged_LANs"
 - WEP encryption: 256 bit mode HEX
 - WEP Key: 23cd4f3a00be...

Configuration of a Wireless Network

- Other AP operating modes: Repeater Mode
 - Extends wireless range of the AP
 - Operating Mode: Access Point
 - 802.11 MAC addr: 000f 6a3c bcde
 - IP: 130.136.22.50
 - Netmask: 255.255.255.0
 - SSID: "my_wlan1"
 - Wireless channel: 6
 - WEP encryption: 256 bit mode HEX
 - WEP Key: 23cd4f3a00be...
Configuration of a Wireless Network

- Typical AP config. Mask: general configuration parameters

![AP Configuration Interface](image1)

Typical AP config. Mask: LAN IP address

![AP Configuration Interface](image2)
Configuration of a Wireless Network

- Typical AP config. Mask: (example, wireless client)

![Image](image1.png)

Configuration of a Wireless Network

- Typical AP config. Mask: set AP operating mode

![Image](image2.png)
Configuration of a Wireless Network

- Typical AP config. Mask: check MAC layer connection

![Typical AP configuration interface](image1)

Configuration of a Wireless Network

- Typical AP config. Mask: log connection status of AP

![Typical AP configuration interface](image2)
Configuration of a Wireless Network

- Typical AP config. Mask: MAC filtering