Facoltà di Scienze Matematiche, Fisiche e Naturali

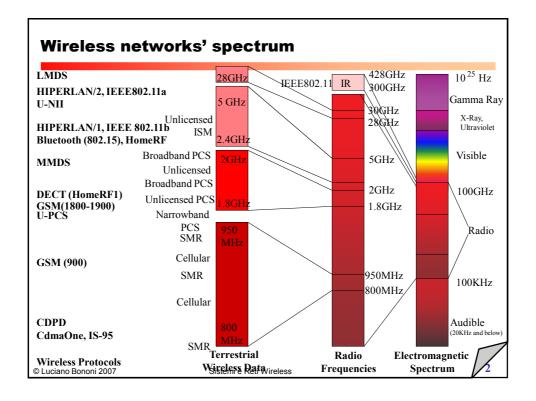
Dipartimento di Scienze dell'Informazione

Corso di Laurea Specialistica in Scienze di Internet (SdI) e Informatica (Inf)

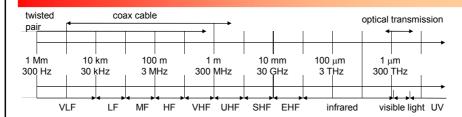
Sistemi e Reti Wireless

Luciano Bononi

(bononi@cs.unibo.it)


http://www.cs.unibo.it/~bononi/

Ricevimento: sempre aperto . Si consiglia di concordare via e-mail almeno un giorno prima (informazioni in tempo reale sulla home page personale)


Figure-credits: some figures have been taken from slides published on the Web, by the following authors (in alfabethical order):

J.J. Garcia Luna Aceves (ucsc), James F. Kurose & Keith W. Ross, Jochen Schiller (fub), Nitin Vaidya (uiuc)

© Luciano Bononi 2007

Frequencies for (wired and wireless) communicat.

UHF = Ultra High Frequency
SHF = Super High Frequency

EHF = Extra High Frequency
UV = Ultraviolet Light

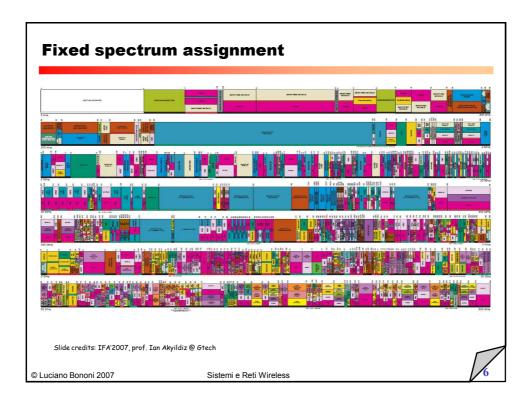
- VLF = Very Low Frequency
 - LF = Low Frequency
- MF = Medium Frequency
- HF = High Frequency
- VHF = Very High Frequency
- Frequency and wave length:
- wave length λ , speed of light $c \cong 3x10^8 \text{m/s}$, frequency f

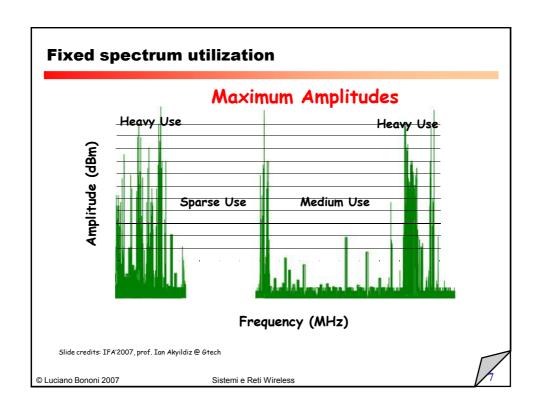
© Luciano Bononi 2007

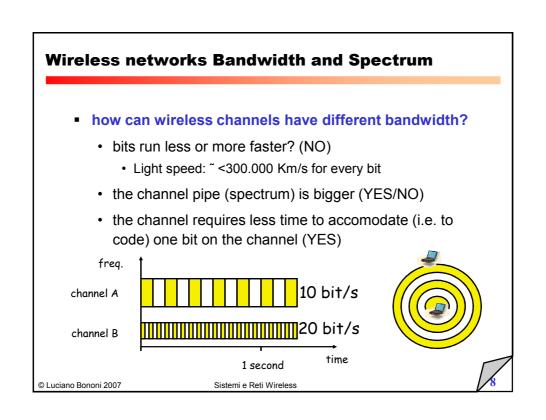
Sistemi e Reti Wireless

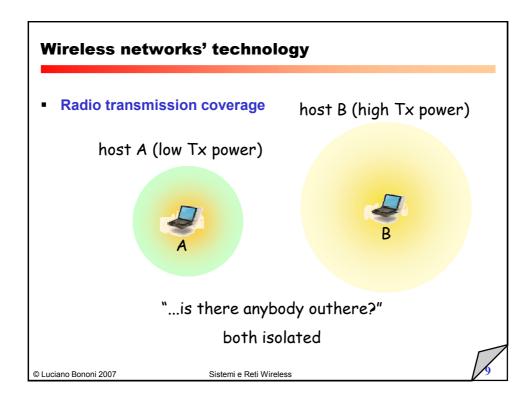
Frequencies for mobile communication

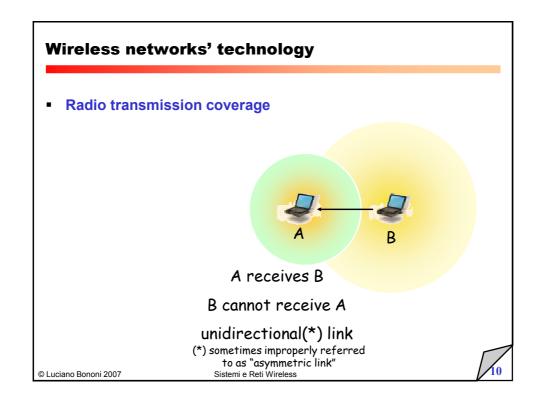
- VHF/UHF ranges for mobile radio
 - · simple, small antenna for cars
 - deterministic propagation characteristics, reliable connections
- SHF and higher for directed radio links, satellite communication
 - · small antenna, large bandwidth available
- Wireless LANs use frequencies in UHF to SHF spectrum
 - · some systems planned up to EHF
 - limitations due to absorption by water and oxygen molecules (resonance frequencies)
 - weather dependent fading, signal loss caused by heavy rainfall...

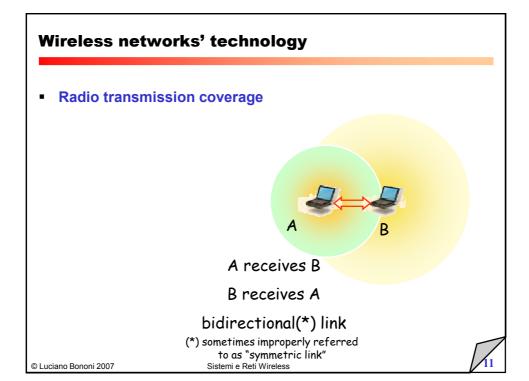

© Luciano Bononi 2007

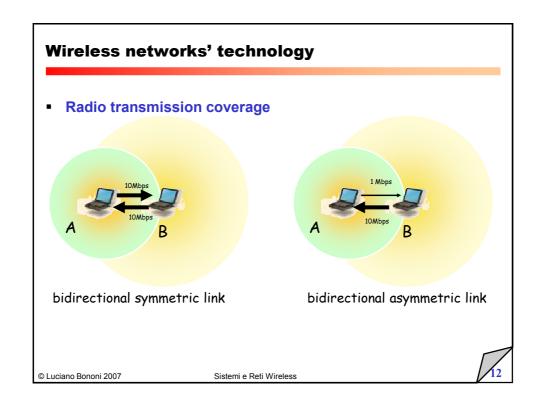

Frequencies and regulations


 ITU-R holds auctions for new frequencies, manages frequency bands worldwide (WRC, World Radio Conferences)


	Europe	USA	Japan
Cellular Phones	GSM 450-457, 479- 486/460-467,489- 496, 890-915/935- 960, 1710-1785/1805- 1880 UMTS (FDD) 1920- 1980, 2110-2190 UMTS (TDD) 1900- 1920, 2020-2025	AMPS, TDMA, CDMA 824-849, 869-894 TDMA, CDMA, GSM 1850-1910, 1930-1990	PDC 810-826, 940-956, 1429-1465, 1477-1513
Cordless Phones	CT1+ 885-887, 930- 932 CT2 864-868 DECT 1880-1900	PACS 1850-1910, 1930- 1990 PACS-UB 1910-1930	PHS 1895-1918 JCT 254-380
Wireless LANs	IEEE 802.11 2400-2483 HIPERLAN 2 5150-5350, 5470- 5725	902-928 IEEE 802.11 2400-2483 5150-5350, 5725-5825	IEEE 802.11 2471-2497 5150-5250
Others	RF-Control 27, 128, 418, 433, 868	RF-Control 315, 915	RF-Control 426, 868

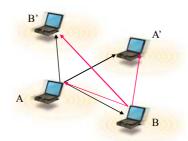

© Luciano Bononi 2007 Sistemi e Reti Wireless





Wireless networks' technology

- Narrowband radio system
 - · transmit/receive using a single radio frequency
- Spread Spectrum technology
 - bandwidth efficiency vs. reliability and security
 - · Frequency Hopping Spread Spectrum
 - narrowband carrier hopping in a pattern sequence
 - Direct Sequence Spread Spectrum
 - bit coding and transmission spreading over the spectrum
- Infrared technology
 - line of sight or diffused, short range (in room)

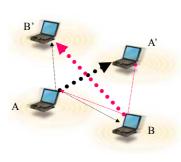

© Luciano Bononi 2007

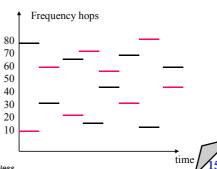
Sistemi e Reti Wireless

Γ)

Wireless networks' technology

- Narrowband radio system
 - transmit/receive using a single, licensed, as narrow as possible radio frequency
 - undesired cross-talk between channels requires coordination and license for each site
 - · low data-rates
 - e.g. frequency X
 - e.g. _____ frequency Y

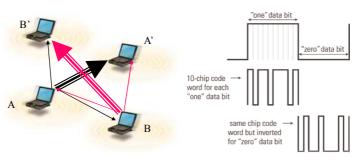



© Luciano Bononi 2007

Sistemi e Reti Wireless

Wireless networks' technology

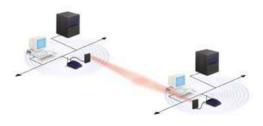
- Frequency Hopping Spread Spectrum
 - narrow band carrier changes frequency in a pattern known by both transmitter and receiver (single logical channel)
 - to unintended receiver FHSS appears as impulse noise



© Luciano Bononi 2007

Sistemi e Reti Wireless

Wireless networks' technology


- Direct Sequence Spread Spectrum
 - redundant bit pattern (chipping code) spreaded over a large spectrum. Long chips increase probability of recovering the original bit (with no retransmission)
 - to unintended receiver DSSS appears as low power wideband noise

© Luciano Bononi 2007

Wireless networks' technology

- Infrared Technology (IR)
 - · frequencies just below the visible light
 - cannot penetrate opaque objects, and low diffusion
 - · line-of-sight limitates mobility
 - short range technology (indoor, PAN, LAN nets)
 - · High data-rate potential

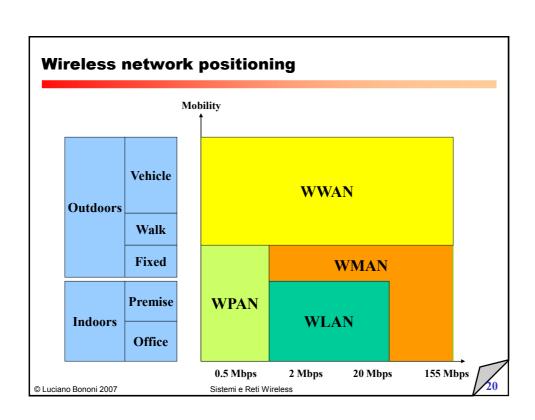
© Luciano Bononi 2007

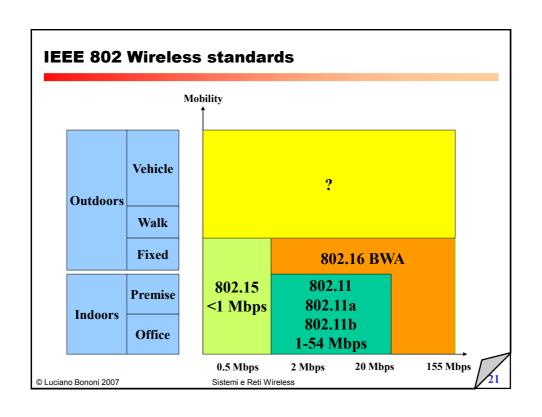
Sistemi e Reti Wireless

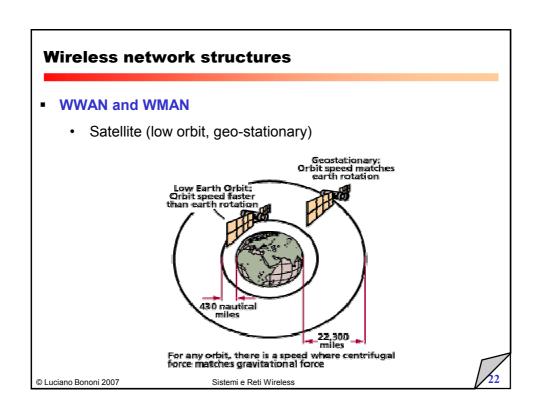
Transmission Technique Comparison

	PROS	CONS
Frequency Hopping Spread Spectrum (FHSS)	Use less power than DSSS Lower cost Increased security due to frequency switching	Lower throughput than DSSS
Direct Sequence Spread Spectrum (DSSS)	High performance Low interference Increased security due to chip coding	. Expensive
Narrowband Microwave	. Long distance	Line-of-sight with satellite dish Requires FCC license Not designed for WLAN use
Infrared	High bandwidth	Easily obstructed Inexpensive

© Luciano Bononi 2007

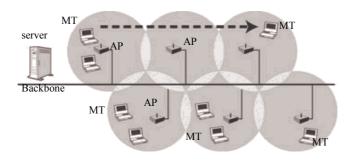

Sistemi e Reti Wireless


Wireless networks' coverage classification


- Wireless Wide Area Network (WWAN)
 - geographic coverage (e.g. satellite, cellular)
- Wireless Metropolitan Area Net. (WMAN)
 - Metropolitan coverage (e.g. town, large campus)
- Wireless Local Area Network (WLAN)
 - local area coverage (e.g. campus, building, home)
- Wireless Personal Area Network (WPAN)
 - reduced local area coverage (e.g. house, office)
- Wireless Indoor Area Network (indoor)
 - short range coverage (e.g. room, office)

© Luciano Bononi 2007

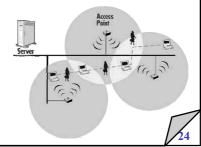
Sistemi e Reti Wireless



Wireless network structures

WWAN and WMAN

- · Cellular or multi-Infrastructure WLAN
 - grid of Access Points (AP), managing local Mobiles terminals (MT), and connected to Backbones


© Luciano Bononi 2007

Sistemi e Reti Wireless

Wireless network structures

• WLAN:

- Ad-Hoc:
 - peer-to-peer (P2P) "on the fly" communication
 - the network "is" the set of computers
 - · no administration, no setup, no cost?
- Infrastructure:
 - Centralized control unit (Access Point, local server)
 - · Roaming between cells
 - resource sharing and backbone connection

© Luciano Bononi 2007

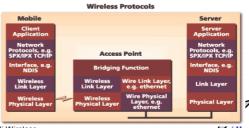
Wireless network structures

WPAN:

- cable connection alternative for in-home/office/workspace device connection
- common technology and protocols required (e.g. HomeRF, Bluetooth)

Indoor:

· in room/workspace device con


N₀ box

© Luciano Bononi 2007

Sistemi e Reti Wireless

Wireless/Wired extension

- Wireless protocols' design, integration, optimization
 - layering, bridging functions
 - · mobile IP
 - support and management for QoS
- support for Wired-like applications
 - · Internet connectivity, DB access, e-mail
 - · value added services

© Luciano Bononi 2007

Wireless vs. Wired

Attribute	Wireless PAN/LAN	Wired LAN/PAN
Throughput	1-10 Mbps	10-100 Mbps
Integrity & Reliability	Subject to interference	Highly reliable
Simplicity/ Ease of Use	No need to pull cableSet up time is significantly lower	Cable requiredSet up time is significantly higher
	Moves, additions & changes much simpler	
Security	Susceptible to interception encryption	Not as susceptible to interception

© Luciano Bononi 2007

Sistemi e Reti Wireless

Wireless vs. Wired

Attribute	Wireless LAN/PAN	Wired LAN/PAN
Cost	Initial investment in hardware costs more Installation expenses and maintenance costs can be significantly lower	 Investment cost in hardware lower Installation and maintenance costs can be significantly higher
Scalability	simple to complex networks	simple to complex networks
Safety	Very little exposure to radio frequency energy	No exposure to radio frequency energy
Mobility	Provides access to real- time information anywhere	Does not support mobility

© Luciano Bononi 2007

Sistemi e Reti Wireless

14

/

Wireless networks' interoperability

- ...with the Wired Infrastructure:
 - most WLANs support industry-standard like Ethernet (802.3) and Token-Ring (802.5)
 - newer solutions support ATM, FireWire, PPP...
- ...with other Wireless infrastructures:
 - · several types of interoperability are possible
 - the role of Standard definitions is to allow compliant products to interoperate
 - · interference is possible in co-located solutions
 - · security achieved through encryption

© Luciano Bononi 2007

Sistemi e Reti Wireless

Wireless networks' taxonomy **Medium Orbit Low Orbit** Satellite Geostationary Cellular 1G 2.5G 3G W NMT PCS: GSM **GPRS** UMTS HSCSD **TACS** CDPD TDMA IS-136 A AMPS WCDMA - WTDMA N **JTACS** CDMA IS-95B CDMA2000 (1X-3X) NTT CDMA IS-95 14 Kbps Max data rate per user 2 Mbps "last mile" **MMDS** LMDS **IEEE 802.11a IEEE 802.11** IEEE 802.11b HiperLAN/1 LAN HiperLAN/2 IEEE802.15 HomeRF **PAN** Bluetooth Indoor data rate 1 Mbps 10 Mbps Sistemi e Reti Wireless 40 Mbps

Wireless World means...

- New assumptions for the physical system...
- ...willing to maintain needs for services and applications
 - e.g. audio/video applications, interactive services
- ... dealing with limited resources (e.g. bandwidth, energy)
- ... dealing with device limits (I/O, user interfaces)
 - · limited display, no keyboard, no mouse
- ... mobility of users and devices
 - · variable number of users in the system
- ... QoS problems, reliability, negotiation

© Luciano Bononi 2007

Sistemi e Reti Wireless

1

Wireless World integration

- One possible solution for Integraton with wired world:
 - · to uncouple wired and wireless networks
 - protocol integration, maintaining services and protocols view from both sides
 - protocols and SW structures to adapt the contents transferred to etherogeneous devices
 - adaptive behavior of network protocols (from the wireless side)
 - the wired host does not know if the other host is wireless and dialogue with it in the standard wireless way (protocol transparency)
 - the wireless host know it is wireless and implements adaptive behavior

© Luciano Bononi 2007

Sistemi e Reti Wireless

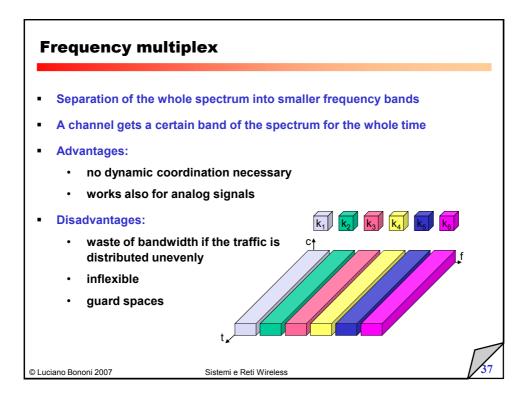
Wireless drawbacks

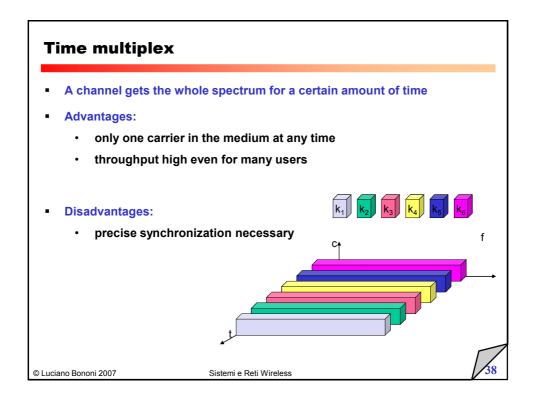
- reduced Channel Capacity (1 or 2 order of magnitude)
 - · e.g. 54 Mbps vs. Gigabit Ethernet
- Limited spectrum (etherogeneous frequency windows) available
 - · need for international frequency-allocation plans
 - · need for frequency reuse
- Limited energy (batteries): +20% every 5 years
 - · Moore law: SoC transistors double every year
- Noise and Interference have great impact on performances and system design
 - · need for high power, bit error correction
- Security: sensible information travels "on the air"
 - need for protection based on cyphering, authentication, etc.

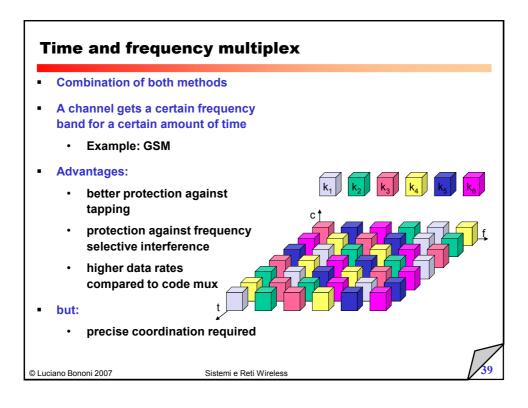
 Bononi 2007 Sistemi e Reti Wireless

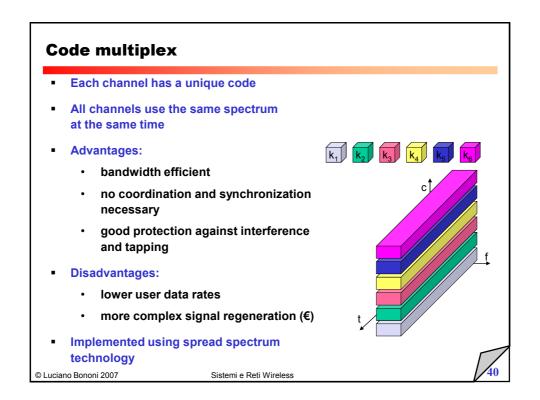
Wireless drawbacks

- **Mobility management**
 - addressing and routing (eg. Mobile IP)
- **Location Tracking**
 - Broadcasting (paging) to find users/hosts
 - support for Location Based Services
- **QoS Management**
 - not a single layer management (application, transport, network,
 - depends on the system/user/application scenario
 - managed for the wireless cell only (no multi-hop)
 - advance reservation, admission control policies (centralized, distributed)
 - scheduling (centralized, distributed) for resources' allocation
- **Best effort services**


© Luciano Bononi 2007


Logical wireless channel


© Luciano Bononi 2007


Sistemi e Reti Wireless

Multiplexing: multiple use of shared medium - Multiplexing in 4 dimensions - space (s_i) - time (t) - frequency (f) - code (c) - Goal: multiple use of a shared medium - Important: guard spaces needed!

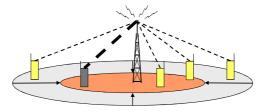
Space division mux: cell structure

- space division multiplex:
 - · base station covers a certain transmission area (cell)
- Mobile stations communicate only via the base station
- Advantages of cell structures:
 - · higher capacity, higher number of users
 - · less transmission power needed
 - · more robust, decentralized
 - · base station deals with interference, transmission area etc. locally
- Problems:
 - fixed network needed for the base stations (infrastructure)
 - handover (changing from one cell to another) necessary
 - · interference with other cells
- Cell sizes from some 100 m in cities to, e.g., 35 km on the country side (GSM) - even less for higher frequencies

© Luciano Bononi 2007

Sistemi e Reti Wireless

Frequency planning I


- Frequency reuse only with a certain distance between the base stations
- Standard model using 7 frequencies:
- es: f_3 f_4 f_5 f_6 f_4 f_5 f_5 f_7 f_8 f_9 f_9
- Fixed frequency assignment:
 - · certain frequencies are assigned to a certain cell
 - · problem: different traffic load in different cells
- Dynamic frequency assignment:
 - base station chooses frequencies depending on the frequencies already used in neighbor cells
 - · more capacity in cells with more traffic
 - assignment can also be based on interference measurements

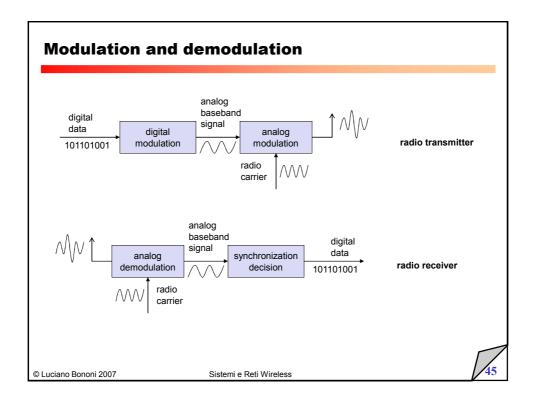
© Luciano Bononi 2007

Sistemi e Reti Wireless

Cell breathing

- CDM systems: cell size depends on current load
- Additional traffic appears as noise to other users
- If the noise level is too high users drop out of cells

© Luciano Bononi 2007

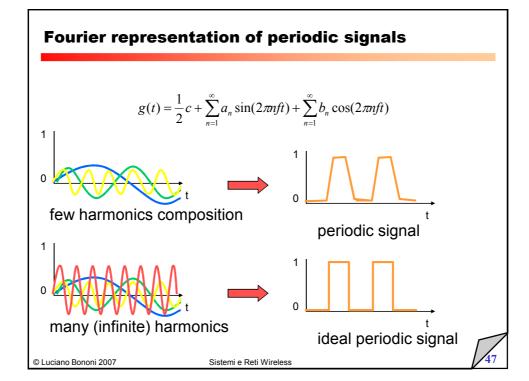

Sistemi e Reti Wireless

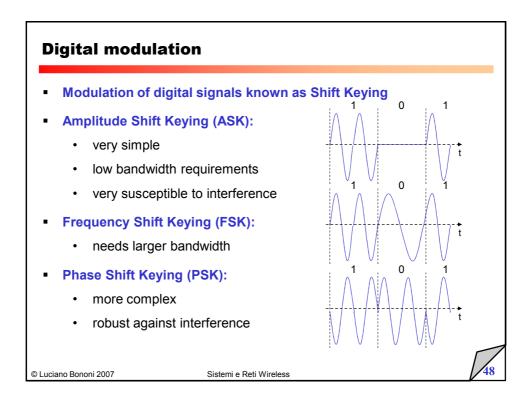
Modulation

- Digital modulation
 - digital data is translated into an analog signal (baseband)
 - ASK, FSK, PSK differences in spectral efficiency, power efficiency, robustness
- Analog modulation
 - shifts center frequency of baseband signal up to the radio carrier (i.e. FM)
- Motivation
 - smaller antennas (e.g., $\lambda/4$)
 - Frequency Division Multiplexing
 - · medium characteristics
- Basic schemes
 - Amplitude Modulation (AM)
 - Frequency Modulation (FM)
 - Phase Modulation (PM)

© Luciano Bononi 2007

Sistemi e Reti Wireless

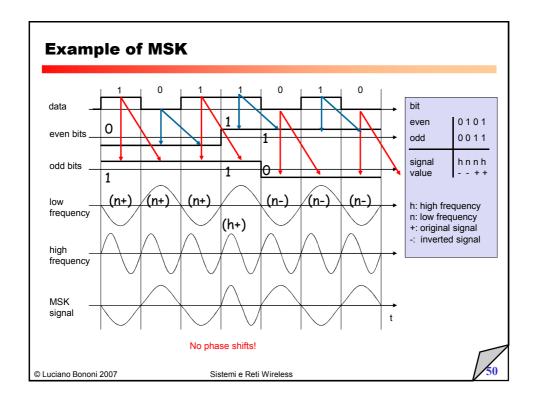



Signals I

- physical representation of data
 - · function of time and location
- signal parameters: parameters representing the value of data
- classification
 - · continuous time/discrete time
 - · continuous values/discrete values
 - analog signal = continuous time and continuous values
 - · digital signal = discrete time and discrete values
- signal parameters of periodic signals:
 period T, frequency f=1/T, amplitude A, phase shift φ
 - sine wave as special periodic signal for a carrier:

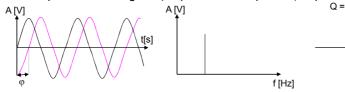
$$s(t) = A_t \sin(2 \pi f_t t + \phi_t)$$

© Luciano Bononi 2007



Advanced Frequency Shift Keying

- bandwidth needed for FSK depends on the distance between the carrier frequencies (range of frequency variation).
- special pre-computation avoids sudden phase shifts
 → MSK (Minimum Shift Keying)
- bit separated into even and odd bits, the duration of each bit is doubled
- depending on the bit values (even, odd) the higher or lower frequency, original or inverted is chosen
- the frequency of one carrier is twice the frequency of the other
- Equivalent to offset QPSK (relative to last two phase changes)
 (US) IS 136, PACS, (Jap) PHS
- even higher bandwidth efficiency using a Gaussian low-pass filter
 → GMSK (Gaussian MSK), used in GSM


© Luciano Bononi 2007

Sistemi e Reti Wireless

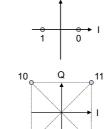
Signals II

- Different representations of signals
 - amplitude (amplitude domain)
 - frequency spectrum (frequency domain)
 - phase state diagram (amplitude M and phase φ in polar coordinates)

- Composed signals transferred into frequency domain using Fourier transformation
- Digital signals need
 - · infinite frequencies for perfect transmission
 - modulation with a carrier frequency for transmission (analog signal!)

© Luciano Bononi 2007

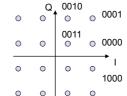
Sistemi e Reti Wireless


[/5

I= M cos φ

Advanced Phase Shift Keying

- BPSK (Binary Phase Shift Keying):
 - bit value 0: sine wave
 - bit value 1: inverted sine wave
 - very simple PSK
 - · low spectral efficiency
 - · robust, used e.g. in satellite systems
- QPSK (Quadrature Phase Shift Keying):
 - · 2 bits coded as one symbol
 - · symbol determines shift of sine wave
 - needs less bandwidth compared to BPSK
 - · more complex
- Often also transmission of relative, not absolute phase shift: DQPSK -Differential QPSK (IS-136, PHS)

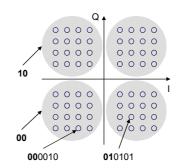

© Luciano Bononi 2007

Quadrature Amplitude Modulation

- Quadrature Amplitude Modulation (QAM): combines amplitude and phase modulation
- it is possible to code n bits using one symbol
- 2ⁿ discrete levels, n=2 identical to QPSK
- bit error rate increases with n, but less errors compared to comparable PSK schemes

Example: 16-QAM (4 bits = 1 symbol)

- Symbols 0011 and 0001 have the same phase, but different amplitude.
 0000 and 1000 have different phase, but same amplitude.
- Jused in standard 9600 bit/s modems, Digital TV, in Wi-max OFDM...
- Simulation example: http://www.inue.uni-stuttgart.de/german/lehre/lesungen/uet2/applet/QAM16e.html


© Luciano Bononi 2007

Sistemi e Reti Wireless

\(\int_{33} \)

Hierarchical Modulation

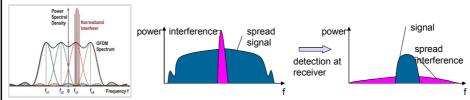
- modulates two separate data streams onto a single stream
- High Priority (HP) embedded within a Low Priority (LP) stream
- Multi carrier system, about 2000 or 8000 carriers
- QPSK, 16 QAM, 64QAM
- Example: 64QAM
 - good reception: resolve the entire 64QAM constellation
 - poor reception, mobile reception: resolve only QPSK portion
 - 6 bit per QAM symbol, 2 most significant determine QPSK
 - HP service coded in QPSK (2 bit), LP uses remaining 4 bit

© Luciano Bononi 2007

Sistemi e Reti Wireless

Multi-carrier Modulation (MCM)

- modulates one high rate data stream onto many low rate bit streams each one modulated on a separate sub-carrier
 - Orthogonal Frequency Division Multiplexing (OFDM)
 - Is not literally a spread spectrum technology, but it is functionally equivalent
 - Multiple narrowband carriers (with low symbol-rate=<u>strong</u>) modulation (QAM, PSK) = high aggregate symbol rate in the same total bandwidth but more resistant to interference
 - E.g. Digital Audio Broadcasting (DAB): 192 1536 subcarriers
- ISI interference mitigation (few subcarriers affected by selective fading)
 - Delay spread of direct and main reflected signals between symbols x and x+1 must be below a certain threshold:
 - <500 nanoseconds or <65 nanoseconds in 802.11b (depending on technology) N.B. This is DSSS!
 - <150 nanoseconds in 802.11g (54 Mpbs) N.B. This is OFDM!
- Orthogonal carriers reduce error probability

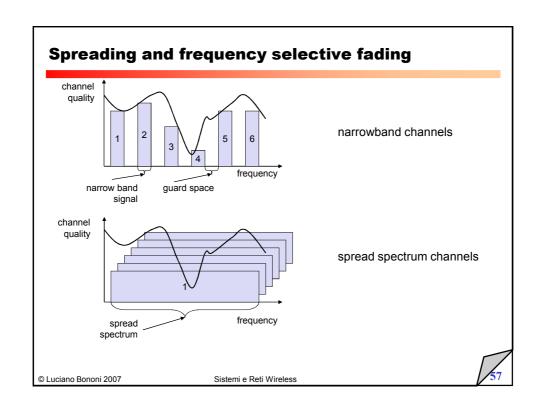

© Luciano Bononi 2007

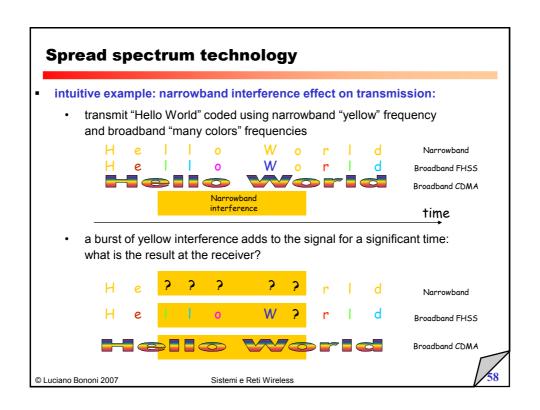
Sistemi e Reti Wireless

/_

Spread spectrum technology

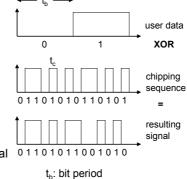
- Problem of radio transmission: frequency dependent fading can wipe out narrow band signals for duration of the interference
- E.g. DSSS modulation and correspondent CDMA access technique spread narrowband signal into a broadband signal using special code
- protection against narrow band interference




protection against narrowband interference

- Side effects:
 - · coexistence of several signals without dynamic coordination
 - tap-proof (cannot be detected without knowing the code)
- Spread spectrum modulation Alternatives: Direct Sequence, Frequency Hopping

© Luciano Bononi 2007


Sistemi e Reti Wireless

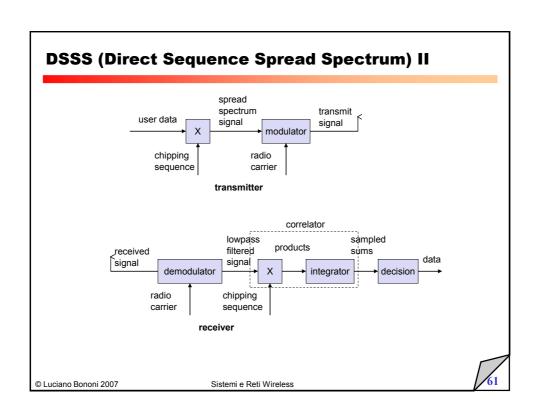
DSSS (Direct Sequence Spread Spectrum) I

- XOR of the signal with pseudo-random number (chipping sequence, or Barker sequence)
 - many chips per bit (e.g., 128) result in higher bandwidth of the signal (low throughput) ← t_b →
- Advantages
 - reduces frequency selective fading
 - in cellular networks
 - base stations can use the same frequency range
 - several base stations can
 detect and recover the signal 01101011001010
 - · soft handover

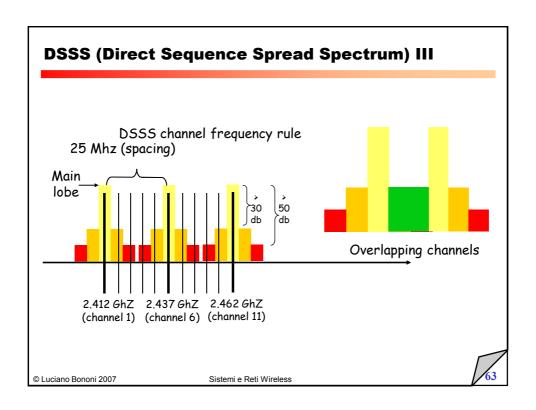
t_c: chip period

- Disadvantages
 - precise power control and synchronization necessary

© Luciano Bononi 2007


Sistemi e Reti Wireless

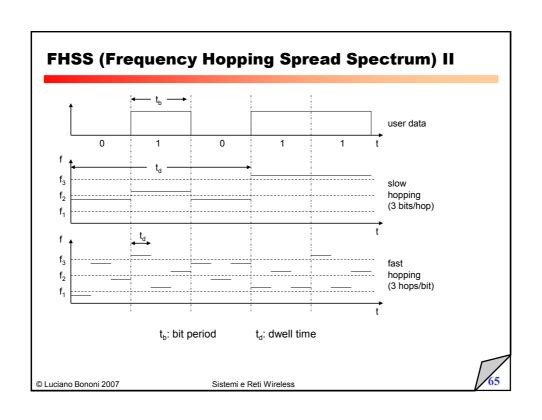
DSSS (Direct Sequence Spread Spectrum) IB


- Resulting signal resemble white noise, but correlation can be exploited by knowing the code (chipping sequence)
- Need for strong synchronization between transmitters
 - Advantage: many transmitters mutually synchronized can achieve a global synchronization (relative timing) which in turn can be used for positioning (e.g. GPS, Galileo)
- Long chipping sequences for each bit produce high processing gain on the receiver (in dB, similar to using more power). Using a wrong sequence (or no sequence) translates in zero gain (white noise effect). This is the key for implementing the multiple channel access technique based on DSSS: CDMA.

© Luciano Bononi 2007

Sistemi e Reti Wireless

	DSSS ch	<u>annel fr</u>	equency c	ıssignm	ent		_
Channel ID	Channel (center) frequencies (GhZ)	USA and Canada	Europe (ETSI)	Spain	Japan	France	
1	2.412	Yes	Yes		Yes		7
2	2.417	Yes	Yes		Yes		7
3	2.422	Yes	Yes		Yes		7
4	2.427	Yes	Yes		Yes		7
5	2.432	Yes	Yes		Yes		7
6	2.437	Yes	Yes		Yes		7
7	2.442	Yes	Yes		Yes		7
8	2.447	Yes	Yes		Yes		7
9	2.452	Yes	Yes		Yes		7
10	2.457	Yes	Yes	Yes	Yes	Yes	7
11	2.462	Yes	Yes	Yes	Yes	Yes	1
12	2.467		Yes		Yes	Yes	7
13	2.472	1	Yes		Yes	Yes	7
14	2.484	1			*		7



FHSS (Frequency Hopping Spread Spectrum) I

- Discrete changes of carrier frequency
 - sequence of frequency changes determined via pseudo random number sequence (e.g. seed = f(host identifier in Bluetooth))
- Two versions
 - Fast Hopping: several frequencies per user bit
 - Slow Hopping: several user bits per frequency
- Advantages
 - · frequency selective fading and interference limited to short period
 - simple implementation
 - · uses only small portion of spectrum at any time
- Disadvantages
 - not as robust as DSSS
 - simpler to detect

© Luciano Bononi 2007

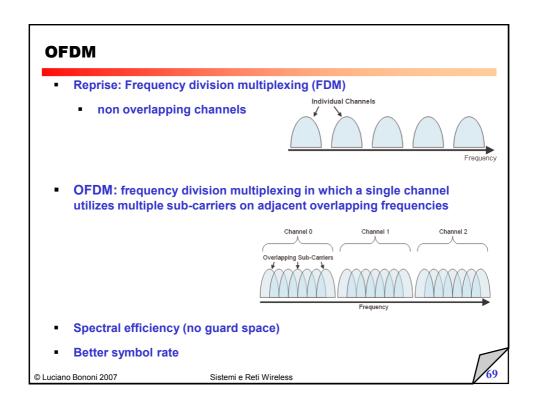
Sistemi e Reti Wireless

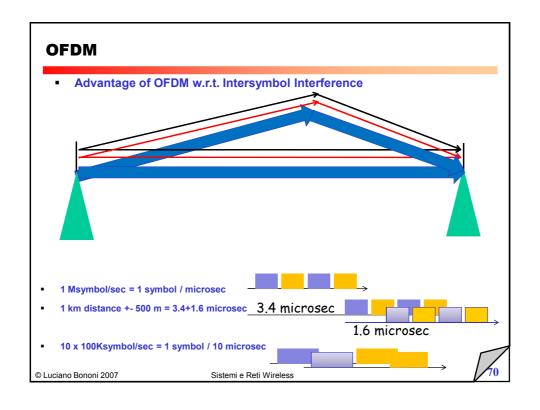
OFDM

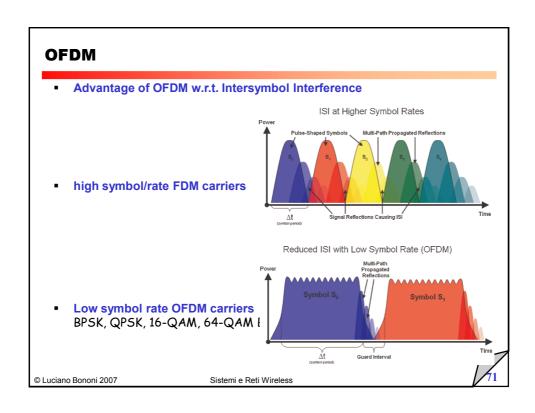
- Very accurate adjacent communication channels
 - Transmit data concurrently in parallel subcarriers
 - No need for separate filter for each sub-channel (like in FDM)
 - High bandwidth efficiency (see Nyquist rate formula)
 - Problem: doppler shift (at high speed) of subcarrier frequencies
 - Harmonics cancelation, low cost Fast Fourier Transform chips
 - Convolution coding (error correction with redundant information)
 - More or less similar to: subcarriers transmit "parity bit"
 - OFDM channels: 20 Mhz divided in 52 sub-carriers (300 Khz)
 - 4 subcarriers used as pilot (management)
 - 48 subcarriers used for data (symbols coding = 1 symbol per subcarrier at a time) = 48 concurrent symbols
 - OFDM in 802.11g is not compatible with DSSS in 802.11b!

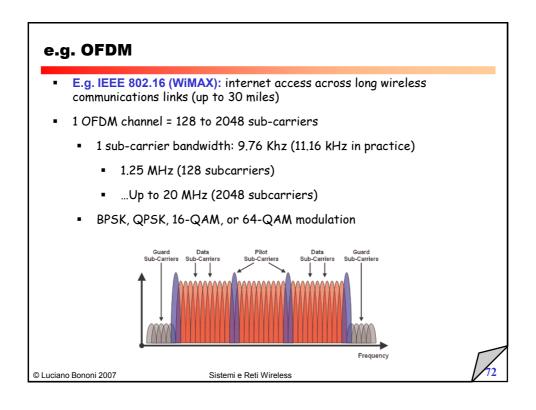
© Luciano Bononi 2007

Sistemi e Reti Wireless

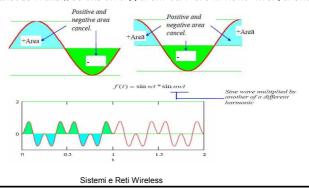

/_


OFDM

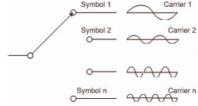

- Wireless technologies adopting OFDM:
 - Ultra Wide Band (UWB) WPAN:
 - IEEE 802.15.3a
 - WLAN:
 - IEEE 802.11 a, g, n and HIPERLAN/2
 - Digital radio and TV:
 - DAB (EU std), DAB+, HD radio,
 - digital Multimedia broadcasting (T-DMB) vs. Digital Video Broadcasting handheld (DVB-H) in Europe, Digital Video Broadcasting – Terrestrial (DVB-T)
 - WMAN:
 - IEEE 802.16 (WiMAX), HIPERMAN (3.5 Ghz [2-11 Ghz], ETSI std. Vs. Wi-MAX/WiBRO)
 - Mobile broadband wireless access (MBWA):
 - IEEE 802.20, IEEE 802.16e(Mobile WiMAX), WiBRO (Korean Wi-MAX)


© Luciano Bononi 2007

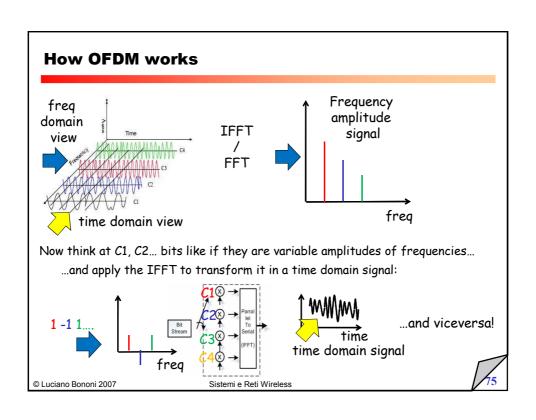
Sistemi e Reti Wireless



How OFDM works


- 1- The importance of orthogonal subcarriers
 - Sin(x) * Sin(kx) = orthogonal signal (Harmonics orthogonality)
 - Cos(x) * Cos(kx) = orthogonal signal
 - In general, all sin(mx), sin(nx), cos(nx), cos(mx) are orthogonal
 - Orthogonal means that integral of signal (t) is zero over period T. This allows simultaneous transmissions on different carriers with no interference

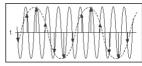
How OFDM works


© Luciano Bononi 2007

- E.g. OFDM with 4 carriers, 1 symbol per second (total for 4 carriers)
- Bit stream to be modulated (replace 0 with -1): 1 1 -1 -1 1 1 1 -1 1 -1
- Split the bit sequence in 4 sub-sequences
 - C1 (1 Hz): 1 1 1 -1 1 -1 1 -1... C2 (2 Hz): 1 1 -1 1 -1 -1 -1 1.... C3 (3 Hz): -1 1 1 1 1 -1 -1 1....
 - C4 (4 Hz): -1 -1 1 -1 -1 1 1 -1

© Luciano Bononi 2007

	0.50.0	00 1			
Data Rate (Mbps)	ng: ≈ 250.0	Bits coded per phase transition	R = fraction of carriers used for convolution	Length of 1 symbol at the given data rate (#subcarriers * bits coded per symbol)	Data bits encoded in 1 symbol
6	DBPSK	1	1/2	48	24
9	DBPSK	1	3/4	48	36
12	DQPSK	2	1/2	96	48
18	DQPSK	2	3/4	96	72
24	16-QAM	4	1/2	192	96
36	16-QAM	4	3/4	192	144
48	64-QAM	6	2/3	288	192
54	64-QAM	6	3/4	288	216


Nyquist Bandwidth

- Assumptions:
 - noise free Channel
 - Many possible interpretations:
 - "if the rate of signal used for transmission is B, then a signal with symbol rate not greater than 2B can be transmitted"
 - "Given M symbols that can be coded on the channel by using carrier bandwidth B, the maximum capacity C in bits is:"

$$C = 2B \log_2 M$$

That is, doubling the carrier bandwidth you could double the bitrate

Counter-example: A signal at K Mhz sampled at K+1 Mhz appears as K/5 Mhz

© Luciano Bononi 2007

Sistemi e Reti Wireless

Shannon Capacity Formula

- If the signal to noise ratio is
 - SNRdB = 10 log10(signal power/noise power)
- Then the maximum (error free) channel capacity in bits/second is

$$C = B log_2(1+SNR)$$

E.g. channel between 3 Mhz and 4 Mhz and SNR = 24 dB

$$B = 4 - 3 Mhz = 1 Mhz$$

$$4 = log2M => M = 16$$

© Luciano Bononi 2007

Sistemi e Reti Wireless

Multiple Access techniques: OFDMA and CDMA

Orthogonal Frequency Division Multiple Access (OFDMA)

- different subsets of OFDM sub-channels assigned to different users
- · Allows QoS management via subset management, and simple MAC
- Used in WiMAX (IEEE 802.16)

CDMA (Code Division Multiple Access)

- all terminals send on the same frequency probably at the same time and can use the whole bandwidth of the transmission channel
- each sender has a unique pseudo-random number (PRN), and XORs the signal with this random number
- · the receiver can "tune" into this signal via a correlation function, if it knows the PRN

Disadvantages:

- · higher complexity of a receiver
- · all signals should have the same strength at a receiver

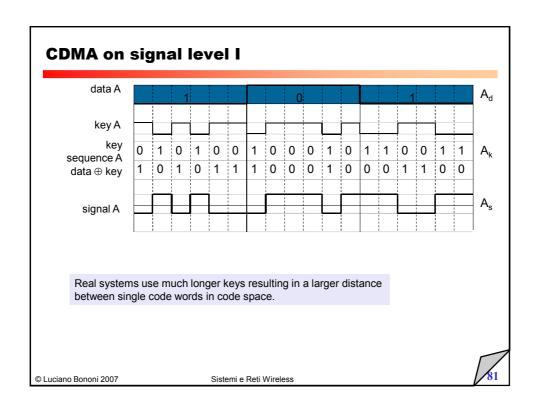
Advantages:

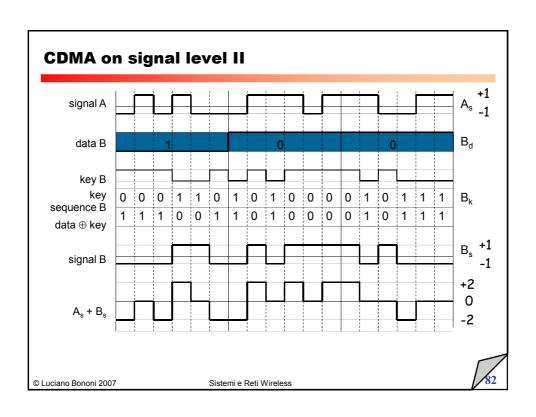
- · all terminals can use the same frequency, no planning needed
- huge code space (e.g. 232) compared to frequency space
- · interferences (e.g. white noise) is not coded
- · forward error correction and encryption can be easily integrated

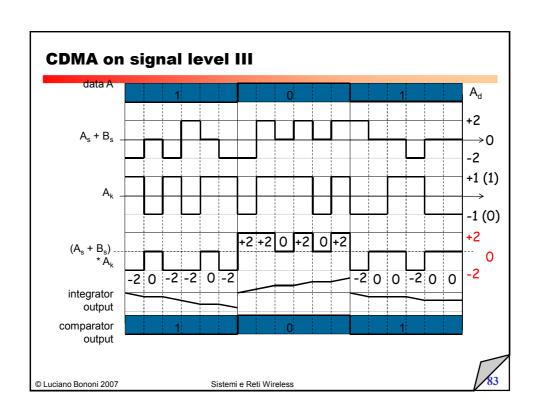
© Luciano Bononi 2007

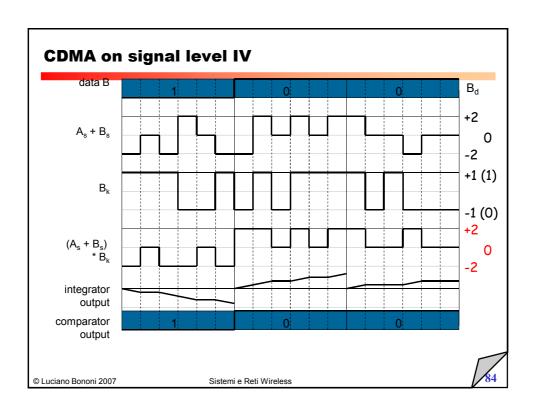
Sistemi e Reti Wireless

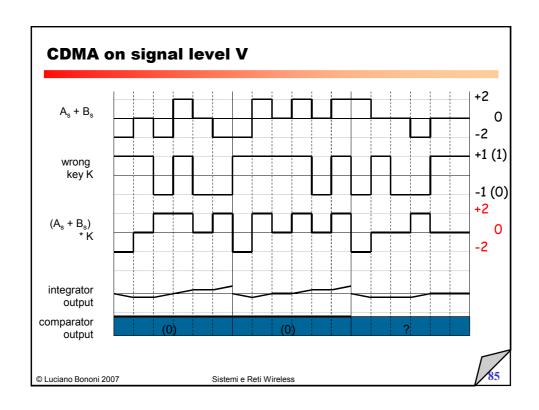
/


CDMA in theory


- Sender A
 - sends A_d = 1, key A_k = 010011 (assign: "0"= -1, "1"= +1)
 - sending signal $A_s = A_d * A_k = (-1, +1, -1, -1, +1, +1)$
- Sender B
 - sends $B_d = 0$, key $B_k = 110101$ (assign: "0"= -1, "1"= +1)
 - sending signal $B_s = B_d * B_k = (-1, -1, +1, -1, +1, -1)$
- Both signals superimpose in space
 - interference neglected (noise etc.)
 - $A_s + B_s = (-2, 0, 0, -2, +2, 0)$
- Receiver wants to receive signal from sender A
 - apply key A_k bitwise (inner product)
 - $A_e = (-2, 0, 0, -2, +2, 0) \bullet A_k = 2 + 0 + 0 + 2 + 2 + 0 = 6$
 - result greater than 0, therefore, original bit was "1"
 - receiving B
 - $B_e = (-2, 0, 0, -2, +2, 0) \bullet B_k = -2 + 0 + 0 2 2 + 0 = -6$, i.e. "0"


© Luciano Bononi 2007


Sistemi e Reti Wireless


ξn.

Network protocols: the glue for integration

- Networks deal with:
 - computer hardware, software, operating systems, transmission technology, services defined over it... how is it glued? and how to glue the existing with the wireless world?
- Communication protocols
 - implemented in software or hardware, transform otherwise isolated machines into <u>a society of computers</u>
 - specify how processes in different machines can interact to provide a given service (at different layers)

© Luciano Bononi 2007

Communication Protocols

- A set of rules governing the interaction of concurrent processes in a system
- A protocol has mainly five parts:
 - · The service it provides
 - The <u>assumptions</u> about the environment where it executes, including the services it enjoys
 - · The vocabulary of messages used to implement it
 - · The format of each message in the vocabulary
 - The <u>procedure</u> rules (algorithms) guarding the consistency of message exchanges and the integrity of the service provided

© Luciano Bononi 2007

Sistemi e Reti Wireless

6

Communication Protocols

- A protocol always involves at least two processes
 - · i.e. Phone call
- Distributed algorithms
 - i.e. to define and evaluate the "(wireless) hosts society" behavior
- Correctness:
 - The protocol provides the desired service indefinitely, provided operational assumptions are valid.
- Performance:
 - Because information and behavior of network are random, we focus on average behavior
- A protocol must provide its intended service (efficiently)
 - · design choices and protocol definition

© Luciano Bononi 2007

Sistemi e Reti Wireless