Workshop on Quality of Service in Geographically Distributed Systems

A research perspective on the adaptive protocols' architectures and system infrastructures to support QoS in wireless communication systems

Lorenzo Donatiello, Luciano Bononi {donat, bononi}@cs.unibo.it Department of Computer Science University of Bologna

Presentation outline

- The QoS perspective in Wireless Systems
 - System and scenario characterization
 - Design of protocols' and systems' architectures
 - The "Adaptive" and "cross-layering" concepts
- QoS oriented design goals
 - to provide some performance guarantee to the user...
 - ...over "best effort" infrastructure
- The MAC level perspective
 - solutions proposed and results obtained
- The Network level perspective
 - Adaptive Clustering and Routing
 - Cross-layering
- The modeling and simulation perspective
 - Efficient tools for analysis of complex systems
- comments and conclusions

The QoS perspective in Wireless Systems

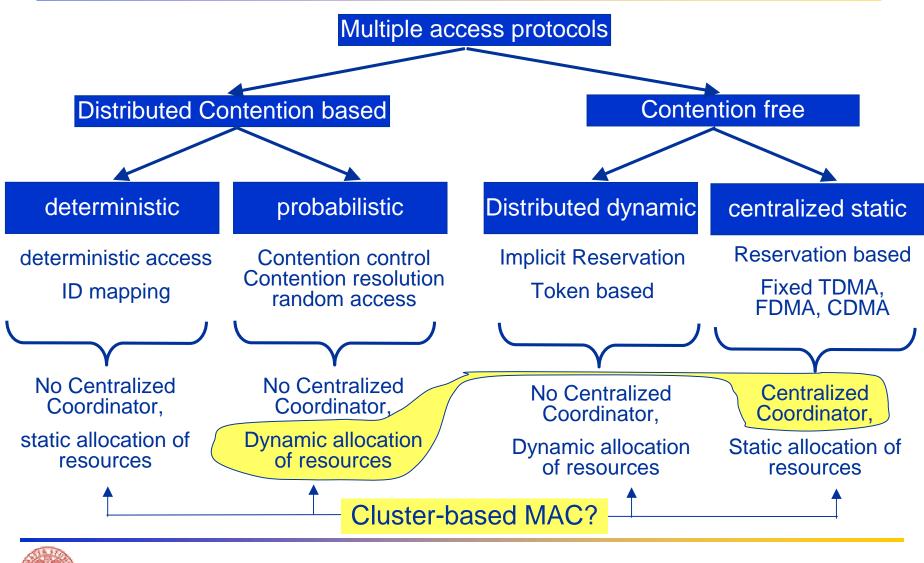
The Quality of Service in Wireless Systems

- It depends on the scenario...
 - Mobility
 - Static vs. dynamic
 - Group vs. single
 - Pattern-based vs. unpredictable
 - Nodes' heterogeneity
 - Resources (energy, bandwidth, neighbors...)
 - Capabilities (computation, gateway, AP...)
 - Control (centralized, distributed, hybrid)
 - Network infrastructure
 - Single-hop vs. multi-hop (Wireless Internet)
 - Distributed (ad hoc) vs. infrastructure vs. hybrid
- ...and service and/or application needs
 - Min Bandwidth
 - Max Delay (or jitter)
 - Real Time...
- The role of Protocols

The QoS perspective in Wireless Systems

The Protocols' role in supporting the QoS principle

- governing the system architecture
 - Node roles
 - Layered communication
- absorbing the system dynamics (adaptive protocols)
 - e.g. dynamic clustering
 - e.g. variable resources
 - e.g. variable application needs
- optimizing the resource sharing and utilization
 - e.g. Medium Access Control
 - Distributed vs. centralized
 - e.g. Scheduling strategies and resource allocation
 - Static vs. dynamic (reservation, service admission)
 - Priority-based vs. flat
 - e.g. Remote execution
- Protocol Architecture (e.g. ISO/OSI RM)
 - (limited) feedback-based protocols
 - Cross layering


e.g. the MAC layer in wireless networks

- The wireless MAC layer roles
 - Access control to shared channel(s)
 - Natural broadcast of wireless transmission
 - Collision of signal: a time/space problem
 - Who transmits when? (and where)?
 - Avoid collisions (no Collision Detection)
 - Scarce resources utilization
 - Channel capacity and battery power
 - performance and QoS
 - System level and (or vs?) user level
 - Frame organization, and intra-, inter-layer information management
 - Cross layering principles for adaptive behavior?
 - Risk for "spaghetti design" [Kumar2003]

[Kumar2003] V. Kawadia, P.R. Kumar, "A Cautionary Perspective on Cross Layer Design", 2003

Wireless MAC protocols' classification

Dipartimento di Scienze dell'Informazione © Luciano Bononi

ALMA MATER STUDI

UNIVERSITÀ DI ROLOGNA

Evolutionary perspective of distributed MAC

- Distributed, contention-based wireless MAC Problem:
 - the frame vulnerability (collision risk)
 - Needs resolution in distributed way (no centralized coordinator)
- a time domain problem
 - Aloha [Abramson1970]: no coordination
 - Slotted Aloha
 - CSMA [Kleinrock1975]: listen before to transmit
 - Slotted CSMA
 - CSMA/CD: listen before and while transmitting
 - (unpractical in wireless scenarios)
 - CSMA/CA + contention resolution (reactive resolution of collisions)
 - CSMA/CA + contention control (preventive/reactive reduction of risk of collisions)

[Abramson1970]

N. Abramson, "The ALOHA system - another alternative for computer communications", Proc. Fall Joint Comput. Conf. AFIPS, 1970

[Kleinrock1975]

L. Kleinrock, F.A. Tobagi ``Packet Switching in Radio Channels: Part I - Carrier Sense Multiple-Access modes and their throughput-delay characteristics", IEEE Transactions on Communications, Vol Com-23, No. 12, pp.1400-1416, 1975

ALMA MATER STUDIORUM Università di Bologna

Evolutionary perspective of distributed MAC

- Distributed, contention-based wireless MAC Problem:
 - the frame vulnerability (collision risk)
 - Needs resolution in distributed way (no centralized coordinator)
- ...and also a Space domain problem
 - MACA [Karn1990]: RTS/CTS, no carrier sense (MACA-BI, RIMA...)
 - MACAW [Bharghavan et al.1994]: RTS/CTS, carrier sense and immediate ACK (more reliable and efficient Link Layer Control)
 - FAMA [Fullmer et al.1995]: RTS/CTS, carrier sense + other stuff
- Main solution: RTS/CTS mechanism
 - Today under some criticisms

[Karn1990]

P. Karn, "MACA - A new Channel Access Method for Packet Radio", proc. 9-th Computer Networking Conference, September 1990

[Bharghavan et al. 1994]

V. Bharghavan, A. Demers, S. Shenker, and L. Zhang, "MACAW: A Media Access Protocol for Wireless LAN's," proc. ACM SIGCOMM'94, pp.212-225, London, 1994

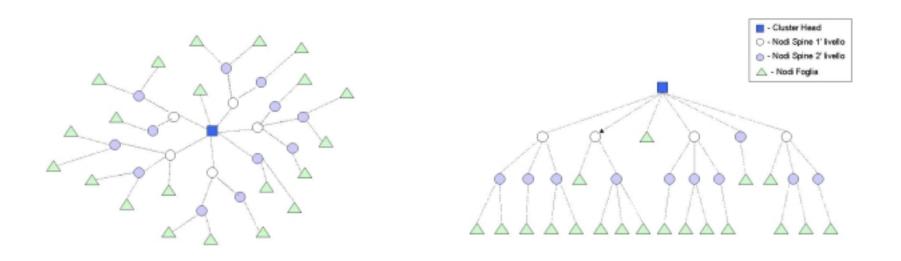
[Fullmer et al. 1995]

C.L. Fullmer, J.J. Garcia-Luna-Aceves, "Floor Acquisition Multiple Access (FAMA) for Packet Radio Networks", Proc. ACM Sigcomm'95 Cambridge, MA, 1995

ALMA MATER STUDIORUM Università di Bologna

Ongoing activities with effects on QoS

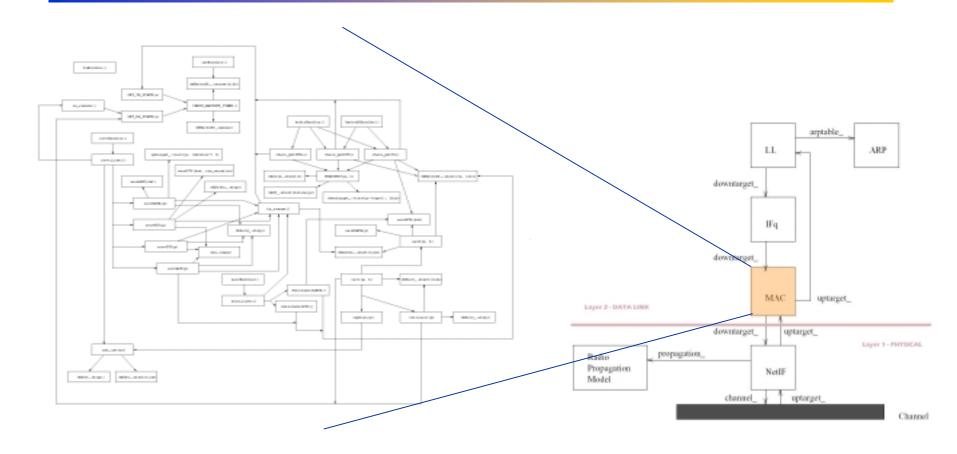
- Exploiting new Clustering schemes...
 - Based on Energy, Mobility and Connectivity factors
 - Dynamic, adaptive, Spine-based network infrastructures
- ...supported by new MAC: Differentiated DCF (DDCF) access scheme
 - (Pseudo)-distributed management
 - Exploit differentiated IFS (like in IEEE802.11e) for priority management related to cluster-based node roles
- Adaptive Protocol Framework
 - Cross layering principle (shared information repository)
 - Inter-protocol layer and inter-node
 - Coordination languages and tuple spaces
- Multipoll-based solutions
 - Priority nodes administrate local access scheduling
- Intra-stream and inter-stream self-contention in multi-hop paths
 - Distributed contention management and flow synchronization
 - avoid frame flows to collide (auto-interference)
- Modified NAV policy


ALMA MATER STUDIORUM

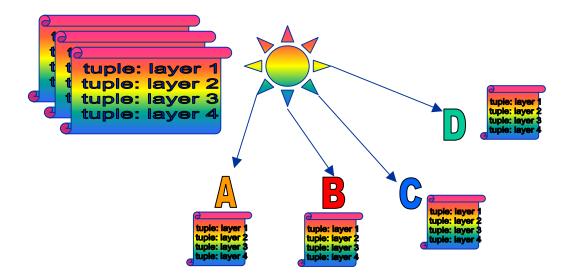
UNIVERSITÀ DI ROLOG

- Enhancement of low power techniques for distributed nodes
- ...and more upcomings and expected!

DDCF access scheme over clustered networks


- Differentiated DCF-like (DDCF) access scheme
 - Exploit differentiated IFS (like in IEEE802.11e) for cluster-based roles
 - Not only for local queues contention, but for cluster contention
 - Nodes with high priority role capture the channel under the contention viewpoint

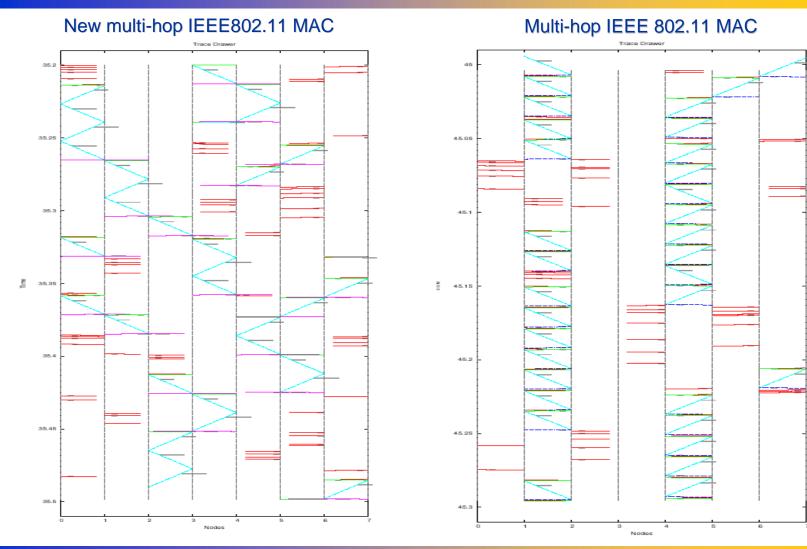
MAC design and modeling (simulation)



Cross layering protocol framework

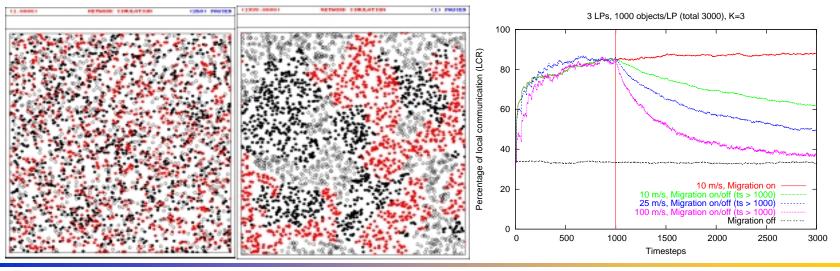
Adaptive protocols

- Limited feedback vs. local information sharing
- Adaptive protocol suite based on:
 - Tuple spaces theory (lightweight information coding)
 - Distributed repository for control and management information
 - Coordination languages (primitives for tuple management)
 - Tuple gathering and tuple production (inference)
 - Inter-protocol layer and inter-host management



Ad hoc Multi-hop: Time/Space problems

- A bi-directional chain of MAC frames
 TCP streams (Data + Ack)
- Self-contention (MAC layer problem)
 - Inter-stream self-contention (Data vs. Ack TCP streams)
 - Intra-stream self-contention (same TCP stream)
 - How to obtain coordination?
 - New proposed solutions
 - Fast forward
 - Quick exchange
 - Flow numbering (pre-routing at the MAC layer???)
 - Frame transmission by forward invitation


Ad hoc Multi-hop: Time/Space problems

Efficient simulation of wireless systems

- Wireless models require complex and scalable design
- Parallel and Distributed Simulation to overcome the memory and computation bottleneck
 - Communication bottleneck
 - Optimization of PDES framework based on HLA (IEEE 1516): ARTIS + GAIA

Conclusion

- Design and investigation of MAC, Clustering (and Routing) protocols for wireless systems
 - to support cluster-based infrastructures (*)
 - supported by cluster-based infrastructures (*)
 - possible extension of Wireless Internet Hot Spots
 - Distributed services, location dependency, epidemic and cooperative
 - Research oriented to QoS support
 - Focus on "adaptive" and "cross layering" design
- Centralized and distributed (hybrid) approach
 - Middleware support for Protocol framework (*)
- Integration with fixed infrastructure networks
- compliance with Standards
 - ...good for interoperability and deployment

(*) In cooperation with STMicroelectronics

