
An Introduction to
Quantum Computing

IoT-Prism Lab internal seminar
March 31, 2023

Luciano Bononi
Department of Computer Science and Engineering
email: luciano.bononi@unibo.it

Assumption

There are only 10 types of people in the world... those
who understand binary arithmetic and those who don't.

anonymous computer scientist

At the end of this illustration maybe we will reduce the entropy of the computing universe or maybe not:

There are only !
" ⊗ "

! groups of computer scientists
in the world... split out by how they understand

Quantum Computing

© Luciano Bononi 2023 Disclaimer: the following slides are informative and non-scientific in nature as they contain conceptual and intuitive simplifications.

from Classical Computing to Quantum Computing (1)

In 1947 Walter Brattain, John Bardeen and William Shockley invented the
transistor (Bell labs 1947, Nobel Prize for Physics 1956):
OPEN or CLOSE a circuit electronically by means of a control signal

Corollary: the state of a circuit at time T is either OPEN or CLOSED

Binary logic: I can represent information using only two symbols (bit values): 0 and 1
If we associate the states of the circuits (e.g. Open to the value of bit 0 and Closed to the value of bit
1) we have a binary electronic encoding. That is, the state of a machine represents a binary value.

Can we build machines that transform states into different predictable states? Certainly!
The logic gates carry out transformation functions of input signals into output signals according to a pre-
defined and DETERMINISTIC truth table (that is, from the same input and operation I always get the
same result produced)

0 1

© Luciano Bononi 2023

from Classical Computing to Quantum Computing (2)

The NAND (Not AND) digital gate is interesting:

truth table (NAND): A B Q (output)
0 0 1
0 1 1
1 0 1
1 1 0

You can demonstrate that by composing NAND gates you can realize all the basic logic ports.
Not (x) = 0 iff x=1, 1 o.w.
OR (x,y) = 1 iff at least one between x and y is 1, 0 o.w.
AND (x,y) = 1 iff both x and y is 1, 0 o.w.
XOR (x,y) = 1 iff ONLY one between x and y is 1, 0 o.w.
etc. etc.
Some logic gates are sufficient to realise all the building blocks for arbitrary complex computations

© Luciano Bononi 2023

from Classical Computing to Quantum Computing (3)

If we create a compositional logic for gates and use it for the operation of a controllable computation
by binary control signals (the executable program) and run the computation on the input data of our
problem we obtain a classical programmable computer which will give us the expected output results
for any admissible combination of input.

fact 1: we have only one state at any instant, which represents the evolution of the calculation
process (intermediate result) towards the solution. Causal (and deterministic) sequential steps: the
result of the next step may ALSO depend on the intermediate result obtained from the previous steps,
and is unique and repeatable.

Fact 2: When will we complete the calculation process? When the calculator has performed all the
necessary steps in sequence.
And if by chance we take the wrong way (we write a wrong program) to get the expected
calculation? We would get a wrong result or we will never know the result...and we will never know
that we will never know (the halting problem is undecidable).

© Luciano Bononi 2023

Classic computational tree

example: we want to sort three integer elements a, b, c in order from
smallest to largest (by comparisons), then what program should I write?
... and when I run it what happens? What if I have to order N items?

intermediate states of computation (process questions)
final states of calculation (result obtained)

min complexity
𝛀(f(N))

max complexity
O(g(N))

I carry out the whole
computational path from the
root of the tree to a leaf (result),
choosing which path to follow for
each choice, and hoping not to
make a mistake so as not to have
to go up and down from other
paths.

If I have to go up and down the
tree (the program is inefficient or
wrong) the calculation path gets
longer and may never arrive at
the result.

I have to make correct and
efficient programs to minimize
the computational path

© Luciano Bononi 2023

YES NO

a < b?

b < c? c < b?

a < c?a < c?

© Luciano Bononi 2023

a < b?

b < c? c < b?

a < c?a < c?a < b < c

a < c < b c < a < b

c < b < a

b < a < c b < c < a

example: we want to sort three integer elements a, b, c in order from
smallest to largest (by comparisons), then what program should I write?
... and when I run it what happens? What if I have to order N items?

intermediate states of computation (process questions)
final states of calculation (result obtained)

Classic computational tree
I carry out the whole
computational path from the
root of the tree to a leaf (result),
choosing which path to follow for
each choice, and hoping not to
make a mistake so as not to have
to go up and down from other
paths.

If I have to go up and down the
tree (the program is inefficient or
wrong) the calculation path gets
longer and may never arrive at
the result.

I have to make correct and
efficient programs to minimize
the computational path

YES NO

min complexity
𝛀(f(N))

max complexity
O(g(N))

So today we have classic computers and we try to program them well,
but we have to wait many steps before (perhaps) having the results.

idea! Let's move fast! i.e. we use fast Clocks.
We need an even faster drummer of the "computing band" on a chip.
But to do that we need faster logic gates.
Physical limit: speed of light (c = 300.000.000 m/sec).

Let us assume a computation requires a sequence of one billion logic
gates to be traversed on a Chip to transform signals in sequence from
input to output results. Each logic gate occupies 10 nanometers. How far
does the electric current travel step by step?
10 nanometers of distance per gate x 1 billion gates = 10 meters

Even by traveling at speed c, it will not take less than:
time = space / speed = 10 / 300.000.000 = 33.3 nanoseconds.
But we are even more in a hurry, so what?

© Luciano Bononi 2023

from Classical Computing to Quantum Computing (4)

If we can't send faster-than-light signals, the only way to make faster steps
along the computational path is to reduce the total distance ahead.
idea! Miniaturize further more the logic gates on the Chip.

Moore Law: number of transistors in the same chip space doubles every
two years (in 2024 we will be around 3-2 nanometers)

Ok, but is there a physical limit that we will reach sooner or later?
Will we ever be able to make transistors on less than an atom of a chip?

So what?
Let’s be creative... parallelize calculation processes
where possible, etc. (not possible/easy for many problems)

miniaturization

© Luciano Bononi 2023

from Classical Computing to Quantum Computing (5)

Gordon E. Moore
1929 - 2023

physical limits of classical computing (summary)

We will not be able to accelerate the clocks beyond a limit related to the
physical size of the chips

We won't be able to miniaturize chips indefinitely

We won't always be able to invent faster parallel algorithms and solutions

Got stuck?.... but there is a new way.

Quantum Computing

© Luciano Bononi 2023 Disclaimer: the following slides are informative and non-scientific in nature as they contain conceptual and intuitive simplifications.

So let's take advantage of a new PHYSICS: quantum mechanics.
- dimensional order of the (subatomic) particles constituting the

atom (from 10-15 and below). E.g. electrons, photons, etc

- A universe made of surprising physical phenomena.

- new bits (Qbit), which actually have the two states 0 and 1,
but can be in both states at the same time (superposition
principle).

credits: wired italia0 1
1
0

© Luciano Bononi 2023

1
0

1
0 0

1
0
10

1
Superposition State

Quantum Bit

Qbit

from Classical Computing to Quantum Computing (5)

1) Ok, but can we control Qbits states analogously to electric
currents with a transistor?

- Yes, but we have to act on superfluid particles close to
absolute zero (that are stable and without «noise»).

Quantum Computer: first of all a large REFRIGERATOR.

2) Are we therefore able to build new functions or "logical
gates" of Quantum Computing from whose composition it is
possible to realize the programming of quantum algorithms?

- Yes, by exploiting a new probabilistic programming approach,
linked to "unexplained" but demonstrable quantum
phenomena such as quantum tunneling, entanglement,
superposition, etc.

© Luciano Bononi 2023

A new quantum processor
(inside the refrigerator)

from Classical Computing to Quantum Computing (6)

end of jokes... let’s start to be serious

credits: Arvin Ash

The Feynman's algorithm is an algorithm that is
used to simulate the operations of a quantum
computer on a classical computer.
It is based on the Path integration formulation
of quantum mechanics which was formulated
by Richard Feynmann.

We will use something similar to express the
algebraic equivalence between two
computers: a classical and a quantum
computer.

Then we will demonstrate the «quantum
supremacy» on a very simple algorithm...
«a small step for a quantum computer.... but a
giant leap for makind!»

Notice that NOT ALL problems

are better resolved by a quantum computer

Quantum Computing (algebraic approach to Qbit representation)

1) how to represent vectors of classical computer bit as Qbits? | ⟩𝐷𝑖𝑟𝑎𝑐 𝑉𝑒𝑐𝑡𝑜𝑟 𝑁𝑜𝑡𝑎𝑡𝑖𝑜𝑛

vector emulating Qbit 0 ≝ /
0 =			| ⟩0 (Spin	Up	state	of	quantum	particle)

vector emulating Qbit 1 ≝ 0
/ =			| ⟩1 (Spin	Down	state	of	quantum	particle)

Bloch Sphere
(possible infinite Spin states)

Qbit 0 Qbit 1

Review of algebraic rules of multiplication between matrices and vectors
Identity Matrix I

swapped central rows of I

© Luciano Bononi 2023

Quantum Computing (operators on a single Cbit)

2) which are the four possible operations which we can execute on a SINGLE canonical bit (Cbit)?
remind that

vector Qbit 0 ≝ /
0 =	 | ⟩0

vector Qbit 1 ≝ 0
/ =	 | ⟩1

credits: Quantum Computing for Computer Scientists, Microsoft

0 0 1 1

0 1 1 0

0 0 1 0

0 1 1 1

© Luciano Bononi 2023

Quantum Computing (reversibility of computation)
3) which of these are reversible operators? given the output and operator you can determine the

input Qbit value
reversible: identity and negation (they just maintain or reverse the input bit on the output)
non reversible: Const-0 e Const-1 (delete input value and always overwrite with constant 0 or 1)
NB: in the figure we are using Cbit vectors which algebraically emulate a Qbit
RULE: Quantum Computers only adopt and implement reversible computation operators on Qbits

credits: Quantum Computing for Computer Scientists, Microsoft

0 0 1 1

0 1 1 0

0 0 1 0

0 1 1 1

NB: the reason why we
only want reversible
operators is because in
this way all the calculation
that produces the solution
from an input can be
«rolled back» from the
output.

In a sense we can "go
backwards in time" with
calculation....

© Luciano Bononi 2023

Quantum Computing (tensor product of vectors)

4) a tensor product of two vectors has the properties summarized below.
By making the tensor product of N vectors (which emulate N Qbits) we get a «state representation»
vector of all the resulting possible binary values expressed by the combined associated Qbits.
So, what is the practical purpose of tensor product? to represent a binary sequence of many Qbits (and
their possible states representations).

1 1 0
0
1
2
3
4
5
6
7

NB: (x1,y1,z1) is a
binary value on 3 bits

NB: the tensor product
produces all the binary
enumerated joint states
of the two Qbits

NB: the tensor
product produces all
the binary
enumerated joint
states of the 3 bits

credits: Quantum Computing for Computer Scientists, Microsoft© Luciano Bononi 2023

Quantum Computing (tensor product of multiple Qbit in a binary sequence)
5) the tensor product of multiple vectors (Qbit) is used to compute the «product state» of multiple

consecutive Qbits.
see the example with all the 4 possible combinations of product tensor (product state)
of 2 Qbit | ⟩00 | ⟩01 | ⟩10 | ⟩11 or with 3 Qbit | ⟩000 | ⟩001 | ⟩010 | ⟩011 | ⟩100 | ⟩101 | ⟩110 | ⟩111
We are producing all the possible results for the state of 2 or 3 Qbit in sequence (binary sequence).

credits: Quantum Computing for Computer Scientists, Microsoft© Luciano Bononi 2023

Quantum Computing (tensor product of multiple Qbit in a binary sequence)

Let us now imagine that the state vector which lists all the possible states (combinations of binary
values) of the N Qbits contains in each row the probability that the binary combination of the values of
the N Qbits is precisely the one identified by the row. For example, HERE, the probability to have a
binary result 4 is 100% and all the other results have probability 0%.

credits: Quantum Computing for Computer Scientists, Microsoft© Luciano Bononi 2023

How to manipulate Qbit values? We need quantum logic gates....

At this point, are we able to build quantum logic gates that can manipulate the physical
characteristics of the particles associated with the Qbit state?

If we were able to do this, we would have "transformation" operations of input into output on Qbit
values, and we could use them to write quantum programs.

| ⟩𝑥 x C H x C H x | ⟩𝑦

quantum programming of an algorithm on a single Qbit
(single input Qbit, single output Qbit)

INPUT (Qbit) OUTPUT (Qbit)

© Luciano Bononi 2023

a pipeline of quantum logic gates (generic example)

Quantum Computing (our first quantum logic gate: CNOT)

6) finally we have a way to create the first logic gate of the Quantum Computer (similar to the initial
NAND-like building block of the classical computer): the CNOT gate.

The CNOT gate looks like a conditional choice and performs a quantum computation (operation) on 2
Qbits (c, t) which we can think of as follows: given INPUT (c,t), if c=0 then Output remains equal to (c, t),
otherwise only t is inverted and Output = (c, not t).

credits: Quantum Computing for Computer Scientists, Microsoft

INPUT
(Control, Target)

OUTPUT
(Control, Result) NB: this matrix implements exactly

the behavior of CNOT: if applied to
the tensor product of the two input
Qbits, it produces the two expected
output Qbits.

CNOT gate

© Luciano Bononi 2023

C

c
t

Quantum Computing (our first quantum logic gate: CNOT)

7) let's see a couple of applied cases of what happens by applying CNOT (C) to two pairs of Qbits:
NB: the final product state foresees all possible combinations of the result, but only one is true (probability
100%), and by reversing the state product we obtain the corresponding output result in Qbits.

credits: Quantum Computing for Computer Scientists, Microsoft

We apply CNOT to | ⟩00 (control = 0 and
target = 0) so output must be | ⟩00

We apply CNOT to | ⟩01 (control = 0 and
target = 0) so output must be | ⟩01

We apply CNOT to | ⟩10 (control = 0 and
target = 0) so output must be | ⟩11

We apply CNOT to | ⟩11 (control = 0 and
target = 0) so output must be | ⟩10

tensor product
Qbits 00

CNOT state product
Qbits 00

operator
result

reversing
state
product

Qbit
notation of
resultC operator

on Input
Qbits

C

© Luciano Bononi 2023

Quantum Computing (quantum superposition)

8. We can indeed use Qbits (because the vectors used up to now are in fact discrete emulations valid
in the extreme values 0 and 1 of the real Qbits), and also Qbits in superpositions, as follows.

The real Qbit can be represented as L
M where a,b are complex coefficients s.t. 𝑎 2 + 𝑏 2 = 1

The extreme vector values used so far !
" and "

! are in fact compliant with the definition of Qbit
above.

Other examples of interesting Qbits (you can verify that 𝑎 2 + 𝑏 2 = 1)

!
"
!
"

!
"
#
"

$%
&

"
#

$"
#

Note that we can use irrational and negative coefficients (and complex coefficients as well but not
here for simplicity). Every vector corresponds to a possible Spin direction in the Bloch Sphere.

© Luciano Bononi 2023

Quantum Computing (quantum superposition)

8. we can put two or more Qbits in superposition. In this condition the value of the Qbit is no longer
necessarily just 0 or 1, but it is somewhat Zero and somewhat One at the same time.

Fact: we don't know how much a Qbit is zero or one during quantum computation until we MEASURE
the Qbit, but when we measure it we COLLAPSE its real value to one of two ideal values Zero or One
with a certain probability, and from this moment the Qbit it will be consumed forever. For this reason,
sometimes we measure the Qbits only at the end of the calculation process (not during), because by
measuring them they collapse and be CONSUMED.

The blue box contains the Qbit, which is processed by the algorithm, but we don't know the value. Only
when we look at the value (open the box) do we find the value, but we destroy the Qbit.
This is similar to the paradox of Schrödinger's cat.

Qbit measurement (observation): If a Qbit is measured while it is in the state L
M then it will collapse to

result value 0 with probability 𝑎 2 and result value 1 with probability 𝑏 2

f() g() h() 𝑎
𝑏

f() g() h()𝑎
𝑏

0 p(𝑎 2)

1 p(𝑏 2)

0 p(𝑎 2)

1 p(𝑏 2)

© Luciano Bononi 2023

Quantum Computing (quantum superposition)

For example, the Qbit in the state
!
"
!
"

it will have !
#

2 = ½ probability to collapse in value 0 or 1.

Again, if we measure Qbit "
! and !

" which computational value will them produce and with
which probability?
"
! collapses to 1 with probability 𝑏 2 = 12 = 100% (that’s why we used this as Qbit | ⟩1)
!
" collapses to 0 with probability 𝑎 2 = 12 = 100% (that’s why we used this as Qbit | ⟩0)

So basically we cannot do intermediate checks on the calculated values anymore? FALSE
If we carry out checks we consume Qbits that we will no longer be able to use having caused them
to collapse. But in reality we no longer have to choose just one path from the tree of choices, but we
go down all the paths at the same time (therefore less checks are needed)!

Great Computational Advantage (if the problem is suitable) because we will obtain in the Qbits all
the possible solutions to the problem (and not just one) in a max number of computation steps which
is congruous to the height of the computational tree (that is, logaritmic with respect to the number
of possible computational states).

© Luciano Bononi 2023

Quantum Computing (quantum superposition)

Similarly, multiple Qbits are similarly solved as a product of tensors (⊗).
For example: if we wanted to toss two coins together (heads or tails) and we wanted to calculate all
possible outcomes, just program two Qbits that produce 50% heads or tails and make them the
product of the tensors:

A ⊗ B

!
"
!
"

⊗
!
"
!
"

= (note that 1/2 2 = ¼, and ¼ + ¼ + ¼ + ¼ = 1.

So measuring the two Qbits A and B after the execution of the tosses we will see both of them
collapsed in a state vector showing only one of the results | ⟩00 , | ⟩01 , | ⟩10 ,	| ⟩11 with ¼ probability each.

This calculation is consistent with all the results we could get from infinite tosses of two real coins.

1/2

1/2
1/2

1/2

© Luciano Bononi 2023

Quantum Computing (further manipulate Qbits: bit-flip Gate)
At this point we can manipulate the calculation (implementing the program or quantum algorithm)
on the Qbits (data structure of the algorithm) in the same way seen for the emulation vectors, i.e.
using operators (in the form of a matrix).
We have operators eg. CNOT, etc. and many of these only make sense in the quantum context.
The operators in matrix form model the effects of physical devices which in quantum reality
manipulate the Spin/Polarization of the super-fluid particles, but without measuring/observing their
value and therefore without collapsing and consuming them.

For example: this is the operator programmed to bit-flip a single Qbit: X LM = M
L

example : 0 1
1 0

!
"
#
"

=
#
"
!
"

The input (Red) Qbit was value ONE with 3/4 and ZERO with ¼ probability, but after the bit-flip it
became the (Blue) output Qbit with value ONE with 1/4 and ZERO with 3/4 probability.
Intuitively, if at some point in the computation the Qbit had a value of zero or one with certain
probabilities, without observing or consuming it, the bit flip transforms the Qbit (changes its state)
with the same probabilities of assuming the values one and zero, but in reverse order (flip).

x

© Luciano Bononi 2023

x

x = 0 1
1 0

Quantum Computing (Hadamard Gate)

A fundamental operator for the programming of quantum computing is the Hadamard Gate.
This operator H takes as input a Qbit (with any value, even 0 or 1) and places it in the state of exact
superposition (i.e. in statistical equilibrium between the two states 0 and 1, with probability ½ of
collapsing on the value 0 and ½ to collapse to the value 1). It is equivalent to a sort of reset of the state
of a Qbit which will be able to advance in the calculation being a bit 0 and a bit 1, but the important
thing is that in reality the Qbit knows how to go back (the operation is reversible).

Hadamard gate H =
!
#

!
#

!
#

$!
#

(Note the negative value. In your opinion, why you need the negative?)

credits: Quantum Computing for Computer Scientists, Microsoft

Because this makes H reversible! Try it with H H | ⟩0 = | ⟩0 e H H | ⟩1 = | ⟩1 . Noteworthy!

H

© Luciano Bononi 2023

Quantum Computing (Unit Circle State Machine)

We can now summarize the interesting states and transitions that we are able to implement for
programming a Qbit. The map of its possible Spin states represented on the Unit Circle (a 2D
projection of the Bloch sphere) for computer scientists is equivalent to looking at the states and
transitions of a programmable finite state machine.

credits: Quantum Computing for Computer Scientists, Microsoft

Bit Flip Operator (X) Hademard Operator (H)

x

x

H

H

H

Hx
x

x

© Luciano Bononi 2023

Quantum Computing (Quantum Circuit Notation)

How can we imagine a quantum computation in an algorithm implemented by sequence operators
starting from an initial Qbit of input and to produce a final Qbit as output?
Through a navigation of the state machine that follows the transformation steps on the Qbit caused by
operators. Note that the calculation process is reversible (the calculation occurs in both directions).
From !

" we make a BitFlip (X) and reach "
! then we make Hademard H which reset in superposition

state
!
"

#!
"

then again we make X, leading to a
#!
"
!
"

, then again H leading to a "
$! and finally X

leading to final value $!
"

credits: Quantum Computing for Computer Scientists, Microsoft© Luciano Bononi 2023

Quantum Computing (Summary)

Summarizing everything we've seen so far:
• we modeled the Qbits as binary vectors of complex values
• the classic bits (that assume only the canonical values 0 and 1) we call them Cbits.
• Cbits are special cases of Qbits and can be modeled as vectors of 2 complex numbers
• Qbits can be superimposed, and if measured they collapse probabilistically into Cbits, with certain

probabilities depending on the quantum state reached by the Qbit.
• Systems composed of multiple Qbits are tensor products of single Qbit systems (as sequenced Cbits)
• We can model the operators (expressed as multiplicative matrices) on Qbits (expressed as vectors)

in the way shown with Cbits.
• The Hadamard gate brings Qbits in overlapping (superposition) between the states, and brings them

back to the original value (being reversible)
• Qbits and their operations can be interpreted as algorithms running on state machine (on unit circle,

if we use real values, and on Bloch sphere if we also use complex values).

© Luciano Bononi 2023

«Algorithmic» emulation of (CNOT)

CNOT gate: Control Target Control’ Result
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

credits: Quantum Computing for Computer Scientists, Microsoft

Target

Control

Target

Control

Result

Result

Control’

Control’

Control’ = Identity (Control)
If (Control == 1) then

result = Negation (Target)
else

result = Identity(Target)

NB: here in (Control == 1) we observe the Control Qbit!
However, we created a copy before to let the value
to go forward...

C

© Luciano Bononi 2023

This slide is shown just to make it clear that the quantum gate CNOT
it is actually usable according to a classic programming principle
whose semantic is more "recognizable" to classic Computer Scientists.

C

limited example of Quantum Supremacy?

Let’s now define a suitable problem to test the (limited example of) quantum supremacy

The Deutsch Oracle problem (or the problem of the «misterious» function)

Let's imagine that we are given a black box (Black Box = BB) that implements a one-bit function.
We know that the function will be one of 4 possible: Identity, Negation, Constant-0, Constant-1,
but which is the one in BB?

Problem: how many operations must be done to know the answer on a Classical Computer?
We can only try to supply input values and observe Output to figure out what function it is.

Input Output

input1 = 0

output1 = 0 output1 = 1

input2 = 1

output2 = 0 output2 = 1

input2 = 1

output2 = 0 output2 = 1

operation 1
possibilities (Negation? Constant-1?)

operation 2operation 2

operation 1
possibilities (Identity? Constant-0?)

Constant-0 ! Identity ! Negation ! Constant-1 !

TWO
operations
required

Final Result:
© Luciano Bononi 2023

BB?

The Deutsch Oracle problem

Let's imagine that we are given a black box (Black Box = BB) that implements a one-bit function.
We know that the function will be one of 4 possible: Identity, Negation, Constant-0, Constant-1,
but which is the one in BB?

Problem: how many operations must be done to know the answer on a Quantum Computer?
We can only try to supply input values and observe Output to figure out what function it is.

Input OutputBB?

The Deutsch Oracle problem

Let's imagine that we are given a black box (Black Box = BB) that implements a one-bit function.
We know that the function will be one of 4 possible: Identity, Negation, Constant-0, Constant-1,
but which is the one in BB?

Problem: how many operations must be done to know the answer on a Quantum Computer?
If we use only one input Qbit, there are still TWO operations required!

Input Output

input1 = 0

output1 = 0 output1 = 1

input2 = 1

output2 = 0 output2 = 1

input2 = 1

output2 = 0 output2 = 1

operation 1
possibilities (Negation? Constant-1?)

operation 2operation 2

operation 1
possibilities (Identity? Constant-0?)

Constant-0 ! Identity ! Negation ! Constant-1 !

still TWO
operations
required

Final Result:
© Luciano Bononi 2023

BB?

The Deutsch Oracle problem

Input Output

© Luciano Bononi 2023

BB?

Let's imagine that we are given a black box (Black Box = BB) that implements a one-bit function.
We know that the function will be one of 4 possible: Identity, Negation, Constant-0, Constant-1,
but the new question is: is the one in BB a constant or a variable function?

Problem: how many operations must be done to know the answer on a Classical Computer?
We can only try to supply input values and observe Output to figure out what function it is.

Let's imagine that we are given a black box (Black Box = BB) that implements a one-bit function.
We know that the function will be one of 4 possible: Identity, Negation, Constant-0, Constant-1,
but the new question is: is the one in BB a constant or a variable function?

Problem: how many operations must be done to know the answer on a Classical Computer?
We can only try to supply input values and observe Output to figure out what function it is.

The Deutsch Oracle problem

Input Output

input1 = 0

output1 = 0 output1 = 1

input2 = 1

output2 = 0 output2 = 1

input2 = 1

output2 = 0 output2 = 1

operation 1
possibility (Negation? Constant-1?)

operazione 2operazione 2

operation 1
possibility (Identity? Constant-0?)

Variable !
(Constant-0)

Constant !
(Identity)

Variable !
(Negation)

Constante !
(Constant-1)

TWO
Operazions
required

Final Result:

Variable Constant Variable Constant

© Luciano Bononi 2023

BB?

Let's imagine that we are given a black box (Black Box = BB) that implements a one-bit function.
We know that the function will be one of 4 possible: Identity, Negation, Constant-0, Constant-1,
but the new question is: is the one in BB a constant or a variable function?

Problem: how many operations must be done to know the answer on a Quantum Computer?
Note that the answer is between two possibilities: one Qbit is enough to distinguish them!
So just do programming operations using a single superimposed Qbit as input!
Let’s also cut computing time in half thanks to the power of Quantum Computing....

Q: but how do you program the question?
A: first we have to define how each of the 4 possible functions in BB can be realized on a Quantum
Computer...

The Deutsch Oracle problem

Input OutputBB?

The Deutsch Oracle problem

Problem: Constant-0 and Constant-1 functions are NOT REVERSIBLE! (in fact they overwrite the history)

Trick: We add an extra Qbit of output just to remember «where we came from».

Then we need to "rewire" or reprogram our Black Box (BB) quantum circuit as follows:

Input
| ⟩𝑥

Output
f (| ⟩𝑥)

BB

Input
| ⟩𝑥

Output
f (| ⟩𝑥)

BB

prev Input
| ⟩𝑥

init
| ⟩0

© Luciano Bononi 2023

NB: this additional «input» we add
(called Init) is always set by us to | ⟩0 ,
so it is technically just a static
constant input of the quantum
circuit.
It is just like defining an initialised
constant in a program, hence it is not
a additional input of the problem.

The Deutsch Oracle problem

Let's see how to rewire the two functions Constant-0 and Constant-1 so that they produce the general
function model on the right (two Qbits) by solving the internal form (??):

rewired circuit Constant-0

rewired circuit Constant-1

Input
| ⟩𝑥

Output
f (| ⟩𝑥)

BB

prev Input
| ⟩𝑥

Init
| ⟩0

Init
| ⟩0

Input
| ⟩𝑥

Output
| ⟩0
prev Input
| ⟩𝑥

Init
| ⟩0

Input
| ⟩𝑥

Output
| ⟩1
prev Input
| ⟩𝑥

??

easy!

x

easy by using internally as shown

NB: we can use the BitFlip (x) gate of a Qbit

x© Luciano Bononi 2023

The Deutsch Oracle problem

Now let's see if the two rewired functions Constant-0 and Constant-1 are reversible?

rewired circuit Constant-0

rewired circuit Constant-1

init
| ⟩0

Input
| ⟩𝑥

Output
| ⟩0
prev Input
| ⟩𝑥

init
| ⟩0

Input
| ⟩𝑥

Output
| ⟩1
prev Input
| ⟩𝑥

x

Let's see the two possible cases with Constant-0:

If Output = | ⟩0 and prev Input = | ⟩0
then input was Init | ⟩0 and Input | ⟩0

If Output = | ⟩0 and prev Input= | ⟩1
then input was Init | ⟩0 and and Input | ⟩1

OK!
REVERSIBLE

computation
despite constant

OUTPUT to | ⟩0

Let's see the two possible cases with Constant-0:

If Output = | ⟩1 and prev Input = | ⟩0
then input was Init | ⟩0 and Input | ⟩0

If Output = | ⟩1 and prev Input= | ⟩1
then input was Init | ⟩0 and and Input | ⟩1

© Luciano Bononi 2023

OK!
REVERSIBLE

computation
despite constant

OUTPUT to | ⟩1

The Deutsch Oracle problem
Now let’s rewire the Quantum Computing internal circuit for the function Identity e Negation as well
(note these are already reversible)

rewired Identity

rewired Negation

init
| ⟩0

Input
| ⟩𝑥

init
| ⟩0

Input
| ⟩𝑥

x

Output
| ⟩𝑥
prev Input
| ⟩𝑥

Output
| ⟩𝑛𝑜𝑡 𝑥
prev Input
| ⟩𝑥

NB: this internal rewire for Identity
is in reality a CNOT between the two inputs

⊗
If Input (Control) is | ⟩0 (and init (Target) is | ⟩0)
then Output (Result) is | ⟩0 and prev Input
(Control’) is | ⟩0

If Input (Control) is | ⟩1 (and init (Target) is | ⟩0)
then Output (Result) is | ⟩1 and prev Input
(Control’) is | ⟩1

⊗ trivially Negation is the previous Identity circuit
(CNOT) with output negated (by a flip-bit gate)

C

C X
© Luciano Bononi 2023

The Deutsch Oracle problem
Now, if these are the 4 possible (all made reversible) functions that we could find implemented in the
Black Box, how do we program the solution that tells us whether the function BB is constant or variable
in one step on the Quantum Computer?

init
| ⟩0

Input
| ⟩0

Output
| ⟩𝑥
prev Input
| ⟩𝑥

BB
????

x
x H

H

H

H

Let’s look the pre-processing.
This leads	to	state

!
"

#!
"

⊗
!
"

#!
"

x

H
| ⟩0

| ⟩0

x

H

Init qbit

credits: Quantum Computing for Computer Scientists, Microsoft

Quantum program that solves the question: is BB a constant or variable function?

© Luciano Bononi 2023

The Deutsch Oracle problem

Now, let's see how the function BB modifies in all 4 possible ways the states of the input Qbits
transformed by the pre-processing.

init
| ⟩0

Input
| ⟩0

BB
????

x
x H

H

Now it all depends on the function
in the Black Box starting from the
state of the inputs of the two

Qbits:

!
"

$!
"

⊗
!
"

$!
"

x

H
| ⟩0 | ⟩0

x

H

Init qbit

credits: Quantum Computing for Computer Scientists, Microsoft© Luciano Bononi 2023

result:
Identity?

result:
Negation?

result:
Const-0?

result:
Const-1?

The Deutsch Oracle problem

Let's see the results of the State Vector for the 4 possible functions starting from the input of the
operation:
!
"

$!
"

⊗
!
"

$!
"

=
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

= =
!
"
!
"

⊗
!
"

#!
"

= | ⟩01

!
"

$!
"

⊗
!
"

$!
"

=
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

= =
!
"
!
"

⊗
!
"

#!
"

= | ⟩01

!
"

$!
"

⊗
!
"

$!
"

= = | ⟩11

!
"

$!
"

⊗
!
"

$!
"

= = | ⟩11

BB
Identity
(made

with
CNOT)

BB
Const-1

CNOT

BB
Const-0

BB
Negation

© Luciano Bononi 2023

note that there was also
a bit flip here with
respect to the line above
(since negation is identity
plus a final bitflip)

note that here in
output we will
have H (not
shown
algebraically), and
then we read the
Qbits indicated in
red.

H

H

H

H

The Deutsch Oracle problem

Now, we observe that given this program on the central BlackBox:

init
| ⟩0

Input
| ⟩0

Output
| ⟩𝑥
prev Input
| ⟩𝑥

BB
????

x
x H

H

H

H

If BB = constant function (Constant-0 or Constant-1) by providing Init and Input | ⟩00 we measure Output and Prev Input = | ⟩11

If BB = variable function (Identity or Negation) by providing Init and Input | ⟩00 we measure Output and Prev Input = | ⟩01

noteworthy result!
correct answer obtained by halving the execution steps compared to non-quantum computing

© Luciano Bononi 2023

NB: this was added in the previous slide algebraH

... and there is still much more...

because you can exploit the Qbit entanglement as a new gate to do wonderful things. e

e

e

I entangle 2 Qbits nearby here and
now (without observing them)

© Luciano Bononi 2023

The two Qbits will remain correlated

e

e

light years of distance

transport one of the two Qbits over a
huge distance (taking the time needed

for the trip) without ever observing them

© Luciano Bononi 2023

because you can exploit the Qbit entanglement e

... and there is still much more...

now I decide to change the value of the Qbit
still here on Earth at time T

x

x

Qbit entagled with the one
remaining on Earth
(not observed so far)

© Luciano Bononi 2023

light years of distance

... and there is still much more...

e

e

if from time T onwards I observe the distant Qbits,
"instantly",

I will find the value correlated to the one of the
modified Qbit on earth

© Luciano Bononi 2023

... and there is still much more...

light years of distance

e

e

© Luciano Bononi 2023

... and there is still much more...

light years of distance

if from time T onwards I observe the distant Qbits,
"instantly",

I will find the value correlated to the one of the
modified Qbit on earth

but I will have consumed the Qbit!

The entanglement power

Then can we also coordinate two systems at a huge distance in (almost) zero time?
Yes, thanks to entanglement!
But is it possible to make an entanglement port between Qbits? Yes, here it is! By using and

Will we have soon Quantum Co-Processors side by side to traditional ones? probable.
Will we have «quantum communication networks» able to synchronize systems in zero time? probable
Will we have secure «quantum communication networks» able to resist to attacks? sure
(NB: this does not mean we will have communication... think about how to realize digital transmission).

Entanglement circuit of two Qubits realized with one H gate and one CNOT.
Note that by entangling two input Qbits | ⟩0 and | ⟩0 the H gate brings the
first one s in superposition (s = 0 and 1 at 50%), leading to Qbits state | ⟩𝑠 0
(the state vector contains two states at 50%: | ⟩𝑠 0 or | ⟩𝑠 1 . This situation is
given in input to a CNOT gate which generates the state vector in the figure
(red dot). This shows only two possible cases: 50% | ⟩0 0 and 50% | ⟩1 1 . This
means that if I change the value of a Qbit, then the other entangled Qbit
will change its value as well and it is not possible that two entangled Qbits
will have different values... and this is almost instantaneously true on great
distances with a speed which is much greater than the speed of light
(observed sperimentally). Do not ask me why...  (I would get a Nobel prize)

© Luciano Bononi 2023

C H

Conclusion

There are only !
" ⊗ "

! groups of Computer Scientists in the World

Which group would you think you belong to?

© Luciano Bononi 2023

Conclusion

There are only !
" ⊗ "

! groups of Computer Scientists in the World

!
" ⊗ "

! = = state product shows 100% probability for value 2

1) those who do not understand Quantum Computing
2) those who erroneously think to have understood it.

Which group would you think you belong to?

© Luciano Bononi 2023

0

0

1

0

Conclusion

There are only !
" ⊗ "

! groups of Computer Scientists in the World

!
" ⊗ "

! = = state product shows 100% probability for value 2

1) those who do not understand Quantum Computing
2) those who erroneously think to have understood it.

Which group would you think you belong to?

© Luciano Bononi 2023

0

0

1

0

Conclusion

There are only !
" ⊗ "

! groups of Computer Scientists in the World

!
" ⊗ "

! = = state product shows 100% probability for value 2

1) those who do not understand Quantum Computing
2) those who erroneously think to have understood it.

Which group would you think you belong to?

© Luciano Bononi 2023

0

0

1

0

www.unibo.it

Luciano Bononi

Dipartimento di Informatica – Scienza e Ingegneria

luciano.bononi@unibo.it

https://www.unibo.it/sitoweb/luciano.bononi

mailto:luciano.bononi@unibo.it
https://www.unibo.it/sitoweb/luciano.bononi

