A perspective on P2P paradigm and services
EEE———

“IT a million people use a Web site simultaneously,
doesn't that mean that we must have a heavy-duty
remote server to keep them all happy? No; we could
move the site onto a million desktops and use the
Internet for coordination. Could amazon.com be an
itinerant horde instead of a fixed Central Command
Post? The answer is yes.”

David Gelernter, The Second Coming: A Manifesto

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor) ll 1

Introduction
HEEEE——__

= Recently, the peer-to-peer (P2P) paradigm for building
distributed applications has gained attention from both
industry and the media

= Peer-to-peer: “basic” definition

« A P2P system is composed of a distributed collection of
peer nodes

e Each node is both a server and a client:
* may provide services to other peers
* may consume services from other peers

= Completely different from the client-server model, where:

» Few specialized servers provide services to a large
number of clients

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor) 2

P2P History: 1969 - 1990
S

= 1969 — 1990: the origins
¢ In the beginnings, all nodes in Arpanet/Internet were peers

< Every node was capable to

« perform routing (locate machines)
 accept ftp connections (file sharing)
 accept telnet connections (distributed computation)
‘50 ‘60 70 ‘80 ‘90
T 1 T
1971 1992 10k Web Servers
1957_ 1962 email appears 50 Web Servers
Sputnik Arpa 1969 1990
© 2004 Luciano Bor@nﬁgirr]gﬁettura di Internet, (slide creyi\/s\:/XM\e/rtg KPUR ressgrgj 3

P2P History: 1995 - 1999
S

= 1990 - 1999: the Internet explosion
» The original “state of grace” was lost

» Current Internet is organized hierarchically (client/server)
 Relatively few servers provide services

» Client machines are second-class Internet citizens
(cut off from the DNS system, dynamic address)

‘50 ‘60 70 ‘80 ‘90
T T T T T1994
1971 1992 10k Web Servers
1957 1962

. email appears 50 Web Servers
Sputnik Arpa 1969 1990
© 2004 Luciano Boﬁg‘nﬁea\rggﬁettura di Internet, (slide creins\:,XM\e!rtE KPJ%{?E%%? 4

P2P History: 1999 - today
S

= 1999 — 2001: The advent of Napster

+ Jan 1999: the first version of Napster is released by
Shawn Fanning, student at Northeastern University

e Jul 1999: Napster, Inc. founded

* In short time, Napster gains an enormous success,
enabling millions of end-users to establish a file-sharing
network for the exchange of music files

e Jan 2000: Napster unique users > 1.000.000
* Nov 2000: Napster unigue users > 23.000.000
¢ Feb 2001: Napster unique users > 50.000.000

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor) ll 5

Napster
B

» The Napster architecture:

» Napster works by operating a central server which directs
traffic between individual registered users

e Each time a user submits a request for a song, the central
server creates a list of users who are currently connected
to Napster whose collections include the specified song

/Bob has it!

Alice |« Bob
Copying “Imagine”
© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor) 6

Who has “Imagine”?

Napster is not alone
S

= Following the success of Napster, other file-sharing
systems started to appear, such as:

¢ Gnutella gnut el | a. wego. com

e Freenet freenet. sourceforge. net

= Moreover, other applications appeared, capable to
establish communities comprising millions of cooperating
nodes:

» Distributed Computing
* Seti @ Home seti at horre. ssl . berkel ey. edu

 Distributed.net www. di stri but ed. net

* Messaging and collaborative tools

* Groove WWWV. gr oove. net
© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor) 7

P2P History: 2000 - today
EEE—

= 2000 - today: the new peer-to-peer revolution

¢ Since 1999, the IT community started to search a label to
define the new distributed model suggested by Napster and
these other applications

* By July 2000, this label was found: peer-to-peer

¢ The label, however, didn't clarified things

 Following the classical definition of peer-to-peer, Napster is
not peer-to-peer (centralized server)

» But Napster is what originated the discussion!

= A new definition for peer-to-peer was needed

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor) l{ 8

Alternative Definitions of Peer-to-Peer
I

= Peer-to-peer

« s the class of applications that put together resources
available at peer machines located at the edges of the
Internet

« takes advantage of existing resources allowing users to
leverage their collective power to the ‘benefit’ of all

« is the sharing of computer resources and services by direct
exchange between systems

« refers to a class of systems and applications that employ
distributed resources to perform a critical function in a
decentralized manner

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor) ll 9

P2P and Piracy
EEE

» Most of the material exchanged through P2P file-sharing
systems is copyrighted
= Some of the P2P projects have anonymity among their
goals:
* Freenet

* Freehaven

= This has resulted in the following equation:

P2P = subversion of intellectual property

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor) l{ 10

Why P2P?

= Despite its poor reputation, P2P is extremely interesting
from atechnical point of view:

¢ Its completely decentralized model enables the
development of applications with
* high-availability
* fault-tolerance
* scalability
characteristics previously unseen in Internet

» It exploits what has been defined the “dark matter” of
Internet

« Moreover, P2P is not limited to file-sharing, but it can be
applied to distributed computing and collaboration tools

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor) ll 11

P2P Examples
EEE——

» Example: avoiding the “Slashdot effect”

* “The more popular a piece of information is, the less
available it becomes”

¢ On the contrary, the number of replicas of a document in
Freenet increases proportionally to its popularity

« Can be applied to the distribution of movie trailers

www.fox.com

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor)

Oz

P2P Services
I

= Areas of applicability of P2P

e sharing of content

« distributed web servers, distributed media repository

e sharing of storage

« distributed file system, distributed search engine

¢ sharing of CPU time
* parallel computing

e sharing of human presence
 the “P” in P2P is “Person”

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor) ll 13

P2P topologies: Centralized
S

Manageable
Coherent
Extensible
Fault Tolerant
Secure
Lawsuit-proof

Scalable

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor) l{ 14

v
v
X
X
v
X

?

System is all in one place
Information is centralized
No

Single point of failure
Simply secure one host
Easy to shut down

In theory, no

O

0d 600

P2P topologies: Hierarchical
S

Manageable
Coherent
Extensible
Fault Tolerant
Secure
Lawsuit-proof

Scalable

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor)

Y2

Y2

Y2

Y2

X

Chain of authority

Cache consistency

Add more leaves, rebalance
Root is vulnerable

Too easy to spoof links
Just shut down the root

Hugely scalable — DNS

/\
,\OO
O ooo

=

P2P topologies: Decentralized
S

Manageable
Coherent
Extensible
Fault Tolerant
Secure
Lawsuit-proof

Scalable

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor)

X
X
v
v

-~

Very difficult, many owners
Difficult, unreliable peers
Anyone can join in!
Redundancy

Difficult, open research

No one to sue

Theory — yes : Practice — no

O
/

Q
| O
Q-0 ¢

\

ol

/Q’
e

O
7

P2P topologies: Centralized + Decentralized

EEE————
Manageable X Same as decentralized

Coherent ¥ Better than decentralized _ OO

\
Extensible ¥ Anyone can still join! O\\O/

Fault Tolerant ¥ Plenty of redundancy

Secure X Same as decentralized /
Lawsuit-proof ¥ Still no one to sue -
Scalable ? Looking very hopeful \ /

Best architecture for P2P networks?
© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor)

—0O
- ©

Pure Peer-to-Peer: Key Questions
EEE——

* Does it work?
* can we find the data?
* query success rates
« length of query paths
= Does it scale?

* logarithmic / linear / polynomial

» |sitrobust?
e participants are unreliable

« different failure modes possible

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor)

=

Peer-to-Peer Systems
I

= Pure Peer-to-Peer Content Sharing Systems

Gnutella

Freenet

= Master-Slave Cycle Sharing Systems

Seti@Home

distributed.net

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor)

Gnutella
B

= The Gnutella protocol consists of:

a set of message types representing the ways in which
servents communicate over the network

a set of rules governing the inter-servent exchange of
messages

= How to connect to a Gnutella network

A Gnutella servent connects to the network by establishing
a connection with another servent currently on the network

The acquisition of another servent’s address is not part
the protocol definition

» “Out-of-band” methods

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor)

of

=

10

Two types of messages
S

= Broadcast

¢ sent to all nodes with which the sender has open TCP
connections

¢ This poses serious problems of scalability

¢ Mechanisms are used to reduce the number of messages

= Back-propagate

e sent on a specific connection on the reverse of the path
taken by an initial broadcasted message

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor) ll 21

Two types of messages
[

Who has

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor) l{ 22

11

Gnutella Messages
S

= Each message is composed of:

« A message type field
* PING, PONG
« QUERY, QUERYHIT
« PUSH

* ATime-To-Live (TTL) Field
» The number of times the message will be forwarded by
servents before it is removed from the network
» Decremented at each hop, lowered if needed
* A 16-byte ID field uniquely identifying the message on the
network
» Randomly generated

» Not related to the address of the requester (anonymity)
© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor) 23

Gnutella Message Types
EEE——

* PING

» essentially, an “are you there” message directed to a host

* aservent receiving a PING is expected to respond with a
PONG message

* no recommendation as to the frequency of PING messages
» PONG
» the response to a PING

« has the same ID of the corresponding PING message

* contains:

» address of connected Gnutella servent

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor)

* total size and total number of files shared by this servent 7
24

12

Gnutella Message Types
S

= QUERY

e The primary mechanism for searching the distributed
network

» Contains the query string

* A servent is expected to respond with a QUERYHIT
message if a match is found against its local data set

» QUERYHIT
» the response to a query
* has the same ID of the corresponding QUERY message

» contains enough information to acquire the data matching
the corresponding query

 IP Address + port number

« List of file names
© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor) 25

Gnutella Message Forwarding Rules
[

» A servent receiving a message must forward it to each of
the other servents to which it is connected

= Exceptions:
e TTLis zero

« PONG messages must be routed along the same path of
the incoming PING

* QUERYHIT messages must be routed along the same path
of incoming QUERY messages

* Messages with duplicated ID should be discarded

= A cache of message IDs, along with sender, is needed

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor) zé 26

13

Interpretations of Query Strings
S

» Gnutellais a simple protocol

« Defines only how a query string is passed from one site to
another

» Uses Hittp to effectively download the data

» How queries are interpreted?

« Different implementations may interpret a string in different
ways
» Ex: by searching the string in set of filenames
» Ex: by running grep on a set of files
* Flexibility:
» each site may contribute to a distributed search in a complex
way
« different gnutella networks may solve distinct problems 7
27

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor)

Network Topology
[

» Application-level virtual network
» Autonomous, self-organized, dynamic
» Multiple access points

= Advantages:
¢ Increase system reliability

* Less dependant on a single server

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor) l{ 28

14

Mismatch between Gnutella Network and Internet
Infrastructure

= Only 2-5% of Gnutella connections link nodes located
within the same AS.

» Most Gnutella generated traffic crosses AS border, making
the traffic more expensive

= May affect ISPs to change pricing scheme

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor) ll 29

Scalability
[

= Limited horizon

¢ The number of reachable nodes is limited by TTL and the
number N of concurrent connections

= Scalability

e The number of messages exchanged increases

exponentially with the increase of TTL and N
With data packet (s) = 83 bytes

TTL=8,

number of connections (n)= 8

Number of user reached:

Bandwidth incurred = 1,275,942,400 bytes

Therefore, 18 bytes of query generated 1.2GB of traffic!

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor) l{ 30

15

Security

B
= Denial of Service attacks

¢ Flooding the system with requests
« Strange traffic observed in Gnutella

Solution: keep statistics about frequency of requests and
close connections with offending nodes
= Privacy attacks

* A site advertised file names that appeared to offer child
pornography

It logged the IP address and domain name of every
download request (included in HTTP)

e Solutions: none at present

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor) [Z 31

Gnutella: Conclusions

= Gnutella pros

» Simple architecture,easily implementable, could be
profitably used for small groups

= Gnutellacons

+ Not scalable

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor) zé 32

16

Freenet
B

= [Freenet:

« An adaptive peer-to-peer application that permits the
publication, replication and retrieval of data while protecting
the anonymity of users

= Philosophy:

I worry about my child and the Internet all the time, even
though she's too young to have logged on yet. Here's what
I worry about. | worry that 10 or 15 years from now, she will
come to me and say 'Daddy, where were you when they
took freedom of the press away from the Internet?™

Mike Godwin, Electronic Frontier Foundation

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor) [Z 33

Freenet Goals
|

= Socio-political goals of Freenet
* Publisher anonymity
¢ Reader anonymity
e Server anonymity
« Resistance to attempts by attackers to deny access to data
 Denial-of-service attacks
* Removal attacks
= Technical goals of Freenet
» Decentralization of all network functions
» Data replication/distribution without human intervention

« Efficient dynamic storage and routing of information

¢ High availability for popular data
© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor) 34

17

Freenet Design
S

= Freenet is a P2P network of nodes storing data files

= Datafiles:

¢ are named by location-independent keys

= Freenet nodes:

* maintain a datastore and make it available to the network:
« for reading
« for writing

¢ maintain a dynamic routing table containing
» addresses of other hosts
« keys they are thought to hold

e query one another to store and retrieve data files 7
35

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor)

Freenet Design
S

» Freenet differs from Napster and Gnutella
¢ jtis not based on a central server

* jtis not based on broadcasts

= Freenet is adaptive
« responds adaptively to usage patterns

e transparently moves, replicates, deletes files as needed

= Freenet and persistency:
e itis not intended to guarantee permanent file storage

* but most files may persist indefinitely, if enough nodes join

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor) l{ 36

18

Freenet Messages
S

= All messages contain:
« A randomly-generated 64 bit Transaction ID
 Unique “with high probability”
e« ATTL field (Hop-to-Live)

¢ A Depth field (number of hops performed so far)

» Messages are forwarded from node to node

* TTL decremented at each hop
» Message not discarded when TTL reaches 1
» Randomly forwarded for other steps (for anonymity)

* Depth incremented at each hop
» Used in reply messages to set the TTL
» Does not start at 0 (for anonymity)

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor)

=

Freenet Algorithm: Request
I

» When a node receive arequest for a key:
« Attempts to retrieve the file locally, if possible

¢ Otherwise, forwards the request to another node
» Which node? Local decision in IP-style
 Decision depends on the key

Request
for Keyl

Request
for Keyl

Alice

Key5 Key6
Key7 Key8

..

Local search
for Keyl: failed

Key1-4: Carl
Key 9-12: David

‘{ David
© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto-vioTmreso

=

19

Freenet Algorithm: Request
S

= Requests are passed from node to node until

¢ the requested key is found

¢ the hops-to-live are completely
Carl

Local search

used up for Keyl:
Keyl3 Keyl4 failed
Request Key15 Key16
for Keyl
Key1-4: Bob
EequeSt Key 5-8: Alice
or Keyl Alice Request
for Keyl

Key5 Key6
Local search Key7 Key8

for Keyl: failed

Keyl-4: Carl
Key 9-12: David

=

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: AlbertovioTreso

Freenet Algorithm: Request
I

= When arequest is successful (found in the local datastore)

¢ The data are returned to the requester along the same path
of the incoming request

e The nodes in the return path cache
the data in their local datastore

Carl Local search

for Keyl:
Keyl Keyl4 failed
Request Keyl5 Key16
for Keyl
Keyl-4: Bob
Request Key 5-8: Alice
for Keyl Alice
Request
Key1 Key6 Keyl Key1 for Keyl
Keyl Key7 Key8
Keyl-4: Carl Bob

Key 9-12: David
© 2004 Luciamnosoro a ettara di Internet, (slide credits: Alberto Montresor) Keyl: Found! 40

20

Freenet Pros
[——

= Removal of unwanted documents:

e The LRU policy of the datastore:
* removes outdated documents
» removes rarely accessed documents
» Reader/Publisher Anonymity

¢ A node in a request path cannot tell whether its
predecessor in the path initiated the request or not

» Messages not immediately discarded when TTL=1
 Depth starting with a value greater than 0

* Note: Possible use of traffic analysis
» Server anonymity / Deniability:
« Difficult to relate a document to a server
e Operators can deny to know the content of its datastore %

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor)

Freenet Cons
|

» Search Problem
* The keys are Freenet’s current weak point

* Hashing of keys:

* Human-Rights.doc and HumanRights.doc have completely
different hash values

» Hashing renders Freenet unusable for random searches
* Need an “out-of-band” communication of keys
= A solution:
» Gateway to the Web exists under the name of Fproxy

¢ Possibility of using hyperlinks

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor) zé 42

21

P2P: The Next Generation
B

= First generation:
« Napster, Gnutella, Freenet...
¢ intended for large scale sharing of data files
» reliable content location was not guaranteed

» self-organization and scalability: to be addressed

= Second generation:
e Pastry, Tapestry, Chord, CAN...

e guarantee a definite answer to a query in a bounded
number of network hops.

« form a self-organizing overlay network

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor)

o7

P2P: The Next Generation
B

= Content-based addressing
¢ hash content to key

¢ route message to computer hosting that key

» Dynamic caching and proxying
* local computers stand in for remote ones

« faster access, reduced load on key holder

= Replication and automatic failover

e store at K computers adjacent to key holder

= Multicast cascade for group communication

e each computer needs a spanning tree of routes for
reaching every other computer

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor)

A

22

Overlay Networks
|

» Peer-to-peer requires richer routing semantics than IP
< |IP routes to destination computer, not content
¢ URLSs route to destination computer, not content

e IP multicast isn’t widely deployed

= Solution: Overlay networks

» allow applications to participate in hop-by-hop routing
decisions

» |deal overlay is efficient, self-organizing, scalable, and
fault-tolerant

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor)

oz

Distributed Hash Tables
N

» Each node handles a portion of the hash space and is
responsible for a certain key range

* no global knowledge

< absence of single point of failures
» greater scalability

 uniform distribution of resources

« Examples: CAN, Chord, Pastry, Tapestry

insert(key, data)

lookup (key) . data

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor)

46

23

Pastry routing

O0XXX IXXX 2XXX 3XXX

>
<32

=\[p}

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor) ll 47

Pastry routing table
|

Routing table

Routing table: 1
o exch e 8
2
Namespace leaf set: 3
LT C
. EEEE
Each entry gives IP 0 [[wsmizo]]

address for host

associated with Id) | I E— []

Namespace set

10233021 | 10233033 | 10233120 | 10233122

© 2004 Luciano Bononi — Architettura di Internet, (slide credits: Alberto Montresor) l{ 48

24

