Data Structures and Algorithms

Luciano Bononi
Computer Science Engineering
University of Bologna

bononi@cs.unibo.it
http://www.cs.unibo.it/~bononi/

Slide credits: these slides have been translated from slides created by Moreno Marzolla
Copyright © 2011, Luciano Bononi and Moreno Marzolla, Università di Bologna, Italy

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.
Course information

• Luciano Bononi
 bononi@cs.unibo.it
 http://www.cs.unibo.it/~bononi/

• Lessons
 - Monday 9.00-13.00
 - Friday 9.00-13.00
 - Some variations scheduled (see detailed calendar)

• To talk with me
 - Always drop me an email before to define a date/hour.
 - My office: Mura Anteo Zamboni 7, office T08
General information
Course website

 - > Courses > Data Structures and Algorithms A.A. 2011/2012
- Will find:
 - General information
 - Lesson slides
 - exercises
 - Links and recommended readings
 - Exam preparation material
- Also check RSS and news on the website:
 - http://www.unibo.it/SitoWebDocente/default.htm?upn=luciano.bononi%40unibo.it
 - http://www.unibo.it/SitoWebDocente/default.htm?upn=luciano.bononi%40unibo.it&TabControl1=TabAvvisi

Today I will collect your names for a mailing list
Recommended readings

Further information, books, and material will be provided as a Web reference.
Exam

- Written exam
- Oral exam

Dates will be agreed by using the mailing list.
Algorithms and Data Structures
What is an algorithm?

- A algorithm is a procedure to resolve a problem by means of a finite sequence of basic atomic steps.

- The procedure must be defined in a not ambiguous and accurate way to be executed automatically.

- The name comes from a Persian mathematician Abu Ja'far Muhammad ibn Musa Khwarizmi
 - Author of the first reference algebraic text
 - A Moon crater is dedicated to him
Algorithm vs Program

- A **algorithm** describes (at high level) a computation procedure which when executed produces a result.
- A **program** is the implementation of a algorithm by means of a programming language
 - A program can be executed on a computer (creating a process under execution); an algorithm cannot be executed as is in a natural form.
Algorithms are everywhere!

- **Internet**. Web search, packet routing, distributed file sharing.
- **Biology**. Human genome project, protein folding.
- **Computers**. Circuit layout, file system, compilers.
- **Computer graphics**. Movies, video games, virtual reality.
- **Security**. Cell phones, e-commerce, voting machines.
- **Multimedia**. CD player, DVD, MP3, JPG, DivX, HDTV.
- **Transportation**. Airline crew scheduling, map routing.
- **Physics**. N-body simulation, particle collision simulation.
- ...
Why we're studying algorithms?
Why WE're studying algorithms?

- e.g. A protein 3D structure is determined by interactions of aminoacids.
- Some health issues generated by wrong folding, to be studied.
- Folding@Home

http://en.wikipedia.org/wiki/Protein_folding
Algorithms again?

- Hide rendering surfaces, gaming, physical simulation, etc.
Why to care about algorithms?

- Algorithms provide advantages
 - An efficient algorithm is often the difference between being or being not able to solve a problem with the given resources
- Many algorithms we will see were invented by students!
- Algorithms are fun. :-)… yes they are. No, seriously.
Where do we start from?

• There are some classical algs to resolve common problems
 – Ordering, searching, visit of graphs...

• How could we evaluate the efficiency of an algorithm?

• How to derive or invent new algorithms that better exploit the resources tradeoffs (and the opportune data structures)?
Warmup: Fibonacci numbers

- The Fibonacci sequence $F_1, F_2, \ldots, F_n, \ldots$ is defined as:

 - $F_1 = 1$
 - $F_2 = 1$
 - $F_n = F_{n-1} + F_{n-2}, \ n > 2$

Leonardo Fibonacci
(Pisa, 1170—Pisa, 1250)
http://it.wikipedia.org/wiki/Leonardo_Fibonacci
Closed form

- **Good news**: a close form exists for F_n

 $$F_n = \frac{1}{\sqrt{5}} \left(\phi^n - \hat{\phi}^n \right)$$

 where

 - $\phi = \frac{1 + \sqrt{5}}{2} \approx 1.618$
 - $\hat{\phi} = \frac{1 - \sqrt{5}}{2} \approx -0.618$

- **Bad news**: to evaluate this formula errors are introduced due to need to compute floating point arithmetics
The trivial Fibonacci algorithm

• Let's define an algorithm to compute F_n based on a trivial recursive function:

```plaintext
algorithm Fibonacci2(int n) → int
    if ( n==1 || n==2 ) then
        return 1;
    else
        return Fibonacci2(n-1)+Fibonacci2(n-2);
    endif
```

• We will use pseudo-code description of algorithms. The translation in programming languages is quite straightforward.
Recursion tree

F(7) = 13
F(6) = 8
F(5) = 5
F(4) = 3
F(3) = 2
F(2) = 1
F(1) = 1

F(5) = 5
F(4) = 3
F(3) = 2
F(2) = 1
F(1) = 1

F(4) = 3
F(3) = 2
F(2) = 1
F(1) = 1

F(3) = 2
F(2) = 1
F(1) = 1

F(2) = 1
F(1) = 1

F(6) = 8
F(4) = 3
F(5) = 5

F(7) = 13

F(2) = 1
F(1) = 1

F(2) = 1
F(1) = 1
So far so good... but...

- Time needed to compute F_n grows too much as a function of n
How to estimate the execution time?

• In seconds?
 – … will depend on the computer executing the program

• Number of machine language instructions executed per second?
 – Hard to estimate from pseudo-code, and also still depends on the computer executing the program

• We estimate the execution time by calculating the number of basic operations executed in the pseudo-code.
Where is the efficiency problem?

- Intermediate values are often re-calculated again and again...

![Diagram showing a tree structure with F(7) at the root, F(6) and F(5) as children, and so on, with intermediate values re-calculated at each level.]

Data Structures and Algorithms 23
Estimation of execution time

- let $T(n)$ be the time needed to compute the n-th Fibonacci number.
- We estimate $T(n)$ as the number of nodes of the recursion tree of F_n
 - **Question**: how to obtain the recursive expression of $T(n)$ as the number of recursive nodes in the tree for calculating F_n
Estimation of execution time

- We can demonstrate (by induction) that:
 \[T(n) = 2F_n - 1 \]

 - **Question**: demonstrate that.

- By remembering the close form for \(F_n \) we conclude that \(T(n) \) grows exponentially

- We can calculate a lower bound for \(T(n) \)
 - See next page
Estimation of execution time

let $T(n)$ be the number of nodes of the recursive tree for calculating F_n

- $T(1) = T(2) = 1$
- $T(n) = T(n-1) + T(n-2) + 1$ (se $n>2$)
- It is similar to the recurrence that defines F_n

```plaintext
algorithm Fibonacci2(int n) → int
    if ( n==1 || n==2 ) then
        return 1;
    else
        return Fibonacci2(n-1)+Fibonacci2(n-2);
    endif
```
Lower bound of the execution time

\[T(n) = T(n-1) + T(n-2) + 1 \]
\[\geq 2T(n-2) + 1 \]
\[\geq 4T(n-4) + 2 + 1 \]
\[\geq 8T(n-6) + 2^2 + 2 + 1 \]
\[\geq \ldots \]
\[\geq 2^k T(n-2k) + \sum_{i=0}^{k-1} 2^i \]
\[\geq \ldots \]
\[\geq 2^\left\lfloor n/2 \right\rfloor + \frac{2^{\left\lfloor n/2 \right\rfloor} - 1}{2 - 1} \]

We exploit the fact that \(T(n)\) is monotone increasing.

Recursion ends when \(k = n/2 \)
Can we do it better?

- Let's use a vector of size n to compute and store the values of F_1, F_2, ... F_n

```plaintext
algorithm Fibonacci3(int n) → int
    let Fib[1..n] be an array of n ints
    Fib[1] := 1;
    Fib[2] := 1;
    for i:=3 to n do
        Fib[i] := Fib[i-1] + Fib[i-2];
    endfor
    return Fib[n];
```

Data Structures and Algorithms
How much does it cost?

- Let's estimate the cost of Fibonacci3 by counting the number of pseudocode operations executed

```plaintext
algorithm Fibonacci3(int n) → int
    let Fib[1..n] be an array of n integers
    Fib[1] := 1; // ....................... 1 time
    Fib[2] := 1; // ....................... 1 time
    for i:=3 to n do // .................... (n-1) times
        Fib[i] := Fib[i-1] + Fib[i-2]; // (n-2) times
    endfor
    return Fib[n]; // ..................... 1 time
    // Total............ 2n
```

- Time is proportional to n
- Space is proportional to n
Can we do it even better?

- Memory usage of Fibonacci3 is proportional to n. Can we use less memory?
- Yes, because to calculate F_n we simply need F_{n-1} and F_{n-2}

```plaintext
algorithm Fibonacci4(int n) → int
if ( n==1 || n==2 ) then
    return 1;
else
    F_nm1 := 1;
    F_nm2 := 1;
    for i:=3 to n do
        F_n := F_nm1 + F_nm2;
        F_nm2 := F_nm1;
        F_nm1 := F_n;
    endfor
    return F_n;
endif
```
How much does it cost?

- let's count the number of operations executed

```algorithm
Fibonacci4(int n) → int
if ( n==1 || n==2 ) then
    return 1;
else
    F_nm1 := 1; // .................. 1 time
    F_nm2 := 1; // .................. 1 time
    for i:=3 to n do // .............. (n-1) times
        F_n := F_nm1 + F_nm2; // . (n-2) times
        F_nm2 := F_nm1; // ............ (n-2) times
        F_nm1 := F_n; // .............. (n-2) times
    endfor
    return F_n; // .................. 1 time
endif
// Total............ 4n-4
```

- Time is proportional to n
- Space (memory) is constant!
That's all folks! Or not?

- Let's consider the matrix A:

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

- Theorem: for any $n \geq 2$, we have:

$$A^{n-1} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-1} = \begin{pmatrix} F_n & F_{n-1} \\ F_{n-1} & F_{n-2} \end{pmatrix}$$

(demonstrable by induction)
Idea! Algorithm Fibonacci6

- We exploit the previous theorem to define algorithm Fibonacci6 as follows

```java
algorithm Fibonacci6(int n) : int
    A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}
    M = \text{MatPow}( A, n-1 );
    return M[1][1];
```

M[1][1] is the first item of the row
Yes but... Algorithm MatPow?

- To compute the k-th power of a matrix A, we exploit the fact that, for even K, $A^k = (A^{k/2})^2$

```plaintext
algorithm MatPow(Matrix A, int k) → Matrix
    if ( k==0 )
        then
            $M = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
    else
        if ( k is even )
            then
                tmp := MatPow(A, k/2)
                M := tmp '* tmp;
        else
            tmp := MatPow(A, (k-1)/2);
            M := tmp '* tmp '* A;
        endif
    endif
    return M;
```
To sum up

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibonacci2</td>
<td>(\Omega(2^{n/2}))</td>
<td>(O(n))</td>
</tr>
<tr>
<td>Fibonacci3</td>
<td>(O(n))</td>
<td>(O(n))</td>
</tr>
<tr>
<td>Fibonacci4</td>
<td>(O(n))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>Fibonacci6</td>
<td>(O(\log n))</td>
<td>(O(\log n))</td>
</tr>
</tbody>
</table>
Lessons learned?

- For a given problem, we started from an inefficient algorithm (exponential cost) to reach a very efficient algorithm (logarithmic cost).
- The choice of the good algorithm makes the difference between being able to solve a problem or NOT.
Warmup exercise

- Given an array $A[1..n-1]$ containing a permutation of all values $1 - n$ (extremes included) but one; values in A can be in any order
 - Eg: $A = [1, 3, 4, 5]$ is a permutation of $1..5$ without the value 2
 - Eg: $A = [7, 1, 3, 5, 4, 2]$ is a permutation of $1..7$ without the value 6
- Let's write an algorithm which takes $A[1..n-1]$, and returns the value in the interval $1..n$ which is not in A.