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Abstract. The concept of superpeer has been introduced to improve
the performance of popular P2P applications. A superpeer is a “pow-
erful” node that acts as a server for a set of clients, and as an equal
with respect to other superpeers. By exploiting heterogeneity, the su-
perpeer paradigm can lead to improved efficiency, without compromis-
ing the decentralized nature of P2P networks. The main issues in the
construction of superpeer-based overlays are the selection of superpeers,
and the association between superpeers and clients. Generally, super-
peers are either run voluntarily (without an explicit selection process),
or chosen among the “best” nodes in the network, i.e. those equipped
with the largest amount of resources, such as bandwidth or storage. In
several contexts, however, shared resources are not the only factors; la-
tency between clients and superpeers may play an important role, for
example in online games. This paper presents SG-2, a novel protocol for
building and maintaining a proximity-aware superpeer topology. SG-2
uses a gossip-based protocol to spread messages to nearby nodes and a
biologically-inspired task allocation mechanism to promote the “best”
nodes to the superpeer status. The paper includes extensive simulation
experiments to prove the efficiency, scalability and robustness of SG-2.

1 Introduction

Modern P2P networks present several unique aspects that distinguish them from
traditional distributed systems. Networks comprising hundreds of thousand of
peers are not uncommon. A consequence of such scale is extreme dynamism, with
a continuous flow of nodes joining or leaving. Such characteristics present several
challenges to the developer. Neither a central authority nor a fixed communi-
cation topology can be employed to control the various components. Instead, a
dynamically changing overlay topology is maintained and control is completely
decentralized. The topology is defined by ”cooperation” links among nodes, that
are created and deleted based on the requirements of the particular application.

The choice of a particular topology is a crucial aspect of P2P design. Until
recently, most deployed P2P applications were characterized by the absence of a
specific mechanism for enforcing a given topology; for example, Gnutella nodes
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were free to accept/refuse connections at will [12]. The consequence of this choice
was the adoption of inefficient communication schemes, such as flooding.

A distinct, but related problem regards roles that nodes may assume: original
P2P systems were based on a complete “democracy” among nodes: “everyone is
a peer”. But physical hosts running P2P software are usually very heterogeneous
in terms of computing, storage and communication resources, ranging from high-
end servers to low-end desktop machines.

The superpeer paradigm is an answer to both issues [9,12]. It is based on a
two-level hierarchy: superpeers are nodes faster and/or more reliable than “nor-
mal” nodes and take on server-like responsibilities and provide services to a set
of clients. For example, in the case of file sharing, a superpeer builds an index
of the files shared by its clients and participates in the search protocol on their
behalf. Clients are leveraged from taking part in costly protocols and the overall
traffic is reduced by forwarding queries only among superpeers. Superpeers allow
decentralized networks to run more efficiently by exploiting heterogeneity and
distributing load to machines that can handle the burden. On the other hand,
this architecture does not inherit the flaws of the client-server model, as it allows
multiple, separate points of failure, increasing the health of the P2P network.

The superpeer paradigm is not limited to file sharing: it can be seen as a
general approach for P2P networking. Yet, the structural details are strongly
application-dependent, so we cannot identify a “standard” superpeer topology.
Parameters to be considered include: how superpeers are linked together; how
to arrange clients; how many superpeers are needed; etc.

In this paper, we focus our investigation on a specific aspect of the problem:
prozimity. Our goal is to build a topology where clients and superpeers are as-
sociated based on their distance (in terms of communication latency). The idea
is to select superpeers among the most powerful nodes, and to associate them
with clients whose round-trip time is bounded by a specified constant. This is
a generic problem, whose solution can be beneficial to several P2P applications.
Examples include P2P telephony networks such as Skype [2], streaming appli-
cations such as PeerCast [20], and online games such as Age of Empires [3]. In
all these cases, communication latency is one of the main concerns.

Our solution, called SG-2, is a self-organizing, decentralized protocol capa-
ble to build and maintain a superpeer-based, proximity-aware overlay topology.
SG-2 uses an epidemic protocol to spread messages to nearby nodes, and im-
plements a task allocation protocol that mimics the behavior of social insects.
These biological-inspired mechanisms are combined to promote the “best” nodes
to the superpeer status, and to associate them to nearby clients.

To validate the results of our protocol, we considered a specific test case:
online games. In these applications, a large number of players interact together
(or against each other) in virtual worlds. Most online games follow a client-server
model, where the only function of the client software is to present a graphic user
interface to the player, while the state of the simulated persistent world is hosted
on the server side. This approach is scalable only thanks to the deployment of
high-end clusters of replicated servers. Just a few games have attempted a differ-



ent approach. MiMaze [11] and Age of Empires [3] are completely decentralized,
and the game state is a shared distributed object maintained by all participants.
In this case, consistency requirements limit the number of players that may be
involved in the same game.

We believe that the superpeer paradigm could represent an interesting al-
ternative to the two approaches above. We envision a system where a small
number of powerful nodes act as state servers when needed, with the remaining
ones acting as clients. All nodes run the same code and can switch from the first
role to the second when needed. Thus, superpeers dynamically change over time,
depending on the environment conditions.

2 System Model

We consider a network consisting of a large collection of nodes. The network
is highly dynamic; new nodes may join at any time, and existing nodes may
leave, either voluntarily or by crashing. Since voluntary leaves may be simply
managed through “logout” protocols, in the following we consider only node
crashes. Byzantine failures, with nodes behaving arbitrarily, are excluded from
the present discussion. We assume nodes are connected through an existing
routed network, such as the Internet, where every node can potentially com-
municate with every other node. To actually communicate with another node,
however, a node must know its identifier, e.g. a pair (IP address, port).

The nodes known to a node are called its neighbors, and as a set are called
its view. Together, the views of all nodes define the topology of the overlay
network. Given the large scale and the dynamism of our envisioned system,
views are typically limited to small subsets of the entire network. Views can
change dynamically, and so the overlay topology.

Nodes are heterogenous: they differ in their computational and storage capa-
bilities, and also (and more importantly) with respect to the bandwidth of their
network connection. To discriminate between nodes that may act as superpeers
and nodes that must be relegated to the role of clients, each node v is associated
with a capacity value cap(v), that represents the number of clients that can be
handled by v. To simplify our simulations, we assume that each node knows its
capacity. In reality, this parameter is strongly dependent on the specific appli-
cation, and can be easily computed on-the-fly through on-line measurements.

Besides capacity associated to each single node (“how many”), another pa-
rameter to be considered is the end-to-end latency between nodes (“how well”).
In our model, each pair of nodes (v,w) is associated with a latency distance
lat(v,w), representing the average round-trip time (RTT) experienced by com-
munications between them. The latency distance between a specific pair of nodes
may be measured directly and precisely through ping messages, or approximately
estimated through a virtual coordinate service [7]; given the dynamic nature of
our system and the large number of nodes to be evaluated as potential neighbors,
we will adopt the latter approach.



3 The Problem

Generally speaking, our goal is to create a topology where the most powerful
nodes (in terms of capacity) are promoted to the role of superpeers, and the
association clients/superpeers is such that each client obtains a configurable
quality of service (in terms of latency distance) from its superpeer.

More formally, we define the problem of building a proximity-aware, superpeer-
based topology as follows. At any given time, the problem input is given by the
current set of nodes V, and the functions cap() and lat() defined over it. Fur-
thermore, a global parameter tol expresses the maximum latency distance that
can be tolerated between clients and superpeers. The constraints describing our
target topology are the following:

— each node is either a superpeer or a client;

— each client ¢ is associated to exactly one superpeer s (we write super(c) = s);
— the number of clients associated to superpeer s does not exceed cap(s);

— given a superpeer s and one of its clients ¢, we require that lat(s, c) < tol.

To avoid to end up with a set of disconnected, star-shaped components rooted
at each superpeer, we require that superpeers form another proximity-based
overlay: two superpeers are connected if their latency distance is smaller than
tol +0, where ¢ is another configuration parameter.

We aim at selecting as few superpeers as possible (otherwise, the prob-
lem could be trivially solved by each node acting as a superpeer, with no
client /superpeer connections). This choice is motivated, once again, by the par-
ticular scenario we are comnsidering: in online games, superpeers manage the
distributed simulation state, so centralizing as many decisions as possible is im-
portant from the performance point of view. Note that given the dynamism of
our environment, obtaining the minimum number of superpeers may be diffi-
cult, or even impossible. But even in a steady state, the resulting optimization
problem is NP-complete.

4 The sG-2 Protocol

The architecture of SG-2 is shown in Figure 1; here, we briefly describe the
rationale behind it, leaving implementation details to the following subsections.

Our solution to the problem described above is based on a fundamental ob-
servation: measuring precisely the RTT between all pairs of nodes (e.g., through
pings) is extremely slow and costly, or even impossible due to topology dy-
namism. To circumvent this problem, and allow nodes to estimate their latency
without direct communication, the concept of virtual coordinate service has been
developed [7]. The aim of this service is to associate every node with a synthetic
coordinate in a virtual, n-dimensional space. The Euclidean distance between
the coordinates of two nodes can be used to predict, with good accuracy, the
RTT between them; in other words, it is sufficient for two nodes to learn about
their coordinates to estimate their latency, without direct measurements.
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Fig. 1. The set of services composing the Fig.2. A superpeer topology in a bi-
SG-2 architecture. dimensional virtual space, where Eu-
clidean distance corresponds to latency.

Our problem may be redefined based on the concept of virtual coordinates.
Nodes are represented by points in the virtual space; each of them is associated
with an influence zone, described as a n-dimensional sphere of radius tol centered
at the node. Our goal is to cover the virtual space with a small number of
superpeers, in such a way that all nodes are either superpeers or are included
in the influence zone of a superpeer. Figure 2 shows the topology resulting from
the execution of SG-2 in a bi-dimensional virtual space.

Nodes communicate with each other using a local broadcast service, whose
task is to efficiently disseminate messages to nodes included in the influence zone
of the sender. This service is used by powerful nodes to advertise their availability
to serve as superpeers, and by ordinary nodes to seek superpeers whose capacity
has not been saturated yet.

The main component of SG-2 is the superpeer management service, which
selects the superpeers and associates clients to them. The protocol is heavily
inspired by the behavior of social insects [4], such as ants or bees, that have
developed very sophisticated mechanisms for labor division. In summary, these
mechanisms work as follows. In a totally decentralized fashion, specialized groups
of individuals emerge, with each group aimed at performing some particular
task. The task allocation process is dynamic and follows the community needs
according to changes in the environment. The stimulus to perform some kind of
task or to switch to another one can be given by many factors, but it is normally
given by high concentrations of chemical signals, such as pheromones, that are
released by other individuals and are spread in the environment. Each individual
has its own response threshold to the stimulus and reacts accordingly.

The superpeer protocol mimics this general picture. Un-associated nodes
diffuse a “request for superpeers” signal through local broadcasts; the signal
concentration in the network may stochastically trigger a switch to the superpeer
role in some nodes according to their response threshold, which is proportional
to their capacity. On the other hand, powerful nodes covering the same area of
the virtual space compete with each other to gain news clients, by signaling their



availability through local broadcasts. Clients associate themselves to the most
powerful superpeers, and superpeers with an empty client set switch back to the
client role. The combination of these two trends (the creation of new superpeers
to satisfy client request, and the removal of unnecessary superpeers) finds its
equilibrium in a topology that approximates out target topology.

The last component to be described is the peer sampling service. The task
of this layer is to provide each node with a view containing a random sample
of nodes [13]. The motivation is twofold: first of all, the random sample is used
by the local broadcast service to perform gossiping; second, the topology result-
ing from this layer can be described as a random graph composed of a single
connected component among all nodes. This topology is extremely robust and
present no central point of failure; it may be used to recover from catastrophic
failures in the overlaying superpeer topology, for example due to a coordinated
attack to the subset of superpeers.

4.1 Virtual Coordinate Service

In SG-2, the virtual coordinate service is provided by Vivarpr [7], which is a
decentralized, scalable, and efficient protocol developed at MIT. Using VivaLpI,
nodes may obtain good coordinates with few RTT probes directed to a small
subset of nodes. More importantly, VIvaLDI can exploit normal traffic produced
by applications using it, without requiring further communication.

The estimate of the latency distance between v; and v, is denoted est(v;, v;).
Being estimates, these values may differ from the actual latency. The pairwise
error between the estimate and the actual latency can be computed as:

| lat (v, v;) — est(v, vj)]

min{est(v;, vj), lat(vi, v;)}

In our experiments, the number of dimensions of the virtual space is 5; measuring
the error between all pairs of nodes, we found a median error of only 0.14, and a
maximum error of 3.5. Note that latency distances that are “under-estimated”
may pose a problem: if the actual latency is over tol, but the estimated latency
is smaller, a superpeer may accept a client out of the tolerated range. For this
reason, the maximum error must be considered when selecting parameter tol.

4.2 Peer Sampling Service

The sampling service is provided by Newscast [14], which has proven to be a
valuable building block to implement several P2P protocols [15]. We provide
here a brief description of the protocol and its characteristics.

Each NEwscasT node maintains a view containing ¢ node descriptors, each of
them composed of a remote node identifier and a logical time-stamp. NEwWscAST
is based on the gossip paradigm: periodically, each node (i) selects a random
peer from its partial view; (ii) updates its local descriptor; and (iii) performs
a view exchange with the selected peer, during which the two nodes send each
other their views, merge them, and keep the c¢ freshest descriptors.



This exchange mechanism has three effects: views are continuously shuffled,
creating a topology that is close to a random graph with out-degree c; the result-
ing topology is strongly connected (according to experimental results, choosing
¢ = 20 is already sufficient for very stable and robust connectivity); and finally,
the overlay topology is self-repairing, since crashed nodes cannot inject new de-
scriptors any more, so their information quickly disappears from the system.

The peer sampling service is a key component both during the initialization
phase (bootstrap) of the other layers, and during the normal functioning of the
protocol, when it allows the discovery of “distant” or newly joined peers from
the entire network. NEWSCAST is extremely inexpensive: messages are small, and
the periodicity of view exchanges may be as low as one message per minute [14].

4.3 Local Multicast Service

Unlike previous layers, based on existing protocols, the local multicast service
has adapted an existing protocol for the specific needs of SG-2 [8]. Each message
m is associated with the sender identifier s,,, and a radius parameter r,,. Message
m is delivered only to those nodes that are within latency distance r,, from s,,,
as estimated by VivaLpi. Hence, the name SPHERECAST.

The protocol may be described as follows. When a node either receives a
message or wants to multicast a new one, it forwards it to its local fan-out. The
fan-out of node v for message m is given by the subset of neighbors known to
v that are potentially interested in the message, i.e. whose distance from s, is
not larger than r,,. SPHERECAST does not maintain its own topology; instead, it
relies on the underlying overlay network provided by the peer sampling service.

When a message is originated locally, or it is received for the first time, it is
forwarded immediately to all nodes in the fan-out. If a message has been already
received, a node may stochastically decide to drop it (i.e., not forwarding it). This
approach is used to avoid flooding the network. A strict deterministic approach
such as dropping any multiple copy, would not work fine due to the nature
of the underlying overlay. The actual clustering coefficient of the underlying
topology and the continous rewiring process may stop the message spreading.
The stochastic approach solves this issue in a straightforward manner.

The probability of dropping a message is given by the following formula:
p=1—e57 where s is the number of times the node has seen this message
and 9 is a response threshold parameter. In this way, when a packet is received
multiple times by a peer, it has less and less probability to be forwarded again.
From an implementation point of view, digests of received messages are stored
in a per-node table, together with the number of times that specific message has
been received. This table is managed with a LRU policy, to avoid unbounded
growth.

4.4 Superpeer Management Service

This layer is the core component of SG-2. Nodes participate in this protocol ei-
ther as superpeers or as clients; a client ¢ may be either associated to a superpeer



(super(c) = s), or actively seeking a superpeer in its tol range (super(c) = L).
At the beginning, all nodes start as clients; to converge to the target topology de-
fined in Section 3, nodes may switch role at will, or change their client-superpeer
relationship. The decision process is completely decentralized.

Each node v maintains the following local variables. role specifies the role
currently adopted by v; role = sp if v is a superpeer, role = cL otherwise. clv
and spv are two views, respectively containing the clients and the superpeers
known to v. They are composed of node descriptors combining an identifier w
and a logical time-stamp ts,,; the latter is used to purge obsolete identifiers,
as in NEwscasT. When v acts as a superpeer, clv is populated with the clients
currently associated to v; it is empty otherwise. The size of clv is limited by
cap(v). spv contains descriptors for the superpeers that are in tol 44 range; its
size is not explicitly limited, but rather is bounded by the limited number of
superpeers that can be found within tol +0 distance. When v acts as a client,
one of the descriptors in spv may be the associated superpeer of v.

Two distinct kinds of messages are broadcasted using SPHERECAST: CL-BCAST
and SP-BCAST. The former are sent while in client state and are characterized
by a radius parameter r,, equal to tol, i.e. the maximum tolerated latency. The
latter are used in superpeer state and their radius parameter is equal to tol +9;
superpeers need a wider radius to get a chance to contact a larger number of
superpeers; furthermore, nodes with overlapping influence zones can exchange
clients if they find a better client allocation that reduces their latency.

At each node, two threads are executed, one active and one passive. The
execution of active threads may be subdivided in periodic cycles: in each cycle,
superpeers emit a SP-BCAST signal which is broadcast in the surrounding area,
to notify nodes about their presence and its residual capacity. Clients, on the
other hand, periodically emit CL-BCAST messages if and only if they are not
associated to any superpeer. The shorter the cycle duration, the faster the system
converge to the target topology; but clearly, the overhead grows proportionally.
The passive threads react to incoming messages according to the message type
and the current role. Four distinct cases are possible:

Superpeer v gets (SP-BCAST, s, tss, cap(s)) : the pair (s, tss) is inserted in spv.
If s was already present, its time-stamp is updated. After that, the capacity of
the two supernodes is compared: if cap(v) > cap(s), then a migration process is
started. Clients associated with s that are inside the influence zone of v migrate
to v, until the capacity is exhausted. Each affected client is notified about the
new superpeer (v) by the current superpeer s. Node s, if left with no clients,
switches back to the client role; it associates itself to v, if est(v, s) < tol and v
has still residual capacity; otherwise, it starts emitting CL-BCAST messages.

Superpeer v gets (CL-BCAST, ¢, ts.) : if | clv(v)| < cap(v) (the capacity of v
has not been exhausted), the client node is associated to v (unless, given the
asynchrony of messages, it has been already associated with another superpeer).



Client v gets (SP-BCAST, s, tss, cap(s)) : the pair (s, tss) is inserted in spv.
If s was already present, its time-stamp is updated. If v is not client of any
superpeer, it sends a request to s asking to be associated with it. The response
may be negative, if s has exhausted its capacity in the period between the sending
of the message and its receipt by v. On the other hand, if v is already client of
another superpeer s’ and cap(s) > cap(s’), then it tries to migrate to the more
powerful superpeer. This strategy promotes the emergence of a small set of high-
capacity superpeers.

Client ¢ gets (CL-BCAST, ¢, ts.) : This kind of messages can trigger a role change
from client to superpeer; it is the cornerstone of our approach. The willingness
of becoming a superpeer is a function of a node threshold parameter and the
signal concentration perceived by a node in its influence area. The switching
probability can be modeled by the following function:

s2

P(role(v) = cL — sp) = s
where s is the signal magnitude and 6, is the response threshold of node v. This
function is such that the probability of performing a switch is close to 1, if s > 6,
and it is close to 0 if s < 0. If ¢4, is the maximum capacity, 6, is initialized
with a value which is ¢per — cap(v); in this way, nodes with higher capacity
have a larger probability of becoming superpeers. The maximum capacity may
be either known, or it can be easily computed by an aggregation protocol in a
robust and distributed fashion [15].

After the initialization, in order to make the topology more stable and avoid
fluctuations, the response threshold is modified in such a way that time reinforces
the peer role: the more time spent as a client, the less probable is to change
role. Once again, the inspiration for this approach comes from biology: it has
been observed, for example, that the time spent by an individual insect on a
particular task produces important changes in some brain areas. Due to these
changes, the probability of a task change (e.g., from foraging to nursing) is a
decreasing function of the time spent on the current task [4]. For this reason, 6,
is reinforced as follows:

O, (t) = 0,(t — 1) + (ax (t — 1))

Where ¢ is the current cycle and ¢ is the last cycle in which v became a super-
peer; « is a parameter to limit or increase the time influence. The peer normal
responsiveness is re-initialized based on its local capacity if its superpeer crashes
or if it becomes a superpeer node.

The reaction to CL-BCAST messages is the only mechanism to allow a client
to become a superpeer. A superpeer can switch back to the client role only when
other higher capacity superpeers have drained its client set. The 6 adaptation
process is only active when a node is in the client state.



5 Experimental results

We performed a large number of experiments based on simulation to validate
the effectiveness of our approach. The goal of our experiments was twofold: first
of all, we measured the speed of convergence in a stable overlay, in the absence
of failures; second, we measured the robustness of our approach in a dynamic
environment, where a fixed percentage of nodes is substituted with fresh ones pe-
riodically. Any node in the network can be affected by substitution, regardless of
its role. Unlike the real world, where a superpeer is supposed to be more reliable,
our choice is stricter and more “catastrophic”. Finally, communication overhead
has been measured. The experiments have been performed using Peersim [21].
In our experiments, network size is fixed at 1000 and 2000 nodes. Several
kinds of networks have been considered, but here, due to space restrictions, the
focus is on gaming-oriented scenario [23,28]. Other scenarios present similar re-
sults. For each pair of nodes v, w, the latency distance lat(v,w) among them
has been generated using a normal distribution with average value p = 250 ms
and variance o = 0.1 [28]. Then, we have run VivaLpi on this network, obtaining
the corresponding function est(v, w). In the corresponding virtual space, we have
considered tol values of 200 ms, 250 ms and 300 ms, which are typical of strategy
and role-playing games. We have experimented with ¢ values of 200 ms, 300 ms
and 400 ms, corresponding to typical round-trip time that can be accepted for
superpeer communication. The capacity function cap(), i.e. the maximum num-
ber of clients that can be served, is generated through an uniform distribution
in the range [1 : 500]. The time during the simulations is measured in cycles;
we define a cycle to be the time period in which each node in the network has
performed a gossip exchange. All the results are averaged over 10 experiments.
Figure 3 illustrates the behavior of the protocol over time. All the figures
in the left column are obtained in networks whose size is 1000 nodes, while
the figures in the right column are relative to networks with size equal to 2000
nodes. The content of each sub-figure is divided in two parts; in the main plot,
the number of superpeer active at each cycle is shown; in the small frame inside
the main plot, the percentage of clients that are already associated is shown. In
these experiments, the network is static; no nodes are removed or added.
Figure 3(a) depicts a rather bad situation: in both network sizes, the con-
vergence is extremely slow, and the number of nodes that are satisfied is low.
This bad performance is motivated by the characteristics of the latency distri-
butions [23,28] and the tolerance value selected; most of the node pairs have a
higher latency than 200 ms, and thus SG-2 cannot help much. Figure 3(b) shows
a much better situation: a large percentage of clients (between 94% and 100%
depending on size and parameter ¢) have been associated after only few cycles
(20-30). The number of superpeers is also very small, after an initial peak due to
a large number of clients reacting to the signal. Almost every client can reach the
required latency because 250 ms is the average pairwise latency in our game-like
coordinates distribution. However, some nodes lies outside the 250 ms border
and it is challenging for SG-2 to accommodate those nodes. The node density
plays an important role for SG-2. In fact, the bigger network can be fully orga-
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Fig. 3. Convergence time. Three tol values are considered: 200 ms (a), 250 ms (b),
(¢). The main figures show the number of active superpeer at each cycle, while
the small sub-figures show the number of clients that are in tol range. Three different
¢ values are shown in each figure.

300 ms

nized in a latency-aware fashion using the wider superpeer communication range
(6 = 400 ms). Figure 3(c) shows the performance for tol = 300 ms: a response
time that is perfectly acceptable in a strategic/role playing game scenario. The
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latency aware topology in the figure is very good with any ¢ value. We obtain
100% of in range clients with about 50 superpeers in the small network and
about 63 in the bigger network, in less than 10 cycles.

Figure 4 is aimed at illustrating the robustness of our protocol. The size of
the network is fixed at 1000 nodes. Its composition, however, is dynamic: at each
cycle, 10% or 20% of the nodes crashes and are substituted with new ones. The
figure shows that the number of superpeers oscillates over time, as expected, and
that up to 80% and 70% of the clients are associated to superpeers. The nodes
that are not associated are those that have been recently created and are trying
to find a position in the topology.

Finally, we discuss message overhead; due to space limitations, we provide
summary data instead of plots. We have measured the number of broadcast
messages, including both CL-BCAST and SP-BCAST. Since the former type of
message is broadcast only in case of lack of satisfaction, only a small number
of them are generated: on average, less than 2 messages every thousand nodes.
Superpeers, on the other hand, send one message per cycle.

6 Related work

The superpeer approach to organize a P2P overlay is a trade-off solution that
merges the client-server model relative simplicity and the P2P autonomy and
resilience to crashes. The need for a superpeer network is mainly motivated by
the fact to overcome the heterogeneity of peers deployed on the Internet.

Yang and Garcia Molina [27] proposed some design guidelines. A mechanism
to split node clusters is proposed and evaluated analytically, but no experimental
results are presented.

Superpeer solutions proved to be effective solutions in the real world: Kazaa /
Fasttrack [9] and Skype [25] are two outstanding examples. However, their actual
protocols are not publicly available and they cannot be compared with any other



solution or idea. At the time of writing, only a few works [2,17] describe some
low-level networking details.

The SG-2 protocol can be considered as a natural evolution of the SG-1
[18] protocol, however the two solutions cannot be directly compared from a
performance point of view because their goals are pretty different. SG-1 focuses
on optimizing the available bandwidth in the system, while SG-2 introduces the
notion of latency between peer pairs and poses a QOS limit on it. The definition
of the target topology is straightforward in SG-1 (e.g., the minimum number of
superpeers to accommodate all the peers according to the superpeer capacities),
while it is a NP-problem in the SG-2 case. From the architectural point of view,
they both rely on the existence of an underlying random overlay. The superpeer
overlay is generated on top of it. The superpeer election process in SG-2 is
strongly bio-inspired and much more randomized than approach used in SG-1.

In [24], the authors propose a socio-economic inspiration based on T.Shelling’s
model to create a variation of the super-peer topology. Such variation allows the
ordinary peers to be connects with each other and to be connected to more than
one super peer at the same time. This topology focuses on efficient search. As in
our case, the superpeers are connected to each other to form a network of hubs
and both solutions are suited for unstructured networks. However, they do not
address the problem of the superpeer election.

The basic problem of finding the best peer, having the required characteris-
tics, to accomplish some task (e.i., the superpeer task) is addressed in a more
general form in [1]. The problem is referred as “optimal peer selection” in P2P
downloading and streaming scenarios. The authors use an economics inspired
method to solve the optimization problem; the developed methodologies are
general and applicable to a variety of P2P resource economy problems. The
proposed solution is analytically strong, but no experimental results are shown
especially regarding a large and dynamic scenario as the one the authors are
addressing.

Our Virtual Coordinate Service (see section 4.1) is based on VivaLpr but it is
not tied to any particular implementation. Other architectures can be adopted,
such as IDMaps [10] and GNP [19] or PIC [6] and PCoord [16]. The former
pair rely on deployment of infrastructures nodes, while the latter pair provide
latency estimates gathered only between end-hosts, as VivaLpi does. We opted
for VivaLpi because of its fully distributed nature and simple implementation.

In less strict latency context, the hop-count is usually preferred in contrast to
the millisecond latency to provide distance estimation. Pastry [5,22], for example,
uses a hop distance metric to optimize its time response.

7 Conclusions

This paper presented SG-2, a fully decentralized, self-organizing protocol for
the construction of proximity-aware, superpeer-based overlay topologies. The
protocol produces an overlay in which almost all nodes (99.5%) are in range
with a tol latency of 300 ms. The number of generated superpeers is small with



respect to the network size (only 3-5%). The protocol shows also an acceptable
robustness to churn. We believe that these results can be profitably adopted
to implement several classes of applications, including strategy and role-playing
games. Other classes of games, such as first-person shooter, are probably not
suitable given their extremely strict latency requirements (inferior to 100 ms).
These results are an improvement over existing decentralized games [3], that are
based on strong replication [26] or low-level facilities such as IP-multicast [11]).

We conclude noting that the results presented in this paper are only a first
step toward the implementation of P2P games; several other problems have to
be solved, including security, state replication, state distribution, etc.
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