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Abstract. The newscast model is a general approach for communica-
tion in large agent-based distributed systems. The two basic services—
membership management and information dissemination—are implemented
by the same epidemic-style protocol. In this paper we present the news-
cast model and report on experiments using a Java implementation. The
experiments involve communication in a large, wide-area cluster com-
puter. By analysis of the outcome of the experiments we demonstrate
that the system indeed shows the scalability and dependability proper-
ties predicted by our previous theoretical and simulation results.

1 Introduction

The popularity of peer-to-peer systems in the last couple of years illustrates
how the Internet is gradually shifting toward a distributed system that supports
more than only client-server applications. A key issue in peer-to-peer systems is
that distribution of data and control across processes is symmetric. Moreover,
this distribution is done in such a way that processes are highly autonomous
and independent of each other. The important advantage of this approach is
scalability. A well-designed peer-to-peer system can easily scale to millions of
processes, each of which can join or leave whenever it pleases without seriously
disrupting the system’s overall quality of service.

A crucial aspect of large-scale peer-to-peer systems is that they are easy to
manage. Any system that attempts to centrally manage how processes connect
to each other and distribute data and control will fail, notably when processes
join and leave all the time. Instead, it should be a property of the design itself
that the distribution of data and control takes place in an automated fashion
that requires no global management at all. In effect, we are looking at the design
of self-managing systems.

There are many different types of peer-to-peer systems. In most cases, these
systems can be divided into two separate layers. The lowest layer consists of pro-
tocols for handling group membership and communication, whereas the highest
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layer implements the required functionality for a specific application. The lowest
layer thus forms the core of the peer-to-peer system. Roughly speaking, there
are three types of core systems.

The first, and most popular type is designed to efficiently support content-
based searching. In many cases, these systems operate with centralized index
servers that keep track of where content is located. The index servers are of-
ten constructed dynamically in the form of super peers [15]. Examples include
Gnutella and KaZaa. The second type aims at efficiently routing a request to its
destination through an overlay network formed by the collection of peers. Ex-
amples of such systems are Chord [12], Pastry [11], Tapestry [16], and CAN [10].
A third type deploy epidemic protocols [3]. In these systems, the goal is not
so much enabling point-to-point communication between peers, but rather the
rapid and efficient dissemination of information. Examples in this class include
Scamp [6], and probabilistic reliable broadcasting [4, 5, 9].

In this paper, we concentrate on information-dissemination based systems
that deploy epidemic protocols. A crucial element in an epidemic protocol is that
a participating peer can randomly select another peer to exchange information.
Traditional protocols supported this random selection by providing a list of
all other participating peers. Clearly, such an approach cannot scale to large
networks. As an alternative, approaches such as described in [4, 7] ensure that
a peer always has a list that represents an independent and randomly selected
sample from the entire set of peers.

We have recently developed an epidemic protocol for disseminating informa-
tion in large, dynamically changing sets of autonomous agents. This, so-named,
newscast protocol solves two problems inherent to large sets of agents: (1) in-
formation dissemination, and (2) efficient membership management. The main
distinction in comparison to similar epidemic-based solutions, is that agents can
join and leave at virtually no cost at all, and without affecting the information-
dissemination properties of the protocol.

The associated model of newscasting, that is, the model of information dis-
semination and membership management as presented to agents, is described in
detail in a separate paper [8], along with theoretical analyses partly based on
simulations. To better substantiate our claims regarding scalability, we have im-
plemented the newscast protocol (in Java). We subsequently used this implemen-
tation to conduct a series of experiments that emulate large-scale agent-based
applications on a real network. In particular, we set up a series of experiments
with 128,000 agents scattered across a hierarchically organized cluster of 320 pro-
cessors. These processors, in turn, are geographically spread over four different
sites in the Netherlands.

An important and interesting aspect of these experiments is that the under-
lying communication network is heterogeneous. It includes interprocess commu-
nication facilities on a single workstation, point-to-point local-area high-speed
links, as well as wide-area links. In this way, we are better able to measure
the effect that a real communication infrastructure has on the properties of our
dissemination model.



In this paper, we describe the newscast protocol and report on our experi-
ments involving emulation of large networks of agents. We show that the the-
oretical results, which are based on an idealized underlying communication in-
frastructure, still hold when dealing with a realistic infrastructure, thus further
substantiating our claims that newscasting is a highly robust and scalable model
for information dissemination in large and rapidly changing sets of agents. In the
following we discuss our protocol, the experimental setup, and the results of our
experiments, to end with conclusions.

2 The Newscast Protocol

In our implementation of the newscast model, a large group of agents is con-
nected through a simple peer-to-peer data exchange protocol. The protocol is
extremely simple: each agent knows only a (continuously changing) small set of
peers of which one is randomly chosen to exchange information. In this section,
we start with explaining how the protocol works, after that we explore some
remarkable theoretical properties of its emerging behavior. These properties are
further investigated in Section 3 when we report on our large-scale emulation
experiments.

2.1 Principal Operation

The two main building blocks of our newscast model are a collective of agents

and a news agency, as shown in Figure 1. The basic idea is that the news agency
asks all agents regularly for news by means of a callback function getNews(). In
addition, the news agency provides each agent with news about the other agents
in the collective, again through a callback function newsUpdate(news[]).

News agency

receiveCache

sendCache

WAN node WAN node

getNews newsUpdate

Correspondent

Agent

getNews newsUpdate

Correspondent

Agent

cache cache

Fig. 1. The organization of a newscast application.

The definition of what counts as news is application dependent. The agents
simply live their lives (perform computations, listen to sensors and the news,
etc.) and based on the computations they have completed and the information
they have collected they must provide the news agency with news when asked.



The model itself can be fully specified in terms of the functional and statistical
properties of the operations getNews() and newsUpdate(news[]). Instead of this
definitial style of specification, we take a much simpler approach in this paper
by describing the semantics of the model in terms of the newscast protocol, of
which we have shown that it meets the model’s specifications [8].

Each agent has an associated correspondent that runs on the same machine
hosting the agent. The correspondents jointly form the distributed implementa-
tion of the news agency. Each correspondent maintains a fixed-sized cache of c
news items. Whenever an agent passes a news item to its correspondent, the lat-
ter timestamps the item, adds its own network address, and subsequently caches
the item. A news item itself consists of an agent identifier and the actual news
as provided by the agent, as shown in Figure 2.

AgentID Application−specific dataTimestampAddress

Cache entry

News item

Fig. 2. The format of news items and cache entries.

Correspondents regularly exchange caches as follows. Omitting specific de-
tails (which are found in [8]), each correspondent executes the following five steps
once every ∆T time units (∆T is referred to as the refresh interval).

1. Request a fresh news item from the local agent by calling getNews(). Add the
item to the cache.

2. Randomly select a peer correspondent by considering the network address
of other (and available) correspondents as found in the cache.

3. Send all cache entries to the selected peer, and, in turn, receive all the peer’s
cache entries. Merge the received entries into the local cache.

4. Pass the received cache entries from the peer agent to the local agent by
calling newsUpdate().

5. The correspondent now has 2c cache entries; it subsequently throws away
the c oldest ones.

The selected peer correspondent executes the last three steps as well, so that
after the exchange both correspondents have the same cache. Note, however,
that as soon as any of these two correspondents executes the protocol again,
their respective caches will most likely be different again.

The protocol does not require that the clocks of correspondents are synchro-
nized, but only that the timestamps of news items in a single cache are mutually
consistent. We assume that the communication time between two correspondents
is negligible in comparison to ∆T (which is generally in the order of minutes).
When a correspondent A passes its cache to B, it also sends along its current
local time, TA. When B receives the cache entries, it subsequently adjusts the
timestamp of each entry with a value TA − TB, effectively normalizing the time
of each new entry to those already cached.



2.2 Properties of Newscasting

As it turns out, this simple model of communication has desirable statistical
properties. To understand the behavior of newscasting, we consider the commu-
nication graphs Gt at different time instants t that are induced by maintaining
caches at each correspondent. Each such graph is constructed from a corre-
sponding directed graph Dt as follows. The vertex set Vt of Dt contains the
correspondents. For correspondents a and b in Vt we have the link a → b if and
only if the address of b is in the cache of a at time t. The cache-exchange algo-
rithm leads to a series of directed graphs, given an initial directed graph D0. The
communication graph Gt is now simply constructed by dropping the orientation
in Dt. Gt expresses the possibility of cache exchanges.

Now consider the series of graphs G0, G∆T , G2∆T , . . .. Note that during a
time interval ∆T each correspondent initiates the cache-exchange algorithm. In
other words, after ∆T time units, all correspondents will have fetched a news
item from their agent, exchanged caches with at least one of their neighbors
(and possibly more), and have passed c news items to their agent. We say that
a communication cycle has completed.

We have conducted simulations with up to 50,000 correspondents, assuming
an idealized communication infrastructure with no communication delays and
packet losses. Our simulations show that even for relatively small cache sizes
(say, c = 20) each graph Gk∆T stays connected. Moreover, it turns out that the
average length of each shortest path between two nodes is small, as shown in
Figure 3(a).
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Fig. 3. (a) Average shortest path length between two nodes for different cache sizes.
(b) Average clustering coefficient taken over all nodes.

In fact, further investigations revealed that the induced communication graphs
have many properties in common with what are known as small worlds [1, 14].
An important property of these types of networks is that they show a relatively
high clustering coefficient, which, for a given node, is the ratio of the number of
edges between the neighbors of the node and the number of all possible edges



between the neighbors. For example, in a complete graph all nodes have a clus-
tering coefficient of 1 while in random graphs this coefficient is typically small
(if our graphs were random, the clustering coefficient would be expected to be
c/n). Figure 3(b) shows the clustering coefficient for different cache sizes c and
communication graphs Gk∆T .
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Fig. 4. Average shortest path length while adding 50 agents every cycle until 5000
agents have been added.

Simulations also show that we need only an extremely simple way of han-
dling membership, which is an important improvement in comparison to other
epidemic models. Consider the worst solution to handling membership that could
possibly disrupt the emergent behavior of our protocol: an agent contacts a well-
known central server and simply initiates the cache-exchange protocol with that
server. This approach systematically biases the content of caches, which now all
depend on what is stored at the central server.

We conducted a simulation experiment in which we admitted 50 new agents at
every communication cycle until 5000 agents had joined the network, after which
no new agents were allowed to join. When measuring the average path length
again, we obtain the results shown in Figure 4. What is seen, is that shortly
after the last 50 agents have been added (i.e., after 100 completed cycles), the
average path length quickly converges to the one we would expect in a stable
graph. We can conclude that even this worst-imaginable membership protocol
does not affect the properties of newscasting. In effect, when a node wants to
join, it needs to know only the address of a single other node and can simply
start with executing the newscast protocol. Leaving is done by simply stopping
communication.

3 Validation of the Newscast Protocol

Using theoretical analyses and simulations, we are able to show that the statis-
tical properties of the protocol meet the specifications of the newscast model.



However, in the world of large-scale systems, theory and practice often diverge.
Therefore, to investigate how the protocol would behave in practice and to fur-
ther substantiate our claims, we conducted a series of emulation experiments.
Emulation, as opposed to simulation, involves implementing the protocol and
conducting experiments on a real network of computers. In our case, we carried
out experiments with a collective of up to 128,000 agents distributed across a
320-node wide-area cluster of workstations.

3.1 The Implementation

In order to experiment with the newscast model described earlier, we imple-
mented its underlying protocol. Java was chosen for portability reasons, allowing
us to easily execute the protocol in heterogeneous environments. Our implemen-
tation is organized as three modules: the core, the application, and the utility
module. The core module implements a correspondent materializing the epidemic
protocol described in Section 2.1. The core module has no dependencies on the
other two modules. It is a self-contained implementation of the newscast proto-
col. All communication is based on UDP. Multiple instances of the core module
can coexist in a single Java virtual machine, behaving as separate, independent
correspondents.

The application module provides the implementation of an agent. One in-
stance of the core module has exactly one associated instance of the application
module. Our experiments were focused on the properties of the epidemic proto-
col itself without considering any particular application. Therefore the agent we
defined has only basic functionality. It returns empty content in the getNews()

operation, and ignores any content delivered to it through the newsUpdate(news[])

operation.
The utility module serves the specific needs of our experiments, such as batch

running, coordinating the experiments, and logging. Exactly one utility module
instance exists in each virtual machine. In particular, the utility module takes
care of starting multiple agent-correspondent pairs each running on a separate
thread within the same Java virtual machine to allow emulation of a large net-
work. It coordinates with utility modules running on other Java virtual machines
(possibly on remote hosts) to determine initial connection addresses for the cor-
respondents. The utility module also contains logging functionality. It periodi-
cally freezes the agent-correspondent pairs running in the Java virtual machine,
logs their state, and then resumes operation. Utility modules coordinate to en-
sure that freezing and resuming for logging occur simultaneously on all the Java
virtual machines spread across the different hosts.

3.2 The DAS-2

We conducted our experiments on the Distributed ASCI Supercomputer (DAS-
2), a wide-area distributed cluster-based system consisting of five clusters of
dual-processor PCs located at different sites across the Netherlands. The cluster
at the Vrije Universiteit consists of 72 nodes, while the other clusters consist of



32 nodes each, giving a total of 200 nodes (400 processors). Each node has two
1-GHz Pentium-III processors, and at least 1GB of RAM.

Nodes within a single cluster are connected by a Fast Ethernet (100Mbps)
network dedicated to their cluster. Clusters, in turn, communicate over wide-
area links, which are shared for all traffic between the universities and which
have shown to support an aggregated bandwidth of 20 Mbps.

3.3 Experimental Setting

We carried out experiments with a network of 128,000 agents distributed across
160 dual-processor nodes on four of the five DAS-2 clusters. We recorded and
analyzed the behavior of the newscast model for three different cache sizes c: 20,
30 and 40. In all three cases the refresh interval ∆T was 10 seconds.

The presented series of experiments was conducted to examine the possible
impact of the underlying network’s heterogeneity on the operation of the news-
cast model. It is, therefore, worth describing the deployment of agents across
the DAS-2 nodes. We used 160-dual processor nodes, selecting 64 nodes from
the cluster at the Vrije Universiteit, and 32 nodes out of three other DAS-2
clusters. We executed two Java virtual machines per node (one per processor),
each Java virtual machine running 400 agents.

The deployment of agents described above presents a desirable property for
our experiments: network heterogeneity. Four different types of communication
were involved, depending on the relative location of the agents communicating:

– Intraprocess communication for agents running in different threads within
the same Java virtual machine.

– Interprocess communication for agents run by separate Java virtual ma-
chines, but on the same DAS-2 node.

– Local-area (or intracluster) communication for agents residing on differ-
ent nodes, but within the same cluster. These agents were communicating
through a 100Mbps Fast Ethernet network.

– Wide-area (or intercluster) communication for agents belonging to different
clusters. This type of communication was carried out over the wide-area links
shared with other wide-area traffic.

This diverse environment (with respect to networking) provided us with a valu-
able testbed for studying the newscast model.

It is important to observe that even though 800 agents run within each DAS-
2 node, more than 99% of the communication between agents is either across
wide-area or local-area links. For any given agent, 799 other agents run on the
same node, and 127,200 run on other nodes, which account for 0.6% and 99.4%
of the total 128,000 agents respectively. As we observed in our experiments, the
items in an agent’s cache are randomly distributed over all the participating
agents, irrespective of their location. Therefore we expect only 0.6% of the total
communication to be within or between processes on the same node, and all the
rest to be across local-area or wide-area links. In particular, agents in the three



32-node clusters are expected to experience 80% wide-area and 19.4% local-area
traffic, while agents in our 64-node cluster are expected to have 60% wide-area
and 39.4% local-area traffic.

Another parameter of our experiments that is worth noting, is the bootstrap-

ping mechanism. By bootstrapping we refer to the procedure of providing agents
with the information required to jump-start the newscast network’s formation.
In principle, a new agent joins by contacting any existing agent and exchanging
caches. When the whole network starts from scratch, a systematic way has to
be present to provide one or more initial communication points to each agent.
In our experiments this task was handled by the utility module. All agents were
provided with the single address of one selected agent. Providing agents with a
choice of (possibly random) agents to connect to initially, enhances the random-
ness of the network in the early cycles. However, a bootstrapping mechanism as
simple and centralized as the one we chose further substantiates our claims of
the protocol’s convergent behavior, as discussed in the following section.

4 Results

This section presents a thorough analysis of the output of our three large-scale
experiments with 128,000 correspondents using cache sizes of 20, 30, and 40, re-
spectively. We will often compare the emerging communication graphs to random
graphs. In all cases, the random graphs we refer to are generated by selecting
exactly c undirected edges randomly for each node. For example, in such a graph
each node has at least c edges (but usually more).

4.1 Statistical Properties of the Communication Graph

Figure 5 illustrates the two most important properties of the emergent com-
munication graphs. The number of cycles actually performed was over 5000,
however, only the initial cycles are depicted because the values remain the same
throughout the experiment indicating a convergent behavior.

The average path length from a node is defined as the average of the minimal
path lengths of that node to all other nodes. To get a finite value we have to
have a connected graph. We can observe very low average path lengths which
coincide with the expected lengths after extrapolation of the simulation data
shown in Figure 3(a). The initial peak is explained by the applied bootstrapping
mechanism described in Section 3. This mechanism results in an initially unbal-
anced neighborhood structure. However, after all correspondents get connected
to the collective, the average path length converges quickly to its final value.

The average clustering coefficient taken over all nodes is shown in Figure 5(b),
and again corresponds to our simulation results. Together with the values found
for average path lengths, we can indeed conclude that our communication graphs
are small-world graphs.

Small-world graphs come in very different flavors however. One interesting
property to investigate is whether our graphs are scale free or not. The degree
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Fig. 5. (a) The evolution of average path length from a node. (b) Clustering coefficient.

of a random node defines a random variable. If this variable is exponentially
distributed (linear on the log-log scale) then the graph is scale free. Figure 6
shows the distribution of the node degree for the case of c = 20 which deviates
the most from the random case.
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It can be seen clearly that our communication graph is not scale free. ¿From
a dependability point of view this is an advantage since scale-free graphs are
sensitive to the removal of highly connected nodes (even though they are less
sensitive to random node removal). The effect of node removal in our graphs is
discussed next.

4.2 Robustness to Node Removal

Figure 7 shows the effect of node removal to the connectivity of the communica-
tion graph. Note that the number of clusters decreases when approaching 100%
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Fig. 7. Partitioning of the communication graph as a function of the percentage of re-
moved random nodes (node failures). The curves belong to a single graph. The largest
clusters of random graphs are omitted for clarity; their relationship to the communi-
cation graphs is similar to the relationship in the case of the number of clusters.

removal because the remaining graph itself becomes small. The graph shows very
similar behavior to a random graph, especially if the cache is large. These results
indicate considerable robustness to node failures especially considering the size
of the largest cluster which indicates that most of the clusters are in fact very
small and most of the nodes are still in a single connected cluster.

5 Conclusions

In this paper we presented experiments with a Java implementation of the news-
cast model. The experiments involved 128,000 agents communicating with each
other over a wide-area, large-scale heterogeneous cluster of processors.

The outcome of these experiments is particularly valuable since it repre-
sents the real implementation of our model as opposed to previously conducted
simulations, yet the size of the system is comparable with the scale of typical
simulation results as well. The results are in complete agreement with the theo-
retical predictions and simulations presented in [8] providing practical evidence
concerning the correctness of our algorithm and of the statistical properties of
the emerging communication graphs.

As we demonstrated, the series of the communication graphs show stable
small-world properties which make it a dependable and effective device for in-
formation dissemination and membership management. Most importantly, these
properties are not maintained explicitly, but they are emergent from the under-
lying simple epidemic-style information exchange protocol.
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