T-Man: Gossip-based Fast Overlay Topology Construttion

Mark Jelasity Alberto Montresok
University of Szeged, Hungary University of Trento, Italy
jelasity@inf.u-szeged.hu montreso@dit.unitn.it

Ozalp Babaoglu
University of Bologna, Italy
babaoglu@cs.unibo.it

Abstract

Large-scale overlay networks have become crucial ingngslief fully-decentralized applications
and peer-to-peer systems. Depending on the task at hanthywmetworks are organized into different
topologies, such as rings, trees, semantic and geographitmpty networks. We argue that the central
role overlay networks play in decentralized applicatiomedepment requires a more systematic study
and effort towards understanding the possibilities anddimf overlay network construction in its gen-
erality. Our contribution in this paper is a gossip protocalled T-MAN that can build a wide range of
overlay networks from scratch, relying only on minimal asgtions. The protocol is fast, robust, and
very simple. It is also highly configurable as the desiredtogy itself is a parameter in the form of a
ranking method that orders nodes according to preference hase node to select them as neighbors.
The paper presents extensive empirical analysis of thegobalong with theoretical analysis of certain
aspects of its behavior. We also describe a practical adjait of T-MaN for building Chord distributed
hash table overlays efficiently from scratch.

Categories and Subject Descriptors: C.Z#rhputer-Communication Networks]: Distributed Sys-
tems—Distributed ApplicationsC.4 [Perfor mance of Systems]: Fault Tolerance

General Terms: Algorithms, Performance, Reliability
Additional Key Words and Phrases: gossip-based protogeésjay networks

1 Introduction

Overlay networks have emerged as perhaps the single-mg@sirtamt abstraction when implementing a
wide range of functions in large, fully decentralized sysée The overlay network needs to be designed
appropriately to support the application at hand efficierfdor example, application-level multicast might
need carefully controlled random networks or trees, dejpgnah the multicast approach [8, 26]. Similarly,
decentralized search applications benefit from specialay@etwork structures such as random or scale-
free graphs [2,16], superpeer networks [18], networksalabrganized based on proximity and/or capacity
of the nodes [6, 27], or distributed hash tables (DHT-s)ef@ample, [23, 25].

In current work, protocol designers typically assume thgtvan network exists for a long period of
time, and only a relatively small proportion of nodes joinemve concurrently. Furthermore, applications

“Partial support for this work was provided by the Future anteEjing Technologies unit of the European Commission tjnou
Projects BISON (IST-2001-38923) and DELIS (IST-2002-002)9
TThis work was completed while the authors were with the Unsitge of Bologna, ltaly.

either rely on their own idiosyncratic procedures for inmpénting join and repair of the overlay network or
they simply let the network evolve in an emergent mannerdagsexternal factors such as user behavior.

We believe that there is room and need for interesting reBe@mtributions on at least two fronts. The
first concerns the question whether a single framework canskbd to develop flexible and configurable
protocols without sacrificing simplicity and performancetackle the plethora of overlay networks that
have been proposed. The second front concerns scenariesrlayoconstruction that are often overlooked,
such as massive joins and leaves, as well as quick and effloienstrapping of a desired overlay from
scratch or some initial state. Current approaches eitlilarfare prohibitively expensive in such scenarios.
Combining results on these two fronts would enable sevetateasting possibilities. These include: (i)
overlay network creatioon demand(ii) deployment of temporary and adaptive decentralizeplieations
with custom overlay topologies that are designed on-thd(ifiyfederation or splitting of different existing
architectures [11].

In this paper we address both questions and present anthigatalled T-MAaN) for creating a large
class of overlay networks from scratch. The algorithm ishigonfigurable: the network to be created is
defined compactly by eanking methodhat is able to order sets of nodes according to the preferehany
given base node to select them as neighbors. This allowslusltba wide variety of topologies, including
sorted rings, trees, toruses, clustering and proximitwoeks, and even full-blown DHT networks, such as
the CHoRD ring with fingers. T-MaN relies only on an underlying peer sampling service [12] trahtes
and initial overlay network with random links as the stagtpoint.

The algorithm is gossip based: all nodes periodically compaie with a randomly-selected neighbor
and exchange (bounded) neighborhood information in o@énprove the quality of their own neighbor
set. This approach, while requiring no more messages tleametirtbeats already present in proactive repair
protocols, is simple, and achieves fast and robust conmeegas we demonstrate.

In this paper we limit our study to the overlay constructionlpem. UsingT-MAN for overlay main-
tenance is also possible [10] with performance and costaienot dramatically different from existing
periodic repair protocols currently used in most overlagwoeks. The originality and attractiveness of
MAN as a maintenance protocol lies in its generality and cordlgjlity. The main contribution of this paper
is to show that a single, generic gossip-based algorithmcosatemany different overlay networkisom
scratchquickly and efficiently.

Related Work. There are two aspects of our work: creating (bootstrappargpverlay network from
scratch quickly and efficiently, and treating a wide rang®adrlay networks with the same protocol in a
generic manner. Related work in bootstrapping include jerishm of Voulgaris and van Steen [28] who
propose a method to jump-st@tsTrY [23]. This protocol is specifically tailored asTRy and its message
complexity is significantly higher than that @fMaN. More recently, the bootstrapping problem has been
addressed in other specific overlays [1, 4, 24]. These dlgos, although reasonably efficient, are specific
to their target overlay networks.

Work that is targeted ajenericoverlay management is more scarce. A very recent framevRik,
was presented in [15]. The approach taken there is veryrdiftdrom ours: the overlay is represented in
a declarative style using logical rules. Such a represent# supposed to be more compact and natural
than a procedural implementation. In comparistfMAN represents the overlay using a simple ranking
method (to be described later) that allows for a probalulistaturally fault tolerant approach. The scope
of topologies that can be represented is also very differémt approach closer td-MAN is VICINITY,
described in [29]. AlthougiiciniTy was inspired by the earliest versionMan, it does contain notable
original components related to overlay maintenance, ssatharn management, and other techniques to
boost performance.

Finally, we mention related work that use gossip-based aghitistic and lightweight algorithms. We

note that these algorithms are targeted neither at effibeotstrapping, nor at generic topology manage-
ment. Massoulié and Kermarrec [17] propose a protocol ddveva topology that reflects proximity. Repair
protocols used extensively in many DHT overlays also betortgis category (e.g., [22, 25, 30]).

Contribution. Our contribution with respect to related work is threefdtitst, we introduce a lightweight
probabilistic protocol that can construct a wide range @rlay networks based on a compact and intuitive
representation: the ranking method. The protocol has a simalber of parameters, and relies on minimal
assumptions, such as nodes being able to obtain a randontestiom the network (the peer sampling
service). The protocol is an improved and simplified versibearlier variants presented at various work-
shops [10, 11, 20]. Second, we develop novel insights fotrdmeoffs of parameter settings based on an
analogy betweem-MaN and epidemic broadcasts. We describe the dynamics of thecptaconsidering

it as an epidemic broadcast, restricted by certain factefmeld by the parameters and properties of the
ranking method (that is, the properties of the desired ayeanketwork). We also analyze storage complex-
ity. Third, we present novel algorithmic techniques fottiating and terminating the protocol execution.
We describe how to construct tl@iorp overlay a practical application a-MaN. We present extensive
simulation results that support the efficiency and religbdf T-MAN.

Road map. Sections 2 and 3 present the system model and the overlayrwctien problem. Section 4
describes th@-MaN protocol. In Section 5 we present theoretical and experiat@asults to characterize
key properties of the protocol and to give guidelines on p@tar settings. Section 6 presents practical
extensions to the protocol related to bootstrapping anditettion, and extensive experimental results are
also given to examine the behavior of the protocol in difféfailure scenarios. Section 7 presents a practical
application: the creation of theHorb overlay network [25]. Section 8 concludes the paper.

2 System Model

We consider a set of nodes connected through a routed netiwadk node has an address that is necessary
and sufficient for sending it a message. Furthermore, alesdthve grofile containing any additional
information about the node that is relevant for the definitad an overlay network. Node ID, geographical
location, available resources, etc. are all examples dilprimformation. The address and the profile
together form thanode descriptar At times, we will use “node descriptor” and “node” interciggably if

this does not cause confusion.

The network is highly dynamic; new nodes may join at any timé axisting nodes may leave, either
voluntarily or bycrashing Our approach does not require any mechanism specific tedeapontaneous
crashes and voluntary leaves are treated uniformly. Thu$e following, we limit our discussion to node
crashes. Byzantine failures, with nodes behaving arbitrare excluded from the present discussion.

We assume that nodes are connected through an existinglmoeteork, such as the Internet, where
every node can potentially communicate with every otherenotb actually communicate, a node has to
know the address of the other node. This is achieved by nimiingaa partial view (view for short) at each
node that contains a set of node descriptors. Views can bepieted as sets of edges between nodes,
naturally defining a directed graph over the nodes that ahéters the topology of aaverlay network

Communication incurs unpredictable delays and may be sutgjdailures. Single messages could lost,
links between pairs of nodes may break. Nodes have accessalaclocks that can measure the passage of
real time with reasonable accuracy, that is, with small stesm drift. Local clocks are not required to be
synchronized.

Finally, we assume that all nodes have access to the peellisgrsprvice [12] that returns random
samples from the set of nodes in question. From a theorgiimat of view we will assume that these
samples are indeed random. From a practical point of viesult®in [12] as well as our own experimental
results in this paper indicate that the peer sampling seidideed has suitable realistic implementations that
provide high quality samples at a low cost.

3 TheOverlay Construction Problem

Intuitively, we are interested in constructing some déda&aoverlay network, possibly from scratch, by
filling the views at all nodes with descriptors of the appiaja neighbors. For example, we might want
to organize the nodes into a ring where the nodes appear lieaisiog order based on their ID. Or we
might want to construct a proximity network, where the négts of a node are those that are closest to it
according to some metric.

We allow for arbitrary initial content of the views of the rexdin this problem definition (including
empty views), noting that, as mentioned in our system madales have access to random samples from
the network, so they have access to at least random nodegheonetwork. In other words, starting from
any arbitrary network, we want to fill the node views with thgpeopriate neighbors as fast as possible at a
reasonable cost.

In order to have a well defined problem, we need to specify l@xdesired overlay is represented as an
input to the protocol. The representation must be compiaittitive, yet descriptive enough to capture the
widest possible range of topologies.

Our proposal for the representing the desired overlay isgdhking methodhat allows a node to sort
any subset of other nodes (potential neighbors) accordisgine preference for selection as its neighbors.
More formally, the input of the problem is a set 8f nodes, thaarget view size< (bounded byV) and a
ranking methokAnk. The ranking method orders a list of nodes according to peaée from a given base
node. It takes as parameters the base nogied a set of nodefy, ..., y;}, 7 < N, and outputs an ordered
list of thesej nodes. All nodes in the network apply the same ranking metiwbith they know a priori.

In most cases, the ranking method will not be deterministidact, we pose no restrictions on the method
here. Throughout the paper, however, we will analyze andotdy ranking methods that are based on a
partial ordering of the given set, and that return some twidring consistent with this partial ordering.

Thetarget graphthat we wish to construct is defined by the he ranking methoelpk&/'sent the definition
of the target graph in a constructive way, through the faltm(inefficient) approach, for illustration. In
this approach, each node disseminates its descriptor wthal nodes such that eventually, every node
has collected locally the descriptor of every node in thevoet. At this point, each node sorts this set of
descriptors according to the ranking method and picks teeHirlements to be its neighbors. The resulting
structure is called th&arget graph Note that in this manner we define a graph, and not only a ¢égyol
because in addition to knowing the structure of the netwsukh as a ring, we also know the exact location
of each node in the structure.

A practical solution to theverlay construction problerhas to significantly reduce both the commu-
nication cost (which is at least linear ¥ for each node) and the storage cost (which is also linead¥ in
for each node) of the full dissemination approach outlinedve in building the target graph. ThHeMan
protocol described in the next section does precisely this.

Although representing the target graph through the rankileghod and parametédt clearly restricts
the scope of the algorithm, through the examples preserszldnd in the rest of this paper we will see
that a wide range of interesting applications are coverate (Out not the only!) way of actually defining
useful ranking methods is through a distance function teihds a metric space over the set of nodes. The

Figure 1. Target graphs for different ranking methods anhd= 2. (a) One-dimensional distance-based,
circular ranking method applied to a set of uniform node fesfi(b) same ranking method as before but
with a different set of node profiles that are clustered; (@afion-dependent ranking method achieves
sorting even for clustered node profiles.

ranking method can simply return an ordering of the giverasebrding to non-decreasing distance from
the base node.

To clarify the notions of ranking method and target grapétsii$ consider a few simple examples, where
K = 2 and the profile of a node is a real number in the intef9all/[. We can define a ranking method
based on the one-dimensional distance function betweessaahdb asd(a, b) = |a — bl, or alternatively,
d(a,b) = min(M — |a — b|,|a — b|) to obtain a circular structure. As illustrated in Figure)1{gthe node
profiles are more-or-less uniformly distributed over thieiwal [0, M|, the resulting target graph will be a
connected line (or ring). If the node profiles are not evendyrithuted over|0, M| but are clustered, the
same ranking method will result in a target graph that cowogidisconnected clusters (Figure 1(b)).

It is important to note that there are target graphs of pratcinterest that cannot be defined through a
global distance function. This is the main reason for usantking methods, as opposed to relying exclu-
sively on the notion of distance; the ranking method is a ngereeral concept than distance. This fact will
become important in Section 7 (practical application exXapvhere it is necessary to be able to build,
for example, a ring, even in the case of uneven node descdstributions when distance-based ranking
methods would define clustered target graphs (as in Figuog. 1Figure 1(c) illustrates how a direction-
dependent ranking can be used to avoid clustering in thettaggph. Here, the output of the ranking
methodrANK (z, {y1,...,y;}) is defined as follows. We first construct a sorted ring out efgét of input
profilesy,,...,y; and the base node. We then assign a rank value to each node defined as the minimal
hop count to the node from in this ring. The output of the ranking method is a list of theut profiles
ordered according to this rank value. In this manner, thé diwspositions in the ranking contaim nodes
preceeding: anda nodes followingz in the sorted ring; hence the name “direction-dependent”

4 TheT-MAaN Protocol

As mentioned earlier, th&-MaN protocol is based on a gossiping scheme, in which all nodesdieally
exchange node descriptors with peer nodes, thereby calgsiaproving the set of nodes they know —
their partial views.

Each node executes the protocol in Figure 2. Any given viemtains the descriptors of a set of nodes.
MethodMERGE is a set operation in the sense that it keeps at most one gkesdor each node. Parameter
m denotes the message size as measured in the number of nadgtdes that the message can hold.

1: loop

wait(A) 1: loop
p < selectPeetf, rank(, view)) receive buffey from ¢

buffer — merge(view,{ myDescriptok) buffer — merge(view,{ myDescriptok)
buffer < rank(p, buffer) buffer < rank(g, buffer)

send firstm entries of buffer tgp send firstm entries of buffer tgy
receive buffey from p view < merge(buffey, view)

view < merge(buffey, view)

2:
3:
4:
5:
6:

Figure 2: TheT-M AN protocol.

(b) passive thread
(a) active thread

after 2 cycles after 3 cycles after 4 cycles after 7 cycles

Figure 3: lllustration of constructing a torus ovér x 50 = 2500 nodes, starting from a uniform random
graph with initial views containing 20 random entries anel plarameter values = 20,¢ = 10, K = 4.

Method seLECTPEER selects a random sample among the fisseéntries in the ordered list given as its
second parameter.

In this section we do not specify how node views are initediz In the rest of the paper, we always
describe the particular node view initialization procetirat we assume. These procedures include random
initialization for the purposes of theoretical analysisSection 5 and practical solutions based on various
broadcasting schemes and realistic random peer samplBgation 6.

We note that the protocol does not place a limit on the view.sihis is done in order to decrease
the number of parameters, thereby simplifying the presientaOne might expect that lack of a limit on
view size might present scalability problems due to viewswgng too large. As we will show in Section 5,
however, the storage complexity of nodes due to views grawsg logarithmically as a function of the
network size. Furthermore, preliminary experiments ferapplications we consider show that imposing a
comfortable limit on view sizes (larger than bothand K) does not result in any observable decrease in
performance. This suggests that the simplification of igngpview size limits is justified and is not critical
for these applications.

Although the protocol is not synchronous, it is often conganto refer tocyclesof the protocol execu-
tion. We define a cycle to be an interval Aftime units whereA is another parameter of the protocol in
Figure 2.

Figure 3 illustrates the results atMan for constructing a small torus (visualizations were oledin
using [14]). For this example, it is clear that only a few @gchre sufficient for convergence, and the target
graph is already evident even after the first few cycles. énrtbxt sections we will show that this rapid

convergence is not unique to the torus example butThdian performs well in a wide range of settings
and that it is scalable, very similarly to epidemic broadgastocols.

In Table 1 we summarize the parameters of the protocol. Natéi (target view size) is not a parameter
of the protocol but is part of the target graph charactddmatAs such, it controls the size of the target graph,
and consequently, affects the running time of the protdeot.example, if we increask” while keeping the
ranking method fixed, then the protocol will take longer ton@rge since it has to find a larger number of
links. In fact, K could be omitted if the target graph was defined in some otherg complex manner.

RANK() | Ranking methoddetermines the preference of nodes as neighbors of a bdse no

A Cycle length sets the speed of convergence but also the communicatsn co

0 Peer sampling parametepeers are selected from tiiemost preferred known neighbors
m Message sizanaximum number of node descriptors that can be sent in éesingssage

Table 1: Parameters of tHeMaN protocol.

5 Key Propertiesof the Protocol

In this section we study the behavior of our protocol as ationof its parameters, in particularn, (message
size),y (peer sampling parameter) and the ranking methedk. Based on our findings, we will extend
the basic version of the peer selection algorithm with a &ni@bu-list” technique as described below.
Furthermore, we analyze the storage complexity of the pobtand conclude that on the average, nodes
needO(log N) storage space where€ is the network size.

We will explore two different classes of target graphs: syatrin and asymmetric (to be defined later).
To be able to conduct controlled experiments witivan on different ranking methods, we first select a
graph instead of a ranking method, and subsequently “rexagineer” an appropriate ranking method
from this graph by defining the ranking to be the ordering iest with theminimal path lengttrom the
base node in the selected graph. We will call this selectapigtheranking graph to emphasize its direct
relationship with the ranking method.

Note that the target graph is defined by paraméferso the target graph is identical to the ranking
graph only if the ranking graph i&-regular. However, for convenience, in this section we wdt rely
on K because we either focus on the dynamics of convergence faseg to convergence time), which is
independent of<, or we study the discovery of neighbors in the ranking grapéctly.

In order to focus on the effects of parameters, in this seotie assume a greatly simplified system
model where the protocol is initiated at the same time at@dles, where there are no failures, and where
messages are delivered instantly. While these assumpi@enslearly unrealistic, in Section 6 we show
through event-based simulations that the protocol is méhg robust to failures, asynchrony and message
delays even in more realistic settings.

5.1 Analogy with the Anti-Entropy Epidemic Protocol

In Section 3 we used an (unspecified) dissemination apprimadbfine the overlay construction problem.
Here we would like to elaborate on this idea further. Indelee anti-entropy epidemic protocol, one imple-
mentation of such a dissemination approach, can be seermasialcase of-Man, where the message size
m is unlimited (i.e.,m > N such that every possible node descriptor can be sent in ke smegsage) and
peer selection is uniform random from the entire networkthia case, independent of the ranking method,

all node descriptors that are present in the initial viewl$ lvé disseminated to all nodes. Furthermore, it is
known that full convergence is reached in less than logaithime [7].

For this reason, the anti-entropy epidemic protocol is irtgrt also as a base case protocol when evalu-
ating the performance akFMaN, where the goal is to achieve similar convergence speeditemtnopy, but
with the constraint that communication is limited to exafjiag a constant amount of information in each
round. Due to the communication constraint, performandenailonger be independent of the ranking
method.

5.2 Parameter Setting for Symmetric Target Graphs

We define a symmetric target graph to be one where all nodemtarehangeable. In other words, all
nodes have identical roles from a topological point of viSuch graphs are very common in the literature
of overlay networks. The behavior GEMAN is more easily understood on symmetric graphs, because
focusing on a typical (average) node gives a good charaatem of the entire system.

We will focus on two ranking graphs, both undirected: therand ak-out random graph, where
random out-links are assigned to all nodes and subsequdstigirectionality of the links is dropped. We
choose these two graphs to study two extreme cases for thenkaetiameter. The diameter (longest minimal
path) of the ring iSO (V) while that of the random graph @(log V).

Let us examine the differences between realistic paranseténgs and the anti-entropy epidemic dis-
semination scenario described above. First, assume thatdlssage size is a small constant rather than
being unlimited. In this case, the random peer selectioordlgn is no longer appropriate: if a node
contacts peejf that ranks low withi as the base node, théannot expect to learn new useful links frgm
because now (due to the smal) node; has a strong bias in its view towards nodes that rank high yvith
as a base node.

On the other hand, if a nodeselects peers that rank too high withs the base node, then convergence
might slow down as well. The reason for this is that conseeyieers returned by the peer selection method
will more often get repeated; in part because a nodemore likely to select a peer to communicate with
that selected shortly before, and in part because there are simply fewgesithat are “close” to any given
node than nodes that are far from it. This in turn results aneased correlation between the partial views
of communicating partners, so the epidemic process is ngimadly efficient.

Figure 4 illustrates this tradeoff using two ranking graptie ring and a random graph. The latter is
generated by first constructing a 2-out directed regulataangraph by selecting two random out-edges for
each node, and subsequently taking the undirected versithisagraph. The average degree of a node is
thus 4, with a small variance. The basic version in Figurg dfplies the peer selection algorithm which
picks a random peer from the highest rankihgodes from the view, as described earlier. The poirt N
andm = N corresponds to an anti-entropy epidemic disseminati@n, (peer selection is unbiased and
there are no limits on message size) which is optimal.

As predicted, with no limits on the message size £ N), we can observe the effect due to the lack
of randomness if the selected peer ranks too higis (small). Furthermore, for large performance again
degrades when we place a limit on the message size since rilgégation between communicating peers’
ranking of the same set of nodes is reduced. This effect ssgesnounced for largern because now we
might obtain useful information by chance even if theretitelicorrelation between the rankings.

To verify our explanation as to why performance degradel détcreasing), we apply aabu listat all
nodes in order to avoid contacting the same peers over amégae. The tabu list contains a fixed number
of peers that a given node communicated with most recenthe rfode then does not initiate connection
with any nodes in its tabu list. We experimented with a tabudize of 4. This mechanism does not add
any communication overhead since it simply records thedl@astmmunications, but it is rather effective in

T T 6 T
1] 4-out Random— — 4-out Random— —
11 Ring Ring
55114 A 55 =
\ ; m=10 / //_— m=10
5 [N /.f e 5 /

— — —— -

cycles
s/
(
\
AN
N
\
j
3
1l
S
cycles
N
AN
N\
\
AN
) \
i
3

4.5 4.5
7~
\‘\\\&/_/ e
4 > = 47
m=2000 e — e~ SN = T — = m=2000
35 . . . 35 . . .
1 10 100 1000 10000 1 10 100 1000 10000
v W
(a) Basic T-Man protocol (b) T-Man with Tabu List

Figure 4. Time to collect 50% of the neighbors at distance ionthe ranking graph. Network size is
N = 2000. Node views are initialized to contain 5 random links eachaph (b) was obtained using a tabu
list of size 4.

reducing the negative effects of smallvalues as Figure 4(b) illustrates.

We can draw several other conclusions from the results inrEig. First, the tabu list slightly improves

even the performance of anti-entropy epidemic dissenunatiith completely random peer selection &
1» = N). This is due to the fact that initially views contain onlyf@odes (to be precise, five, in this case).
Without a tabu list, this significantly increases the chasfcentacting the same peers in the first few cycles,
while the views are still small. Such communications areeftective in advancing dissemination due to
the correlated views of the communicating peers. Also nudé When there is no limit on message size,
the random graph outperforms the ring, especially whenahe list is applied. This is due to the fact that
the number of neighbors of a node in the random graph incsezgeonentially, so even for a small set of
closest nodes, diversity is very high.

Finally, we note that the exponentially increasing neighbod becomes a disadvantage wheiis
larger, because the view of peers that are further away fhenbase node in the ranking graph will be more
uncorrelated to the view of the original peer. This sugg#sts for such graphs, peer selection should be
aggressivey = 1) and should be combined with the use of tabu lists.

5.3 Noteson Asymmetric Target Graphs

The topological role of nodes in asymmetric target graph®isidentical. For example, some nodes can
be more central or more connected than others, there candgelimodes connecting isolated clusters, and
so on. While symmetric graphs already exhibit complex bemawe argue that asymmetric graphs cannot
be treated reasonably in a common framework. Each case aessmrate analysis that needs to take into
account the particular structure of the graph.

To understand the problem better, consider a ranking metiaids independent of the base node. This
ranking method will induce a star-like structure since atles will be attracted to the very same high
ranking nodes. In this case, more and more nodes will cotttaatodes that rank high in the (in this case,
common) ranking. As a result, convergence speeds up enslynatithe cost of a higher load on the central
nodes. The reason is simple: the central nodes can collectigihh ranking descriptors faster because they

90 T

~ average contacts ©
80} 5 g B empirical standard deviation x

70
60
50

40

Number of contacts

30F x x
20 |

10

1 10 100 1000 10000
Node Profile

Figure 5: Number of contacts made by nodes while constri@ibinary tree. Statistics are over 30 inde-
pendent runs. The parameters &e= 10000, m = 20, number of cycles is 15) = 10 and the tabu list
size is 4. In the ranking graph, the root is node 0 and theiok-lof node; are2i 4+ 1 and2i + 2.

are contacted by many nodes. Due to their central positi@y, also distribute them very rapidly. One can
even exploit this effect. For example, if the goal is to bualduper-peer topology, with the high bandwidth
nodes in the center, then the central nodes might actualbleeto deal with the extra load, thus resulting
in an efficient, but still fully self-organizing solution.

This effect can be observed in other interesting topolog&eswvell. For example, rooted regular trees,
where the non-leaf nodes haveut-links and one in-link, except the root, that has noikdi If the ranking
graph has such a topology, the resulting target graph widygnmetric with highly nonuniform average
traffic at nodes, as shown in Figure 5. One reason for thidtrisstinat a large proportion of the nodes are
leaves. Leaf nodes, having only one neighbor, will have ddroy to talk to nodes that are further up in the
hierarchy. This adds extra load on internal nodes and pata th a more central position.

This in turn has a non-trivial effect on the convergence efglotocol, and allows-MAN to have better
performance for trees than for symmetric graphs. Figuréu6tibtes this effect. In Figure 6(a), we can
observe the performance DfMaN for a rooted and balanced binary tree as a ranking graph. Weema
that there is a peculiar minimum when message size is ueliriitity) is small. In this region, the binary
tree consistently outperforms the ring, even for a small

This effect is due to the asymmetry of a binary tree. To shaw; the ranT-MaN with an additional
balancing technique, to cancel out the effect of centralesodn this technique, we limit the number of
times any node can communicate (actively or passively) @ esgcle to two. In addition, nodes also apply
hunting[7], that is, when a node contacts a peer, and the peer rafusesnnection due to having exceeded
its quota, the node immediately contacts another peerthietijpeer accepts connection, or the node runs out
of potential contacts. The results are shown in Figure Gfbjhe region of practical settings of andm,
the advantage of the binary tree disappears, while the nesgpves the same performance.

More detailed analysis reveals that in the initial cyclexjes that are close to the root play a bootstrap
function and communicate more than the rest of the nodesr #fat, as the overlay network is taking shape,
nodes that are further down the hierarchy take over the nesmeigt of their local region, and so on. Thisis a
rather complex behavior, thatémergen{not planned), but nevertheless beneficial. This also siggeat

10

Binary Tree — — Binary Tree — —
Ring Ring
55 55
m=10 m=10
J— - T ——
0 5 i . 5
g 4 m=20 $ / m=20
> = = — - > Y/
(8] o
—
45 4 d 45 Y
/ ~ /
= =
4 RN - =_ S
N \’>'\/\/\§’__
N —_ — m=2000 m=2000
N~
35 . . . 35 . . .
1 10 100 1000 10000 1 10 100 1000 10000
v W
(a) T-Man with Tabu List (b) T-Man with Tabu List and Balancing

Figure 6: Time to collect 50% of the neighbors at distanceiartbe ranking graph. The network size is
N = 2000. Node views are initialized by 5 random links each. The tadislze is 4.

if the target graph is not symmetric, then extra attentiameisded when explaining the behaviorTef An.

54 Storage Complexity Analysis

We derive an approximation for the storage space that isaukfa maintaining views by the nodes (recall
that there is no hard limit enforced by the protocol). Thigragimation is based on a number of simplifying
assumptions that convert the problem into a model of digsatinig news items, where only the most inter-
esting news items can spread due to limited message sizee@udntly, we present experimental validation
of the approximation using-MAN on different realistic target graphs.

54.1 TheNews Spreading M odel

To derive the approximation, we assume that the ranking oadeik independent of the base node, that
is, all nodes rank a given set of node descriptors the same ag rational for this assumption is the
following. One conclusion of previous sections was thatsiecess of-MAN crucially depends on the fact
that whenever a nodeselects a peej usingseLECTPEER, node;j has a similar ranking to nodig because
this way it can provide relevant node descriptors to nodéssuming that the ranking does not depend on
the base node means that any selected riddegyuaranteed to have an identical ranking to that of ngde
which is the ideal case fa-MAN, and this case is approximated well on all graphs whekean has good
performance.

This assumption, however, introduces a side-effect: itiesphat the target graph is a star-like structure,
with the m highest ranking nodes forming a clique, and all the otheesgabinting to these: nodes. This
level of asymmetry is highly nontypical and therefore is anealistic scenario forT-MaN. To “fix” this
side-effect, we assume that peer selection returns a randdmfrom the entire network, which makes the
role of all nodes identical.

In this setting, node descriptors have no relation to actadks anymore (that is, the node addresses in
the descriptors are never used), so we can think of the medgbr@adinghews itemghat have a natural
ranking based on “interestingness”.

11

observed x
predicted

N=100000, m=40

100000

10000

1000

n(1)

100 |

10 ¢

N=10000, m=20

1 10 100 1000 10000 100000

Figure 7: Experimental results and values predicted by &mug2) for n(j) with two sets of parameters
N = 10000, m = 20 and N = 100000, m = 40. For eachj, the converged value of(j) is indicated as a
separate point. The observed values correspond exacthg forédicted one for the initial constant section,
and are covered by the line segment on the graph.

Let n(j) denote the number of nodes in the network that know about ¢es item of rankj. The
notationn(j,¢) allows us to express the time dependence of the same valuestaffeby showing that
n(j,t) = Nm/j if j > m for a large enough. The main idea is based on the observation that, due to
symmetry,n(j,t) grows according to the same curve for glbut only until the overall number of items in
the node’s view grows too large and the item with rgnko longer makes it into the exchanged messages
(and therefore its replication stops). At that pairyj, ¢) assumes its final value.

To allow for an approximation of the average storage costmadel the representation of each news
item as a single continuous variable, that is, we assumeathabdes store exactly < n(j,t)/N < 1
instances of the news item of rapk Under this assumption we can say that the funcign ¢) stops
growing when higher ranking items already fill all the aviBiém slots in the messages, since from that
point, the news item of rankwill be excluded from all communication:

J
Zn(k:,t*) = Nm, (1)

k=1

wheret* denotes the point in time when this equation holds for thetfiree. Sincen(j,t) never decreases,

we haven(j,t) = n(j,t*) for t > ¢*. We know that the functions(k, ¢) grow at exactly the same rate for

all &, so we can simplify the expressionsjagj, t*) = Nm, that is,

Nm
J

n(j,t) = , t>tr (2
This proves the result. Figure 7 compares the theoretiealigion and the converged distribution obtained
experimentally via simulation.

Equation (2) allows us to approximate the actual storagessiheat is required for the views of the nodes.
We focus only on the items that rank lower than The highest ranking. items represent a small constant

12

factor. The sum of all entries with a rank higher tharstored in the system is

N N
@z/ N—mdj:Nm(lnN—lnm):lenﬁ:O(NlogN). (3)
e m o J m

Therefore each view storg3(log V) entries on the average. Note that this result is indepenofetite
number of iterations executed, and it is also independettieofictual form of the functions(j, t); recall
that the only assumption we made was that they are monotiynicereasing.

Finally, we note thatVm/j = Nmj~! is technically a power law distribution, as it follows the'rfo
477, Power laws are very frequently observed in complex evglviatworks [3]. The phenomenon is often
due to some form of “the rich get richer” effect. One can link oesults to the study of other complex
networks, for example, social networks. All nodes starhwitrandom constant-size set of news items, and
they gossip always only then most interesting ones that they currently know. This dymamésults in a
power law distribution of news items, with the most inteireghews being known to everyone. Furthermore,
each participant learns only abautlog V) news items from the overald(/V) news items available.

5.4.2 Empirical Validation

We verify experimentally that the prediction in (2) holds foMaN when different ranking methods are
employed. This would support as a consequence the claintthaition (3) characterizes the storage com-
plexity of the protocol.

We need to generalize(j) since ranking can now depend on the base noden (jgtbe the number of
nodes that know about the node with rghiiccording to their own ranking of the entire network. Fig8re
shows the values of(j) for three ranking graphs at three different times. Althotlghexperiments reported
in Figure 8 were performed without a tabu list, further expents (not shown) show that tabu lists have no
observable effect on the distribution of ranks in the vieWsey only speed up convergence of the protocol
as discussed earlier.

In Figure 8 we can observe that the ring fulfills the assunmgtiof Section 5.4.1 best: thegj) values
that have not stopped growing have the same value at eaclptime which means they indeed grow at the
same rate. The largest deviation can be observed in the t#se @ndom graph. There, the growth of the
n(j) values slows down smoothly which implies that the assumpti@y grow at the same rate does not
hold. This results in a slight “overshoot” where the obsdrvalues are slightly higher than those predicted.

Note that in the case of the binary tree, the predicted vatoaikh closely the observed ones even
though the topology is not symmetric. This further undewirthe robustness of the prediction. Of course,
the more central nodes need more storage capacity, thefoednolds only on average. However, in our
preliminary experiments (not shown), we have seen thaingedt reasonable hard limit on the view size
that is significantly larger tham (for example, 1000 items) does not result in any significaiferénce in
performance. For this reason we opted for the simplifiedudision and we omit hard limits on the view
size in this paper.

6 Experimental Results

In the previous section we considered the most basic veddithe protocol to shed light on its convergence
properties and storage complexity. This section is comzkmmith developing additional techniques that
allow for the practical application of the protocol; in padlar, we address two important problems: how to
start and how to stop the protocol. We also present an exteasipirical analysis under different parameter
settings and different failure scenarios, introduced byief lliscussion of the simulation environment and
the figures of merit analyzed in this paper.

13

observed ' ' observed— —
10000 predicted 1 10000 predicted .
after cycle 10 after cycle 10
x XXX X XXX 5 — - — —
1000 1000
= after cycle 4 = after cycle 4
k=4 =
100 x X X 3 XXX sk SRR 100 — - —_____'\‘——._ N
after cycle 2 after cycle 2 \%\
10 . . . 10 . . .
1 10 100 1000 10000 1 10 100 1000 10000
i i
(a) Ring (b) Binary Tree
observed— —
10000 —— predicted
after cycle 10 N
1000 =7 e
= after cycle 4 —
=
100 ==
after cycle 2
10 . . .
1 10 100 1000 10000

(c) 4-Out Random

Figure 8: Experimental and predicted values.0f) for three different ranking graphs. Experiments were
run with N = 10000, m = 20 andy = 10, without a tabu list.

6.1 A Practical Implementation

So far we assumed that the protocol is started at all nodexat m a synchronous fashion, and we were not
dealing with termination at all. We also assumed that at@dles the initial set of known peers is a random

sample from the network. In this section, we replace thesealistic assumptions with practically feasible
solutions.

6.1.1 Peer Sampling Service

The peer sampling service provides each node with contipaysto-date random samples of the entire
population of nodes. Such samples fulfill two purposes: trgble the random initialization of tHeM AN
view, as discussed in Section 4, and make it possible to g a starting service as well, allowing for
the deployment of various gossip based broadcast and amstlficotocols.

14

In this paper we consider an instantiation of the peer saigervice based on theewscasT proto-
col [12], chosen for its low cost, extreme robustness andmahassumptions. The basic ideanewscAsT
is that each node maintains a local set of random node addretbe (partialyiew. Periodically, each node
sends its view to a random member of the view itself. Whenivemesuch a message, a node keeps a fixed
number of freshest addresses (based on timestamps),esefemn those locally available in the view and
those contained in the message.

Each node sends one message to one other node during a fixemhtémval. Implementations exist in
which these messages are small UDP messages containiraxiapgtely 20-30 IP addresses, along with
the ports, timestamps, and descriptors such as node IDstifienterval is typically long, in the range of
10s. The cost is therefore small, similar to that of heattbezssages in many distributed architectures. The
protocol provides high quality (i.e., sufficiently randosgmples not only during normal operation (with
relatively low churn), but also during massive churn andheatter catastrophic failures (up to 70% nodes
may fail), quickly removing failed nodes from the local viewf correct nodes.

6.1.2 Starting and Terminating the Protocol

We implemented a simple starting mechanism based on wellskibroadcast protocols. The content of the
broadcast message may be a simple “wake up” specifyingnto build a predefined network, or it may
include additional information specifyinghat network to build (e.g., by providing the implementation of
a specific ranking function). To simplify our simulation @mnment, we adopt the first approach; technical
issues related to the second one may be easily solved in mmgaimentation.

The following terminology is used when discussing the signnechanism. We say that a nodadive
if it is aware of and explicitly participating in a specificstance off-MaN; if the node is not aware that a
protocol is being executed, it is call@thctive

Initially, there is only one active node, tivdtiator, activated by an external event (e.g., a user’s request).
An inactive node may become active by exchanging informatidh nodes that are already active. When
a node becomes active, it immediately starts executing4ken protocol. The final goal is to activate all
nodes in the system, i.e., to start the protocol at all nodes.

The actual implementation of the broadcast can take mamysfdinat differ mainly in communication
overhead and speed.

Flooding As soon as a node becomes active for the first time, it sendskewp” message to a small set
of random nodes, obtained from the peer sampling servideseguiently, it remains silent.

Anti-Entropy, Push-only Periodically, each active node selects a random peer add s€wake-up”’ mes-
sage [7].

Anti-Entropy, Push-Pull Periodically, each node (active or not) exchanges its @i state with a ran-
dom peer. If either of them was active, they both become et

As described above, a node becomes active as soon as itaeeeiiessage from another active node.
Note, however, that messages belonging to the startinggobare not the only source of activation; a
node may also receivelaMAN message, from a node that has already started to executeotbeqgh. This
message also activates the recipient node.

As is well known, flooding is fast and effective but very expiga due to message duplications. In
comparison, the most important advantage of the other tyooaghes is the dramatically lower commu-
nication overhead per unit time. The overhead can furtheelaced to almost zero, due to the fact that
the starting service messages can be piggybacked, for éxapmnEwscasTmessages that implement the
peer sampling service.

15

100

80 r

60

40

probability (%)
cummulative probability (%)

20

0 100 200 300 400
Delay Delay

Figure 9: Probability distribution of end-to-end delaysegorted in the King data set [9].

After the target graph has been built, the protocol does aetito run anymore and therefore must be
terminated. Clearly, detecting global convergence isatiffiand expensive: what we need is a simple local
mechanism that can terminate the protocol at all nodes ercigmtly.

We propose the following mechanism. Each node monitorsaitslocal view. If no changes (i.e., node
additions) are observed for a specified period of tifgd), it suspends its active thread. We call this state
suspendedIf a view change occurs when a node is suspended (due to amimg message initiated by
another node that is still active), the node switches aggiing active state, and resets its timer that measures
idle time.

6.2 Simulation Environment

All the experiments are event-based simulations, perfdrasngPEERSIM, an open-source simulator de-
signed for large-scale P2P systems and publicly availaifBoarceForge [21]. The applied transport layer
emulates end-to-end delays between pairs of nodes basdtk drates of the King data set [9]. Delays
reported in these traces range from 1 ms to 400 ms, and thalglibpdistribution is as shown in Figure 9.

The following parameters are fixed in the experiments: the af the tabu list is 4, and the peer selection
parameterq) is 1. If different values are not explicitly mentioned, timessage sizer() is 20, the cycle
length (A) is 1s, and the value af,4, is set to 4s. Each experiment is repeated 50 times with difter
random seeds. Plots show the average of the observed nmeasioreg with error bars; when graphically
feasible, individual experiments are displayed as sepal@iis with a small random translation.

6.3 Ranking Methods

To emphasize the robustnessTeMaN to the actual target graph being built, we performed all erpents
on two different tasks: building a sorted ring, and buildiadpinary tree. These two graphs have very
different topologies: the ring has a large (linear) diametaile the tree has a small (logarithmic) one.
Besides, as pointed out in Section 5.3, in the tree some ravdawore central than others, while in the ring
all nodes are equal from this point of view.

In the previous sections, we applied the concept of a rangiagh to (implicitly) define the ranking

method. This approach is not practical, so we need to defiplc#xand locally computable ranking meth-
ods.

16

6.3.1 Sorted Ring

Creating a sorted ring is very useful, for example, for theetdralized computation of the ranking of
nodes [19] or jump-starting distributed hash tables, sic@ireorDp [25]. The latter application is further
discussed in Section 7.

We assume that the node profile is an element of a collectiegr, which a total ordering relation is
defined. In particular, we work with 60-bit integers as nod#fifes that are initialized at random for each
node. We want the target graph to be a ring, in which the nodftlgs are ordered, (except one pair where
the largest and smallest values meet) to close the ring.

To achieve this target graph, the output of the ranking mie#aouk (z, 41, . . ., y) is defined as follows.
First we construct a sorted ring (as defined above) out of éh@fsinput profilesy,, ...,y and the base
nodez, and assign a rank value to all nodes: the minimal hop coont fr in this ring. The output of the
ranking method is an ordered list of the input profiles acewytb these assigned rank values. Note that this
is adirection-dependentanking method, that cannot be induced by a distance meteictbe node profiles.
For simplicity, we will callT-Man with this ranking metho&orTED RING.

6.3.2 Binary Tree

The second topology we consider is an undirected rootedbinee. To achieve a well controlled target
graph for the sake of experimental comparison, the nodelgsadire defined as follows. If there ahé
nodes, then we assign the integérs. ., IV to the nodes in some arbitrary order. The node with value 1 is
the root. Using the binary representation of these integeesnodeas . . . a,,, has two childrenus . . . a,,0
andas . .. a,, 1. Numbers starting with 1 belong to leafs.

It is easy to calculate the shortest path length in this tede/den two arbitrary nodes, based on the two
node profiles. This notion of distance is used to define thkimgrfunction required byr-Man to build the
tree:RANK(z,y1, . .., yx) Sorts the input profileg,, . . ., yx according to distance from the base nadé-or
simplicity, we will call T-MAN with this ranking method REE.

6.4 Performance Measures

We are interested both in the effectiveness (speed andiygualid efficiency (cost) of the protocol. We
evaluate our protocols using the following performance sness: convergence timedarget links found
termination timeandcommunication costs

convergence time The time needed to obtain thperfecttarget graph. In the case 8brRTED RING, each
node must know at least its first successor and predecestue sorted ring. FOTREE, each node
different from the root must know its parent, and non-leadesomust know their children.

target linksfound The number of links in the target graph that are actually fobp T-MAN at a certain
time, typically at termination time. This allows for a moradigrained assessment of performance
than convergence time.

termination time The total time needed to complete (start, execute and siegrotocol atll nodes. This
may be considerably longer than convergence time, althagyve will see, typically only few nodes
are still active after reaching convergence.

communication cost The number of messages exchanged. Note that all messagesxekianged are of
the same size.

17

30

30

A‘nti-Entr‘opy (Pﬁsh) RIS A‘nti-Entr‘opy (Pﬁsh) S
Anti-Entropy (Push-Pull) -—-m-—- Anti-Entropy (Push-Pull) s
Flooding o Flooding e

25 Synchronous start e 1 25 - Synchronous start —e .
D) . I
g g
= E 20 1
[} Q
o (8]
c c
S S
9] 5 15 |
> >
c c
3 5] . i
O & Lg . e

10 Y - b
TR TR v BT e R TR T e R T
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Network Size Network Size
(a) SORTED RING (b) TREE

Figure 10: Convergence time as a function of size, usingmifft starting protocols.

The unit of time will be cycles or seconds, depending on wiécmore convenient (note that cycle
length defaults to 1s). We also note that convergence timetislefined if the protocol terminates before
converging. In this case, we use the number of identifiecetdiigks as a measure.

6.5 Evaluatingthe Starting Mechanism

Figure 10 shows the convergence time $aRTED RING and TREE, using the starting protocols described
in Section 6.1.2. The cycle length of the anti-entropy @rsiwas the same as that DMan, and the
flooding protocol used 20 random neighbors at all nodes. &se of synchronous start is also shown for
comparison. Note that these figures do not represent a direasure of the performance of well-known
starting protocols; rather, convergence time plotted hepeesents the overall time needed to both start the
protocol and reach convergence, witMAN and the broadcast protocol running concurrently.

In the case of flooding, “wake-up” messages quickly reacmadles and activate the protocol; almost
no delay is observed compared to the synchronous case eAintipy mechanisms result in a few seconds
of delay. In the experiments that follow, we adopt the antr@&y, push-pull approach, as it represents a
good trade-off between communication costs and delay. Nateever that (unlike the push approach) the
push-pull approach assumes that at least the startingceeses started at all nodes already.

6.6 Evaluating the Termination M echanism

We experimented with various settings #y;,. ranging from 2sto 12 s. Figure 11 shows both convergence
time (bottom three curves) and termination time (top thnewes) for different values af; ., for SORTED
RING and TREE, respectively. In both cases, termination time increaisesily withd;4.. This is because,
assuming the protocol has converged, each additional tyelait simply adds to the termination time.

For small values convergence was not always reached, eipdor TREE. For SORTED RING, all runs
converged except the case whep, = 2 and N = 216, when 76% of the runs converged. Ftxek, all
runs converged witld;;;. > 5 and no runs converged f6f;g. = 2, N = 2'3), (6;q. = 2, N = 2'%), and
(S;q1e = 3, N = 216). Even in these cases, the quality of the target graph atmetion time was almost
perfect, as shown in Figure 12. In the worst of our experisiene observed that no more than 0.1% of the

18

50

40

30

Time (s)

20 | ®

10 ¢

Sigle (5) Sigle (5)
(a) SORTED RING (b) TREE

Figure 11: Convergence time (bottom curves) and termindiioe (top curves) as a function &f;..

99.99

. 99.98

S

= 99.97

=}

c

3 99.96

('R

2 99.95 I

£ {

- 99.94 /

B }

g 9993

e 99.92

size=210 ——

99.91 sizezzi steen
99.9 Size=2"" —x—

2 4 6 8 10 12
Sigie ()

Figure 12: Quality of the targétree graph at termination time as a function®@j;.

target links were missing at termination. This may be swfitfor most applications, especially considering
that the target graphs will never be constructed perfently dynamic scenario, where nodes are added and
removed continously. Nevertheless, from now on, we disttagarameter combinations that do not always
converge.

Apart from longer executions, an additional consequencehobsing large values @f. is a higher
communication cost. However, since not all nodes are adiivang the execution, the overall number of
messages sent per node on average is less than one quahenahtber of cycles until global termination.
To understand this better, Figure 13 shows how many nodeacéixe during the construction GoRTED
RING and TREE, respectively. The curves show both an exponential inereathe number of active nodes
when starting, and an exponential decrease when stoppiregpdriod of time in which all nodes are active
is relatively short.

These consideration suggests the use of higher valuégfgrat the cost of a larger termination time and
a larger number of exchanged messages. The chosen valyg ¢4 s) represents a good trade-off between
the desire of obtaining a perfect target graph and the colesely larger cost in time and communication.

19

100 100
80 80
g 60 g 60
© el
o o
c =
(] [
2 40 2 40
Q (8]
© ©
20 20
0 0
Time (s) Time (s)
(a) SORTED RING (b) TREE
Figure 13: Proportion of active nodes during execution.
50 50
45 t 1 45 . E
® a0t 1 € a0l | .
[E] o i
3 9 >
o 35 B - 35 |]
= £
F 30} it 1 F 30+t 8
c i g - B c
g 25¢ | i g 25¢ E
g £ e ;
& 20] E o] @ v]
'_ 1 1 i ' 1 1 1 ' i 1 ' i '_ 1 1 1
15 L Pl N B 151 i
lo L L L L L L L L lo L L L L L L L L
0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4
Cycle Length (s) Cycle Length (s)
(a) SORTED RING (b) TREE

Figure 14: Termination time as a function of cycle length.

6.7 Parameter Tuning

Cycle Length If a faster execution is desired, one can always decreaseytie length. However, after
some point, decreasing cycle length does not pay off becaessage delay becomes longer than the cycle
length and eventually the network will be congestedriy AN messages. Figure 14 shows the behavior of
T-MAN with a cycle length varying between 0.2 s and 4 s. The figurerstiioe number of cycles required to
terminate the protocol. Small cycle lengths require a langenber of cycles, while after a given threshold
(around 1s), the number of cycles required to complete apobis almost constant. The reason for this
behavior is that with short cycles, multiple cycles may becexed before a message exchange is concluded,
thus wasting bandwidth in sending and receiving old infaromamultiple times.

20

60 60

7 S0r n
Q @
[S] o
> >
L o)
o 40 - o
£ £
F T F
5 o s
=30 By =
£ £
£ £
[} (0]
F 20t 2
lo L L L L L L 10
5 10 15 20 25 30 5 10 15 20 25 30
Message Size Message Size
(a) SORTED RING (b) TREE

Figure 15: Termination time as a function of message size.

Message Size In Section 5, we have examined the effect of the message araengteri) in detail. Here
we are interested in the effect of message size on termimttiee. Figure 15 shows that by increasing the
size of messages exchanged3mrTED RING termination time slightly increases after around= 20. The
reason is that a node becomes suspended only after the lesatemains unchanged for a fixed number
of cycles, but increasing the message size has the effenti@asing the number of cycles in which view
changes might occur, thus delaying termination. The re$oiltT REe have more variance, which might have
to do with the unbalanced nature of the topology, as discuiss8ection 5.3.

6.8 Failures

The results discussed so far were obtained in static nesywikhout considering any form of failure. Here,
we consider two sources of failure: message losses and naslees. Since in this paper we consider only
the overlayconstructionproblem, and nomaintenancewe do not explicitly consider scenarios involving
node churn. Instead, we model churn through nodes leavirtgg@ not allowing joining nodes to participate
in an ongoing construction. Furthermore, since we do not ladeave protocol, leaving nodes are identical
to crashing nodes from out point of view.

MessagelLoss While a simple solution could be to adopt a reliable, conoeebriented transport protocol
like TCP, it is more attractive to rely on a lightweight butipaps unreliable transport. In this case, we need
to demonstrate that-MAN can cope well with message loss. Figure 16 showsTtaan is highly resilient

to message loss and so a datagram-oriented protocol like iB@Rperfectly suitable choice, as message
losses only slowing down the protocol slightly. Many messagchanges are either never started or never
completed, thus requiring more cycles to terminate theoptexecution. Theuality does not suffer much
either. In bothSorTED RINGANdTREE, around 1% of the target links may be missing, as shown byr€itju.
Note that the mean message loss ratio for geographic nexvikekthe Internet is around 2% [13], an order
of magnitude smaller than the maximum message loss ratedt@sour experiments.

Node Crashes Figure 18 shows the behavior ®fMaN with a variable failure rate, measured as the total
number of nodes leaving the network per second per node. YWariexented with values ranging from O

21

60 T 60
size = Zig — .
size = 216 -
50 size=2" - L] 50 b
O)
P o 40
£ £ j
5 § s0fe”
IS © i
£ £ ‘
€ £ s
5] g 200
[Pt ‘
10 1 10 b
O L L L L L 0 L i L L L L
0 5 10 15 20 0 5 10 15 20
Message loss (%) Message loss (%)
(a) SORTED RING (b) TREE
Figure 16: Termination time as a function of message loss rat
100 = : 1 100
998 | e 1 998}
T 996 | e 1 2 9967 "3 l
=] 1 =]
<] o o
L 994 | 1 L 994t :
£ =
3 992t RO 3 992 | o
@ T
2 = b
8 99 ‘— 8 99 | ,
98.8 | size = 21‘3’ —s i 0858 L size = 219 —e— ,
size =2 0 = size = 2 =
98.6 size =2)) 98.6 size =2))
0 5 10 15 20 0 5 10 15 20
Message loss (%) Message loss (%)
(a) SORTED RING (b) TREE

Figure 17: Target links found by the termination time as afiom of message loss rate.

to 10~2, which is two order of magnitude larger than the valug @f* suggested as the typical behavior
of some P2P networks [5]. The results show that lthTED RING and TREE are robust in normal sce-
narios, withTREE being considerably more reliable in the range of extremarfarates. This is due to the
unbalanced nature of the topology as discussed in Section 5.

7 Bootstrapping Chord

After analyzing the behavior of-MAN on relatively basic examples, in this section we present eemo
complex application: rapidly bootstrappi@porp-like networks [25]. We call this protocdl-CHoRbD.

22

100 100
- 995 - 995
c c
= >
(o] (o]
('R L
g R
= 99 r = 99
- -
@ i
< >
IS T
= 985+ = 985
16 " 16
size=2;, —&%— size=2;, —=—
sizezzi """"" size=212 """""
Ze7510 o ETo10 o
98 L Size \2 L L L L 98 L Size: \2 L L L L
0 0.002 0.004 0.006 0.008 0.01 0 0.002 0.004 0.006 0.008 0.01
Node failures per node per second Node failures per node per second
(a) SORTED RING (b) TREE

Figure 18: Target links found by the termination time as afiom of failure rate.

7.1 A Brief Introduction to Chord

CHoRrbDis an example of a key-based overlay routing protocol. Ithgrotocols, subsets of the key space are
assigned to nodes, and each node has a routing table thasitaisoute messages addressed by a specific
key towards the node that is responsible for that key. Thesgng protocols are used as a component
in the implementation of thdistributed hash tabl@bstraction, where (key, object) pairs are stored over a
decentralized collection of nodes and retrieved throughrdluting protocol.

We provide a simplified description @HoRrb, necessary to understafiedCHorbp. Nodes are assigned
randomt-bit IDs; keys are taken from the same space. The ID lengtiust be large enough to make
the probability of two nodes or two keys having the same IDligddle. Nodes are ordered in an sorted
ring as described in Section 6.3.1. The way this ring is canttd naturally inspires #llows relation
over the entire ID (and key) space: we say thdollows b if (a — b+ 2!) mod 2! < 2/~!; otherwisea
preceded. We also define a notion of distance, again, inspired by theedaing, as follows:d(a,b) =
min(|a — b],2" — |a — b|). Thesuccessoof an arbitrary numbei (that is, not necessarily existing node D)
is the node with the smallest ID that followsas defined above. We denote the successobwfsucc (i).

The concepts of predecessgt? successor, ang” predecessor are defined similarly. Keys under the
responsibility of nodeucc, (k).

Each node maintains a routing table that has two p#tsiesandfingers Leaves define an-regular
lattice, where each nodeis connected to it nearest successossccy(n) ... succ,(n). Fingers are long
range links: for each node, its j*" finger is defined asucc (n+27), with j € [0, ¢ —1]. Routing inCHORD
works by forwarding messages following the successor tiinegcwhen receiving a message targeted at key
k, a noden forwards it to its leaf or finger that precedes (or is equalaod is closest taucc, (k), the
intended recipient of the message.

Due to the fingers, the number of nodes that need to be travrseach a destination node(glog N)
(with high probability), whereV is the size of the network [25]. Leaves, on the other handusaeel to

improve the probability of delivering a message in case ibir@s, and to avoid that the ring can be broken
into disjoint partitions.

23

7.2 TheT-Chord Protocol

In the context ofCHORD, our overlay construction problem translates to initialigthe routing tables of all
nodes simultaneously from scratch. The existing join moltds not designed to handle the massive con-
currency involved in a jump-starting process, when all theas are trying to join at the same time [25]. On
the other hand, naive approaches where nodes are forcei thgooverlay in some specified order results
in at least linear time needed to construct the network @atention the serious problem of synchronizing
the operations).

For constructing the leaf set, we simply appiv AN and the ranking method we used to cresd&TED
RING in the previous sections, using node ID-s as node profiles.

Constructing the finger set involves a slight extension él@sicT-M AN protocol. Instead of applying
a ranking method specific to fingers, we simply piggyback thg-building messages: when sending a
message, each node appends a limited set of node addrésges$,selects from its own view, and that
represents the best approximation of the ideal finger séieafdcipient of the message. Each messages thus
consists of two parts: one specific to the leaf set and the sjpexific to the finger set. We fix the size of
these two parts to be equal. If the part assigned to the fimgersaller than the required number of fingers,
the node sends the fingers that are closest to the recipidet no

When receiving a message, as before, the node simply mengéh its current view. At any time, the
actual finger set is then constructed by each node localiy fiodes in its current view. We also note that
we obtained very good preliminary results even without adpeg extra finger nodes to the messages, and
simply relying on the local views that result from pure rirgnstruction. However, if finger candidates are
also included in the messages, we achieve a noticeable vempent. Furthermore, this approach can be
generalized to other target graphs as well, sudPrasry [23], as shown in [11]. All the other components,
that is, the peer sampling service, the starting servicelantermination mechanism are applied as before.

7.3 Experimental Results

First, we modify slightly the definition of some performaroeasures for this application. While the con-
cept of termination time remains unchanged, convergendefiaed as the time needed to obtain routing
tables, that are sufficiently correct to route messagesowitarrors (i.e., without messages failing to reach
their destination). In other words, in a converged netwoeknsw allow for the possibility of having sub-
optimal routing tables (with missing leaves or fingers) jmled routing works without error. Note that if
the ring is complete, then all messages are guaranteed teligerdd, so according to this new measure,
convergence occurs no later than the convergence of the ring

The default parameters are the same asStwTep RING and TREE. Note however that the applied
message size of 20 now means that 10 entries are reserveldefteaf set construction and 10 for the
fingers. For this reason, convergence is expected to takgidhan with 20 entries assigned to a single
target graph.

Figure 19(a) shows the convergence time for different is@nprotocols and for a variable network
size. Convergence now takes longer than the values showigimeF10 due to the decreased message
size (10 instead of 20) relative to each part of the routiridetaFigure 19(b) compares the quality of the
converged routing tables obtained BYCHoRD with the idealCHoRD overlay described in [25], measured
as the average number of hops needed to deliver messagepefftienance off-CHoRbD is slightly worse
due to potentially missing routing table entries, but agpnaites that of the perfecHorp network closely.

Figure 19(c) presents termination times for different ealof parameted; ;.. For small values of; .
and for large networks, we found that the protocol neverlreaconvergence. Nevertheless, Figure 19(d)
shows that even for small values &f;., the number of messages never delivered to the correchdasti
is smaller than 1%, which means that the obtained overlaygisoal approximation o€Horp. However,

24

Convergence Time (s)

Termination Time (s)

Messages

55

50

45

40

35

30

25

20

24

22

Anti-Entropy (Push) —&—
Anti-Entropy (Push-Pull) -—a—-

Flooding - A
. . . . _ Synchronous start --e--
S0 LIl 12,18 14,15 o6 17 L8
Network Size
@)
; .
e B
[& %} = g
N :
i | i ! L o
i 1 i [e ; 1
‘ S s 3 |] |
2 3 4 5 6 . .
Bigle (S)
(©)
size = 216 oo
size=2," -

o {

DHT Delivery Failure Rate (%) Hops

DHT delivery failure rate (%)

4 . . I . . I

oIl 512 513,14 515,16
Network Size

(b)

217

218

0.1

0.01

0.001

le-04

PN

le-05

16

size:Z16

14 +

10

S @

- s

0 .
0 0.002 0.004 0.006 0.00!
Node failures per node per second

®

Figure 19: Experimental results wilhCHORD

25

for 0;4 = 8, all our test runs resulted in 100% successful messageedglso we adopt this value for the
protocol. The slight disadvantage is a larger number of agEssexchanged and a slower termination time.
Figure 19(e) shows the average number of messages sent dg artbe network until termination. This
is significantly lower than the termination time, which abiide expected based on our findings discussed
before (see Figure 13).
Finally, Figure 19(f) shows the behavior BfCHoORD in a faulty environment. Similar tS8ORTED RING
and TReEg, the variable failure rate, measured as the total numbeodés leaving the network per second
per node, ranges from 0 1®~2. An increasing number of routed messages get lost, alth@sgmentioned
previously, the upper end of the failure rate range can bsidered extreme. For normal failure rates, the
performance is only slightly degraded.

8 Conclusions

In this paper we have presentédv AN, a lightweight gossip-based protocol for constructingouzs overlay
networks. The target network is given by the ranking metlddch is a parameter of the protocdkMAN

is robust to the target network: it exhibits good performaatitat is mostly invariant over a wide range of
target networks such as rings and trees. The protocol idsiamul robust to failure scenarios which makes
it attractive for practical applications.

In closing, we note that-MAN has been successfully applied for constructingRk&rry overlay net-
work [11]. We do not discuss this particular applicationehdue to space limitations. In this paper we
have chosen to focus on overlay construction as opposedettagvmaintenance, which we have explored
elsewhere [10]. Our overlay maintenance techniques ievioiited local view sizes and periodic removal
of old entries from the view. In addition, random samplesrfriie network are constantly injected into the
local view.

The most important future development involves charaztegithe performance of the protocol theoret-
ically, based on the target network. In this paper we havegmted numerous observations derived mostly
from heuristic and empirical considerations that outlinegible directions for such a theoretical framework.

References

[1] Karl Aberer, Anwitaman Datta, Manfred Hauswirth, andrRn Schmidt. Indexing data-oriented overlay networks. In
Proceedings of 31st International Conference on Very L>bases (VLDB)Trondheim, Norway, August 2005. ACM.

[2] Lada A. Adamic, Rajan M. Lukose, Amit R. Puniyani, and Bardo A. Huberman. Search in power-law networRhysical
Review E64:046135, 2001.

[3] Réka Albert and Albert-Laszl6 Barabasi. Statiatimechanics of complex networkBeviews of Modern Physics4(1):47—
97, January 2002.

[4] Dana Angluin, James Aspnes, Jiang Chen, Yinghua Wu, d@aad Yin. Fast construction of overlay networks.Saventeenth
Annual ACM Symposium on Parallelism in Algorithms and Aegdtures (SPAApages 145-154, July 2005.

[5] Miguel Castro, Manuel Costa, and Antony Rowstron. Penfance and dependability of structured peer-to-peer aygrlin
Proceedings of the 2004 International Conference on DegbledSystems and Networks (DSN'0Ajashington, DC, USA,
2004. IEEE Computer Society.

[6] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, NickHaan, and Scott Shenker. Making gnutella-like p2p systerak sc
able. InProceedings of ACM SIGCOMM 2008ages 407-418, 2003.

[7] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, JohsdrarScott Shenker, Howard Sturgis, Dan Swinehart, and Doug
Terry. Epidemic algorithms for replicated database maemee. InProceedings of the 6th Annual ACM Symposium on
Principles of Distributed Computing (PODC’87pages 1-12, Vancouver, British Columbia, Canada, Augd87 1ACM
Press.

[8] Patrick Th. Eugster, Rachid Guerraoui, Sidath B. Hankande, Anne-Marie Kermarrec, and Petr Kouznetsov. Ligight
probabilistic broadcastACM Transactions on Computer Syste@i54):341-374, 2003.

26

9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

(23]

[24]

[25]

[26]

[27]

(28]

Krishna P. Gummadi, Stefan Saroiu, and Steven D. GribKieg: Estimating latency between arbitrary internet endth.
In Internet Measurement Workshop (SIGCOMM IMR002.

Mark Jelasity and Ozalp Babaoglu. T-Man: Gossip-daseerlay topology management. In Sven A. Brueckner, Gingan
Di Marzo Serugendo, David Hales, and Franco ZambonellipegliEngineering Self-Organising Systems: Third Interna-
tional Workshop (ESOA 2005), Revised Selected Papehsme 3910 ofLecture Notes in Computer Sciengages 1-15.
Springer-Verlag, 2006.

Mark Jelasity, Alberto Montresor, and Ozalp Babaogline bootstrapping service. Rroceedins of the 26th International
Conference on Distributed Computing Systems Workshof3Q8-WORKSHOPS).isboa, Portugal, 2006. IEEE Computer
Society. International Workshop on Dynamic Distributedt®yns (IWDDS).

Mark Jelasity, Spyros Voulgaris, Rachid Guerraounn&-Marie Kermarrec, and Maarten van Steen. Gossip-based p
sampling.ACM Transactions on Computer Syste2f(3):8, August 2007.

Sunil Kalidindi and Matthew J. Zekauskas. Surveyor:iAfiastructure for Internet performance measurement®rdceed-
ings of INET’99 San Jose, CA, USA, 1999.

Yehuda Koren. Embeddehttp://www.research.att.com/"yehuda/index_programs. html .

Boon Thau Loo, Tyson Condie, Joseph M. Hellersteinyd®eManiatis, Timothy Roscoe, and lon Stoica. Implementing
declarative overlays. IProceedings of the twentieth ACM symposium on Operatingsgsprinciples (SOSP’05pages
75-90. ACM Press, 2005.

Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenkezai®h and replication in unstructured peer-to-peer nédsvoin
Proceedings of the 16th ACM International Conference oregugmputing (ICS’02)2002.

Laurent Massoulie, Anne-Marie Kermarrec, and Aydivd. Ganesh. Network awareness and failure resiliencelfn se
organising overlays networks. Proceedings of the 22nd Symposium on Reliable DistribugsteBis (SRDS 2003)ages
47-55, Florence, Italy, 2003.

Alberto Montresor. A robust protocol for building supeer overlay topologies. IRroceedings of the 4th IEEE Interna-
tional Conference on Peer-to-Peer Computing (P2P,@&ges 202—-209, Zurich, Switzerland, August 2004. IEEE @der
Society.

Alberto Montresor, Mark Jelasity, and Ozalp Babaogecentralized ranking in large-scale overlay networkechhical
Report UBLCS-2004-18, University of Bologna, Departmeh€omputer Science, Bologna, Italy, December 200dp:
/Iwww.cs.unibo.it/pub/TR/UBLCS/2004/2004-18.pdf

Alberto Montresor, Mark Jelasity, and Ozalp Babao@tord on demand. IRroceedings of the 5th International Conference
on Peer-to-Peer Computing (P2P 200pages 87—94, Konstanz, Germany, August 2005. IEEE.

PeerSim. http://peersim.sourceforge.net/.

Sean Rhea, Brighten Godfrey, Brad Karp, John Kubiatanw8ylvia Rathnasamy, Scott Shenker, lon Stoica, and Haflian
OpenDHT: A public DHT service and its uses. Pmoceedings of ACM SIGCOMM 2005ages 73—84. ACM Press, 2005.

Antony Rowstron and Peter Druschel. Pastry: Scalati#ributed object location and routing for large-scalerp®-peer
systems. In Rachid Guerraoui, editbtiddleware 2001volume 2218 of_ecture Notes in Computer Scienpages 329-350.
Springer-Verlag, 2001.

Ayman Shaker and Douglas S. Reeves. Self-stabilizingcwred ring topology p2p systems. Rroceedings of the Fifth
IEEE International Conference on Peer-to-Peer ComputiRgR 2005) pages 39-46, Konstanz, Germany, August 2005.
IEEE Computer Society.

lon Stoica, Robert Morris, David Karger, M. Frans Kaaesk, and Hari Balakrishnan. Chord: A scalable peer-to-foesup
service for internet applications. Froceedings of the 2001 Conference on Applications, Téapies, Architectures, and
Protocols for Computer Communications (SIGCOMpRges 149-160, San Diego, CA, 2001. ACM, ACM Press.

Robbert van Renesse, Kenneth P. Birman, and Wernerl&/odestrolabe: A robust and scalable technology for disiid
system monitoring, management, and data min&k@M Transactions on Computer Systei§2):164—-206, May 2003.

Spyros Voulgaris, Anne-Marie Kermarrec, Laurent Magie, and Maarten van Steen. Exploiting semantic protyiimni peer-
to-peer content searching. Rroceedings of 10th IEEE International Workshop on Futuends of Distributed Computing
Systems (FTDCS 20Q4)ages 238-243, 2004.

Spyros Voulgaris and Maarten van Steen. An epidemitoga for managing routing tables in very large peer-torpes-
works. InProceedings of the 14th IFIP/IEEE International WorkshaopQistributed Systems: Operations and Management,
(DSOM 2003) number 2867 in Lecture Notes in Computer Science. Spri2ge3.

27

[29] Spyros Voulgaris and Maarten van Steen. Epidemiestyanagement of semantic overlays for content-based segurdh
José C. Cunha and Pedro D. Medeiros, editersceedings of Euro-Panumber 3648 in Lecture Notes in Computer Science,
pages 1143-1152. Springer, 2005.

[30] Ben Y. Zhao, Ling Huang, Anthony D. Joseph Jeremy Strghland John D. Kubiatowicz. Exploiting routing redundanc
via structured peer-to-peer overlays.Rroceedings of the 11th IEEE International Conference otwidek Protocols (ICNP
2003) pages 246—257, 2003.

28

