
T-Man: Gossip-based Fast Overlay Topology Construction∗

Márk Jelasity†

University of Szeged, Hungary
jelasity@inf.u-szeged.hu

Alberto Montresor†

University of Trento, Italy
montreso@dit.unitn.it

Ozalp Babaoglu
University of Bologna, Italy

babaoglu@cs.unibo.it

Abstract

Large-scale overlay networks have become crucial ingredients of fully-decentralized applications
and peer-to-peer systems. Depending on the task at hand, overlay networks are organized into different
topologies, such as rings, trees, semantic and geographic proximity networks. We argue that the central
role overlay networks play in decentralized application development requires a more systematic study
and effort towards understanding the possibilities and limits of overlay network construction in its gen-
erality. Our contribution in this paper is a gossip protocolcalledT-MAN that can build a wide range of
overlay networks from scratch, relying only on minimal assumptions. The protocol is fast, robust, and
very simple. It is also highly configurable as the desired topology itself is a parameter in the form of a
ranking method that orders nodes according to preference for a base node to select them as neighbors.
The paper presents extensive empirical analysis of the protocol along with theoretical analysis of certain
aspects of its behavior. We also describe a practical application ofT-MAN for building Chord distributed
hash table overlays efficiently from scratch.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—Distributed Applications; C.4 [Performance of Systems]: Fault Tolerance

General Terms: Algorithms, Performance, Reliability

Additional Key Words and Phrases: gossip-based protocols,overlay networks

1 Introduction

Overlay networks have emerged as perhaps the single-most important abstraction when implementing a
wide range of functions in large, fully decentralized systems. The overlay network needs to be designed
appropriately to support the application at hand efficiently. For example, application-level multicast might
need carefully controlled random networks or trees, depending on the multicast approach [8,26]. Similarly,
decentralized search applications benefit from special overlay network structures such as random or scale-
free graphs [2,16], superpeer networks [18], networks thatare organized based on proximity and/or capacity
of the nodes [6,27], or distributed hash tables (DHT-s), forexample, [23,25].

In current work, protocol designers typically assume that agiven network exists for a long period of
time, and only a relatively small proportion of nodes join orleave concurrently. Furthermore, applications

∗Partial support for this work was provided by the Future and Emerging Technologies unit of the European Commission through
Projects BISON (IST-2001-38923) and DELIS (IST-2002-001907).

†This work was completed while the authors were with the University of Bologna, Italy.

1

either rely on their own idiosyncratic procedures for implementing join and repair of the overlay network or
they simply let the network evolve in an emergent manner based on external factors such as user behavior.

We believe that there is room and need for interesting research contributions on at least two fronts. The
first concerns the question whether a single framework can beused to develop flexible and configurable
protocols without sacrificing simplicity and performance to tackle the plethora of overlay networks that
have been proposed. The second front concerns scenarios in overlay construction that are often overlooked,
such as massive joins and leaves, as well as quick and efficient bootstrapping of a desired overlay from
scratch or some initial state. Current approaches either fail or are prohibitively expensive in such scenarios.
Combining results on these two fronts would enable several interesting possibilities. These include: (i)
overlay network creationon demand, (ii) deployment of temporary and adaptive decentralized applications
with custom overlay topologies that are designed on-the-fly, (iii) federation or splitting of different existing
architectures [11].

In this paper we address both questions and present an algorithm called (T-MAN) for creating a large
class of overlay networks from scratch. The algorithm is highly configurable: the network to be created is
defined compactly by aranking methodthat is able to order sets of nodes according to the preference of any
given base node to select them as neighbors. This allows us tobuild a wide variety of topologies, including
sorted rings, trees, toruses, clustering and proximity networks, and even full-blown DHT networks, such as
the CHORD ring with fingers. T-MAN relies only on an underlying peer sampling service [12] thatcreates
and initial overlay network with random links as the starting point.

The algorithm is gossip based: all nodes periodically communicate with a randomly-selected neighbor
and exchange (bounded) neighborhood information in order to improve the quality of their own neighbor
set. This approach, while requiring no more messages than the heartbeats already present in proactive repair
protocols, is simple, and achieves fast and robust convergence as we demonstrate.

In this paper we limit our study to the overlay construction problem. UsingT-MAN for overlay main-
tenance is also possible [10] with performance and cost thatare not dramatically different from existing
periodic repair protocols currently used in most overlay networks. The originality and attractiveness ofT-
MAN as a maintenance protocol lies in its generality and configurability. The main contribution of this paper
is to show that a single, generic gossip-based algorithm cancreatemany different overlay networksfrom
scratchquickly and efficiently.

Related Work. There are two aspects of our work: creating (bootstrapping)an overlay network from
scratch quickly and efficiently, and treating a wide range ofoverlay networks with the same protocol in a
generic manner. Related work in bootstrapping include the algorithm of Voulgaris and van Steen [28] who
propose a method to jump-startPASTRY [23]. This protocol is specifically tailored toPASTRY and its message
complexity is significantly higher than that ofT-MAN. More recently, the bootstrapping problem has been
addressed in other specific overlays [1, 4, 24]. These algorithms, although reasonably efficient, are specific
to their target overlay networks.

Work that is targeted atgenericoverlay management is more scarce. A very recent framework,P2,
was presented in [15]. The approach taken there is very different from ours: the overlay is represented in
a declarative style using logical rules. Such a representation is supposed to be more compact and natural
than a procedural implementation. In comparison,T-MAN represents the overlay using a simple ranking
method (to be described later) that allows for a probabilistic, naturally fault tolerant approach. The scope
of topologies that can be represented is also very different. An approach closer toT-MAN is V ICINITY ,
described in [29]. AlthoughV ICINITY was inspired by the earliest version ofT-MAN, it does contain notable
original components related to overlay maintenance, such as churn management, and other techniques to
boost performance.

Finally, we mention related work that use gossip-based probabilistic and lightweight algorithms. We

2

note that these algorithms are targeted neither at efficientbootstrapping, nor at generic topology manage-
ment. Massoulié and Kermarrec [17] propose a protocol to evolve a topology that reflects proximity. Repair
protocols used extensively in many DHT overlays also belongto this category (e.g., [22,25,30]).

Contribution. Our contribution with respect to related work is threefold.First, we introduce a lightweight
probabilistic protocol that can construct a wide range of overlay networks based on a compact and intuitive
representation: the ranking method. The protocol has a small number of parameters, and relies on minimal
assumptions, such as nodes being able to obtain a random sample from the network (the peer sampling
service). The protocol is an improved and simplified versionof earlier variants presented at various work-
shops [10, 11, 20]. Second, we develop novel insights for thetradeoffs of parameter settings based on an
analogy betweenT-MAN and epidemic broadcasts. We describe the dynamics of the protocol considering
it as an epidemic broadcast, restricted by certain factors defined by the parameters and properties of the
ranking method (that is, the properties of the desired overlay network). We also analyze storage complex-
ity. Third, we present novel algorithmic techniques for initiating and terminating the protocol execution.
We describe how to construct theCHORD overlay a practical application ofT-MAN. We present extensive
simulation results that support the efficiency and reliability of T-MAN.

Road map. Sections 2 and 3 present the system model and the overlay construction problem. Section 4
describes theT-MAN protocol. In Section 5 we present theoretical and experimental results to characterize
key properties of the protocol and to give guidelines on parameter settings. Section 6 presents practical
extensions to the protocol related to bootstrapping and termination, and extensive experimental results are
also given to examine the behavior of the protocol in different failure scenarios. Section 7 presents a practical
application: the creation of theCHORD overlay network [25]. Section 8 concludes the paper.

2 System Model

We consider a set of nodes connected through a routed network. Each node has an address that is necessary
and sufficient for sending it a message. Furthermore, all nodes have aprofile containing any additional
information about the node that is relevant for the definition of an overlay network. Node ID, geographical
location, available resources, etc. are all examples of profile information. The address and the profile
together form thenode descriptor. At times, we will use “node descriptor” and “node” interchangeably if
this does not cause confusion.

The network is highly dynamic; new nodes may join at any time and existing nodes may leave, either
voluntarily or bycrashing. Our approach does not require any mechanism specific to leaves: spontaneous
crashes and voluntary leaves are treated uniformly. Thus, in the following, we limit our discussion to node
crashes. Byzantine failures, with nodes behaving arbitrarily, are excluded from the present discussion.

We assume that nodes are connected through an existing routed network, such as the Internet, where
every node can potentially communicate with every other node. To actually communicate, a node has to
know the address of the other node. This is achieved by maintaining apartial view (view for short) at each
node that contains a set of node descriptors. Views can be interpreted as sets of edges between nodes,
naturally defining a directed graph over the nodes that determines the topology of anoverlay network.

Communication incurs unpredictable delays and may be subject to failures. Single messages could lost,
links between pairs of nodes may break. Nodes have access to local clocks that can measure the passage of
real time with reasonable accuracy, that is, with small short-term drift. Local clocks are not required to be
synchronized.

3

Finally, we assume that all nodes have access to the peer sampling service [12] that returns random
samples from the set of nodes in question. From a theoreticalpoint of view we will assume that these
samples are indeed random. From a practical point of view, results in [12] as well as our own experimental
results in this paper indicate that the peer sampling service indeed has suitable realistic implementations that
provide high quality samples at a low cost.

3 The Overlay Construction Problem

Intuitively, we are interested in constructing some desirable overlay network, possibly from scratch, by
filling the views at all nodes with descriptors of the appropriate neighbors. For example, we might want
to organize the nodes into a ring where the nodes appear in increasing order based on their ID. Or we
might want to construct a proximity network, where the neighbors of a node are those that are closest to it
according to some metric.

We allow for arbitrary initial content of the views of the nodes in this problem definition (including
empty views), noting that, as mentioned in our system model,nodes have access to random samples from
the network, so they have access to at least random nodes fromthe network. In other words, starting from
any arbitrary network, we want to fill the node views with the appropriate neighbors as fast as possible at a
reasonable cost.

In order to have a well defined problem, we need to specify how the desired overlay is represented as an
input to the protocol. The representation must be compact, intuitive, yet descriptive enough to capture the
widest possible range of topologies.

Our proposal for the representing the desired overlay is theranking methodthat allows a node to sort
any subset of other nodes (potential neighbors) according to some preference for selection as its neighbors.
More formally, the input of the problem is a set ofN nodes, thetarget view sizeK (bounded byN) and a
ranking methodRANK. The ranking method orders a list of nodes according to preference from a given base
node. It takes as parameters the base nodex and a set of nodes{y1, . . . , yj}, j ≤ N , and outputs an ordered
list of thesej nodes. All nodes in the network apply the same ranking method, which they know a priori.
In most cases, the ranking method will not be deterministic.In fact, we pose no restrictions on the method
here. Throughout the paper, however, we will analyze and test only ranking methods that are based on a
partial ordering of the given set, and that return some totalordering consistent with this partial ordering.

Thetarget graphthat we wish to construct is defined by the he ranking method. We present the definition
of the target graph in a constructive way, through the following (inefficient) approach, for illustration. In
this approach, each node disseminates its descriptor to allother nodes such that eventually, every node
has collected locally the descriptor of every node in the network. At this point, each node sorts this set of
descriptors according to the ranking method and picks the firstK elements to be its neighbors. The resulting
structure is called thetarget graph. Note that in this manner we define a graph, and not only a topology,
because in addition to knowing the structure of the network,such as a ring, we also know the exact location
of each node in the structure.

A practical solution to theoverlay construction problemhas to significantly reduce both the commu-
nication cost (which is at least linear inN for each node) and the storage cost (which is also linear inN
for each node) of the full dissemination approach outlined above in building the target graph. TheT-MAN

protocol described in the next section does precisely this.
Although representing the target graph through the rankingmethod and parameterK clearly restricts

the scope of the algorithm, through the examples presented here and in the rest of this paper we will see
that a wide range of interesting applications are covered. One (but not the only!) way of actually defining
useful ranking methods is through a distance function that defines a metric space over the set of nodes. The

4

(b) (c)(a)

Figure 1: Target graphs for different ranking methods andK = 2. (a) One-dimensional distance-based,
circular ranking method applied to a set of uniform node profiles; (b) same ranking method as before but
with a different set of node profiles that are clustered; (c) direction-dependent ranking method achieves
sorting even for clustered node profiles.

ranking method can simply return an ordering of the given setaccording to non-decreasing distance from
the base node.

To clarify the notions of ranking method and target graphs, let us consider a few simple examples, where
K = 2 and the profile of a node is a real number in the interval[0,M [. We can define a ranking method
based on the one-dimensional distance function between nodesa andb asd(a, b) = |a− b|, or alternatively,
d(a, b) = min(M − |a − b|, |a − b|) to obtain a circular structure. As illustrated in Figure 1(a), if the node
profiles are more-or-less uniformly distributed over the interval [0,M [, the resulting target graph will be a
connected line (or ring). If the node profiles are not evenly distributed over[0,M [but are clustered, the
same ranking method will result in a target graph that consist of disconnected clusters (Figure 1(b)).

It is important to note that there are target graphs of practical interest that cannot be defined through a
global distance function. This is the main reason for using ranking methods, as opposed to relying exclu-
sively on the notion of distance; the ranking method is a moregeneral concept than distance. This fact will
become important in Section 7 (practical application example), where it is necessary to be able to build,
for example, a ring, even in the case of uneven node descriptor distributions when distance-based ranking
methods would define clustered target graphs (as in Figure 1(b)). Figure 1(c) illustrates how a direction-
dependent ranking can be used to avoid clustering in the target graph. Here, the output of the ranking
methodRANK(x, {y1, . . . , yj}) is defined as follows. We first construct a sorted ring out of the set of input
profilesy1, . . . , yj and the base nodex. We then assign a rank value to each node defined as the minimal
hop count to the node fromx in this ring. The output of the ranking method is a list of the input profiles
ordered according to this rank value. In this manner, the first 2α positions in the ranking containα nodes
preceedingx andα nodes followingx in the sorted ring; hence the name “direction-dependent”

4 The T-MAN Protocol

As mentioned earlier, theT-MAN protocol is based on a gossiping scheme, in which all nodes periodically
exchange node descriptors with peer nodes, thereby constantly improving the set of nodes they know —
their partial views.

Each node executes the protocol in Figure 2. Any given view contains the descriptors of a set of nodes.
MethodMERGE is a set operation in the sense that it keeps at most one descriptor for each node. Parameter
m denotes the message size as measured in the number of node descriptors that the message can hold.

5

1: loop
2: wait(∆)
3: p← selectPeer(ψ, rank(p, view))
4: buffer← merge(view,{myDescriptor})
5: buffer← rank(p, buffer)
6: send firstm entries of buffer top
7: receive bufferp from p
8: view←merge(bufferp , view)

(a) active thread

1: loop
2: receive bufferq from q
3: buffer←merge(view,{myDescriptor})
4: buffer← rank(q, buffer)
5: send firstm entries of buffer toq
6: view← merge(bufferq , view)

(b) passive thread

Figure 2: TheT-MAN protocol.

after 2 cycles after 3 cycles after 4 cycles after 7 cycles

Figure 3: Illustration of constructing a torus over50 × 50 = 2500 nodes, starting from a uniform random
graph with initial views containing 20 random entries and the parameter valuesm = 20, ψ = 10,K = 4.

Method SELECTPEER selects a random sample among the firstψ entries in the ordered list given as its
second parameter.

In this section we do not specify how node views are initialized. In the rest of the paper, we always
describe the particular node view initialization procedure that we assume. These procedures include random
initialization for the purposes of theoretical analysis inSection 5 and practical solutions based on various
broadcasting schemes and realistic random peer sampling inSection 6.

We note that the protocol does not place a limit on the view size. This is done in order to decrease
the number of parameters, thereby simplifying the presentation. One might expect that lack of a limit on
view size might present scalability problems due to views growing too large. As we will show in Section 5,
however, the storage complexity of nodes due to views grows only logarithmically as a function of the
network size. Furthermore, preliminary experiments for the applications we consider show that imposing a
comfortable limit on view sizes (larger than bothm andK) does not result in any observable decrease in
performance. This suggests that the simplification of ignoring view size limits is justified and is not critical
for these applications.

Although the protocol is not synchronous, it is often convenient to refer tocyclesof the protocol execu-
tion. We define a cycle to be an interval of∆ time units where∆ is another parameter of the protocol in
Figure 2.

Figure 3 illustrates the results ofT-MAN for constructing a small torus (visualizations were obtained
using [14]). For this example, it is clear that only a few cycles are sufficient for convergence, and the target
graph is already evident even after the first few cycles. In the next sections we will show that this rapid

6

convergence is not unique to the torus example but thatT-MAN performs well in a wide range of settings
and that it is scalable, very similarly to epidemic broadcast protocols.

In Table 1 we summarize the parameters of the protocol. Note thatK (target view size) is not a parameter
of the protocol but is part of the target graph characterization. As such, it controls the size of the target graph,
and consequently, affects the running time of the protocol.For example, if we increaseK while keeping the
ranking method fixed, then the protocol will take longer to converge since it has to find a larger number of
links. In fact,K could be omitted if the target graph was defined in some other,more complex manner.

RANK() Ranking method: determines the preference of nodes as neighbors of a base node
∆ Cycle length: sets the speed of convergence but also the communication cost
ψ Peer sampling parameter: peers are selected from theψ most preferred known neighbors
m Message size: maximum number of node descriptors that can be sent in a single message

Table 1: Parameters of theT-MAN protocol.

5 Key Properties of the Protocol

In this section we study the behavior of our protocol as a function of its parameters, in particular,m (message
size),ψ (peer sampling parameter) and the ranking methodRANK. Based on our findings, we will extend
the basic version of the peer selection algorithm with a simple “tabu-list” technique as described below.
Furthermore, we analyze the storage complexity of the protocol and conclude that on the average, nodes
needO(logN) storage space whereN is the network size.

We will explore two different classes of target graphs: symmetric and asymmetric (to be defined later).
To be able to conduct controlled experiments withT-MAN on different ranking methods, we first select a
graph instead of a ranking method, and subsequently “reverse-engineer” an appropriate ranking method
from this graph by defining the ranking to be the ordering consistent with theminimal path lengthfrom the
base node in the selected graph. We will call this selected graph theranking graph, to emphasize its direct
relationship with the ranking method.

Note that the target graph is defined by parameterK, so the target graph is identical to the ranking
graph only if the ranking graph isK-regular. However, for convenience, in this section we willnot rely
onK because we either focus on the dynamics of convergence (as opposed to convergence time), which is
independent ofK, or we study the discovery of neighbors in the ranking graph directly.

In order to focus on the effects of parameters, in this section we assume a greatly simplified system
model where the protocol is initiated at the same time at all nodes, where there are no failures, and where
messages are delivered instantly. While these assumptionsare clearly unrealistic, in Section 6 we show
through event-based simulations that the protocol is extremely robust to failures, asynchrony and message
delays even in more realistic settings.

5.1 Analogy with the Anti-Entropy Epidemic Protocol

In Section 3 we used an (unspecified) dissemination approachto define the overlay construction problem.
Here we would like to elaborate on this idea further. Indeed,the anti-entropy epidemic protocol, one imple-
mentation of such a dissemination approach, can be seen as a special case ofT-MAN, where the message size
m is unlimited (i.e.,m ≥ N such that every possible node descriptor can be sent in a single message) and
peer selection is uniform random from the entire network. Inthis case, independent of the ranking method,

7

all node descriptors that are present in the initial views will be disseminated to all nodes. Furthermore, it is
known that full convergence is reached in less than logarithmic time [7].

For this reason, the anti-entropy epidemic protocol is important also as a base case protocol when evalu-
ating the performance ofT-MAN, where the goal is to achieve similar convergence speed to anti-entropy, but
with the constraint that communication is limited to exchanging a constant amount of information in each
round. Due to the communication constraint, performance will no longer be independent of the ranking
method.

5.2 Parameter Setting for Symmetric Target Graphs

We define a symmetric target graph to be one where all nodes areinterchangeable. In other words, all
nodes have identical roles from a topological point of view.Such graphs are very common in the literature
of overlay networks. The behavior ofT-MAN is more easily understood on symmetric graphs, because
focusing on a typical (average) node gives a good characterization of the entire system.

We will focus on two ranking graphs, both undirected: the ring and ak-out random graph, wherek
random out-links are assigned to all nodes and subsequentlythe directionality of the links is dropped. We
choose these two graphs to study two extreme cases for the network diameter. The diameter (longest minimal
path) of the ring isO(N) while that of the random graph isO(logN).

Let us examine the differences between realistic parametersettings and the anti-entropy epidemic dis-
semination scenario described above. First, assume that the message sizem is a small constant rather than
being unlimited. In this case, the random peer selection algorithm is no longer appropriate: if a nodei
contacts peerj that ranks low withi as the base node, theni cannot expect to learn new useful links fromj
because now (due to the smallm) nodej has a strong bias in its view towards nodes that rank high withj
as a base node.

On the other hand, if a nodei selects peers that rank too high withi as the base node, then convergence
might slow down as well. The reason for this is that consecutive peers returned by the peer selection method
will more often get repeated; in part because a nodei is more likely to select a peer to communicate with
that selectedi shortly before, and in part because there are simply fewer nodes that are “close” to any given
node than nodes that are far from it. This in turn results in increased correlation between the partial views
of communicating partners, so the epidemic process is not maximally efficient.

Figure 4 illustrates this tradeoff using two ranking graphs: the ring and a random graph. The latter is
generated by first constructing a 2-out directed regular random graph by selecting two random out-edges for
each node, and subsequently taking the undirected version of this graph. The average degree of a node is
thus 4, with a small variance. The basic version in Figure 4(a) applies the peer selection algorithm which
picks a random peer from the highest rankingψ nodes from the view, as described earlier. The pointψ = N
andm = N corresponds to an anti-entropy epidemic dissemination (i.e., peer selection is unbiased and
there are no limits on message size) which is optimal.

As predicted, with no limits on the message size (m = N), we can observe the effect due to the lack
of randomness if the selected peer ranks too high (ψ is small). Furthermore, for largeψ performance again
degrades when we place a limit on the message size since the correlation between communicating peers’
ranking of the same set of nodes is reduced. This effect is less pronounced for largerm because now we
might obtain useful information by chance even if there is little correlation between the rankings.

To verify our explanation as to why performance degrades with decreasingψ, we apply atabu listat all
nodes in order to avoid contacting the same peers over and over again. The tabu list contains a fixed number
of peers that a given node communicated with most recently. The node then does not initiate connection
with any nodes in its tabu list. We experimented with a tabu list size of 4. This mechanism does not add
any communication overhead since it simply records the last4 communications, but it is rather effective in

8

 3.5

 4

 4.5

 5

 5.5

 6

 1 10 100 1000 10000

cy
cl

es

ψ

m=10

m=20

m=2000

4-out Random
Ring

(a) Basic T-Man protocol

 3.5

 4

 4.5

 5

 5.5

 6

 1 10 100 1000 10000

cy
cl

es

ψ

m=10

m=20

m=2000

4-out Random
Ring

(b) T-Man with Tabu List

Figure 4: Time to collect 50% of the neighbors at distance onein the ranking graph. Network size is
N = 2000. Node views are initialized to contain 5 random links each. Graph (b) was obtained using a tabu
list of size 4.

reducing the negative effects of smallψ values as Figure 4(b) illustrates.
We can draw several other conclusions from the results in Figure 4. First, the tabu list slightly improves

even the performance of anti-entropy epidemic dissemination with completely random peer selection (m =
ψ = N). This is due to the fact that initially views contain only few nodes (to be precise, five, in this case).
Without a tabu list, this significantly increases the chanceof contacting the same peers in the first few cycles,
while the views are still small. Such communications are noteffective in advancing dissemination due to
the correlated views of the communicating peers. Also note that when there is no limit on message size,
the random graph outperforms the ring, especially when the tabu list is applied. This is due to the fact that
the number of neighbors of a node in the random graph increases exponentially, so even for a small set of
closest nodes, diversity is very high.

Finally, we note that the exponentially increasing neighborhood becomes a disadvantage whenψ is
larger, because the view of peers that are further away from the base node in the ranking graph will be more
uncorrelated to the view of the original peer. This suggeststhat for such graphs, peer selection should be
aggressive (ψ = 1) and should be combined with the use of tabu lists.

5.3 Notes on Asymmetric Target Graphs

The topological role of nodes in asymmetric target graphs isnot identical. For example, some nodes can
be more central or more connected than others, there can be bridge nodes connecting isolated clusters, and
so on. While symmetric graphs already exhibit complex behavior, we argue that asymmetric graphs cannot
be treated reasonably in a common framework. Each case needsa separate analysis that needs to take into
account the particular structure of the graph.

To understand the problem better, consider a ranking methodthat is independent of the base node. This
ranking method will induce a star-like structure since all nodes will be attracted to the very same high
ranking nodes. In this case, more and more nodes will contactthe nodes that rank high in the (in this case,
common) ranking. As a result, convergence speeds up enormously, at the cost of a higher load on the central
nodes. The reason is simple: the central nodes can collect the high ranking descriptors faster because they

9

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 10 100 1000 10000

N
um

be
r

of
 c

on
ta

ct
s

Node Profile

average contacts
empirical standard deviation

Figure 5: Number of contacts made by nodes while constructing a binary tree. Statistics are over 30 inde-
pendent runs. The parameters areN = 10000, m = 20, number of cycles is 15,ψ = 10 and the tabu list
size is 4. In the ranking graph, the root is node 0 and the out-links of nodei are2i+ 1 and2i+ 2.

are contacted by many nodes. Due to their central position, they also distribute them very rapidly. One can
even exploit this effect. For example, if the goal is to builda super-peer topology, with the high bandwidth
nodes in the center, then the central nodes might actually beable to deal with the extra load, thus resulting
in an efficient, but still fully self-organizing solution.

This effect can be observed in other interesting topologiesas well. For example, rooted regular trees,
where the non-leaf nodes havek out-links and one in-link, except the root, that has no in-links. If the ranking
graph has such a topology, the resulting target graph will beasymmetric with highly nonuniform average
traffic at nodes, as shown in Figure 5. One reason for this result is that a large proportion of the nodes are
leaves. Leaf nodes, having only one neighbor, will have a tendency to talk to nodes that are further up in the
hierarchy. This adds extra load on internal nodes and puts them in a more central position.

This in turn has a non-trivial effect on the convergence of the protocol, and allowsT-MAN to have better
performance for trees than for symmetric graphs. Figure 6 illustrates this effect. In Figure 6(a), we can
observe the performance ofT-MAN for a rooted and balanced binary tree as a ranking graph. We can see
that there is a peculiar minimum when message size is unlimited butψ is small. In this region, the binary
tree consistently outperforms the ring, even for a smallm.

This effect is due to the asymmetry of a binary tree. To show this, we ranT-MAN with an additional
balancing technique, to cancel out the effect of central nodes. In this technique, we limit the number of
times any node can communicate (actively or passively) in each cycle to two. In addition, nodes also apply
hunting[7], that is, when a node contacts a peer, and the peer refusesthe connection due to having exceeded
its quota, the node immediately contacts another peer untilthe peer accepts connection, or the node runs out
of potential contacts. The results are shown in Figure 6(b).In the region of practical settings ofψ andm,
the advantage of the binary tree disappears, while the ring preserves the same performance.

More detailed analysis reveals that in the initial cycles, nodes that are close to the root play a bootstrap
function and communicate more than the rest of the nodes. After that, as the overlay network is taking shape,
nodes that are further down the hierarchy take over the management of their local region, and so on. This is a
rather complex behavior, that isemergent(not planned), but nevertheless beneficial. This also suggests that

10

 3.5

 4

 4.5

 5

 5.5

 6

 1 10 100 1000 10000

cy
cl

es

ψ

m=10

m=20

m=2000

Binary Tree
Ring

(a) T-Man with Tabu List

 3.5

 4

 4.5

 5

 5.5

 6

 1 10 100 1000 10000

cy
cl

es

ψ

m=10

m=20

m=2000

Binary Tree
Ring

(b) T-Man with Tabu List and Balancing

Figure 6: Time to collect 50% of the neighbors at distance onein the ranking graph. The network size is
N = 2000. Node views are initialized by 5 random links each. The tabu list size is 4.

if the target graph is not symmetric, then extra attention isneeded when explaining the behavior ofT-MAN.

5.4 Storage Complexity Analysis

We derive an approximation for the storage space that is needed for maintaining views by the nodes (recall
that there is no hard limit enforced by the protocol). This approximation is based on a number of simplifying
assumptions that convert the problem into a model of disseminating news items, where only the most inter-
esting news items can spread due to limited message size. Subsequently, we present experimental validation
of the approximation usingT-MAN on different realistic target graphs.

5.4.1 The News Spreading Model

To derive the approximation, we assume that the ranking method is independent of the base node, that
is, all nodes rank a given set of node descriptors the same way. The rational for this assumption is the
following. One conclusion of previous sections was that thesuccess ofT-MAN crucially depends on the fact
that whenever a nodei selects a peerj usingSELECTPEER, nodej has a similar ranking to nodei, because
this way it can provide relevant node descriptors to nodei. Assuming that the ranking does not depend on
the base node means that any selected nodej is guaranteed to have an identical ranking to that of nodei,
which is the ideal case forT-MAN, and this case is approximated well on all graphs whereT-MAN has good
performance.

This assumption, however, introduces a side-effect: it implies that the target graph is a star-like structure,
with them highest ranking nodes forming a clique, and all the other nodes pointing to thesem nodes. This
level of asymmetry is highly nontypical and therefore is an unrealistic scenario forT-MAN. To “fix” this
side-effect, we assume that peer selection returns a randomnode from the entire network, which makes the
role of all nodes identical.

In this setting, node descriptors have no relation to actualnodes anymore (that is, the node addresses in
the descriptors are never used), so we can think of the model as spreadingnews itemsthat have a natural
ranking based on “interestingness”.

11

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000

n(
 j)

j

N=10000, m=20

N=100000, m=40

observed
predicted

Figure 7: Experimental results and values predicted by Equation (2) for n(j) with two sets of parameters
N = 10000,m = 20 andN = 100000,m = 40. For eachj, the converged value ofn(j) is indicated as a
separate point. The observed values correspond exactly to the predicted one for the initial constant section,
and are covered by the line segment on the graph.

Let n(j) denote the number of nodes in the network that know about the news item of rankj. The
notationn(j, t) allows us to express the time dependence of the same value. Westart by showing that
n(j, t) = Nm/j if j > m for a large enought. The main idea is based on the observation that, due to
symmetry,n(j, t) grows according to the same curve for allj, but only until the overall number of items in
the node’s view grows too large and the item with rankj no longer makes it into the exchanged messages
(and therefore its replication stops). At that pointn(j, t) assumes its final value.

To allow for an approximation of the average storage cost, wemodel the representation of each news
item as a single continuous variable, that is, we assume thatall nodes store exactly0 ≤ n(j, t)/N ≤ 1
instances of the news item of rankj. Under this assumption we can say that the functionn(j, t) stops
growing when higher ranking items already fill all the available m slots in the messages, since from that
point, the news item of rankj will be excluded from all communication:

j∑
k=1

n(k, t∗) = Nm, (1)

wheret∗ denotes the point in time when this equation holds for the first time. Sincen(j, t) never decreases,
we haven(j, t) = n(j, t∗) for t ≥ t∗. We know that the functionsn(k, t) grow at exactly the same rate for
all k, so we can simplify the expressions asjn(j, t∗) = Nm, that is,

n(j, t) =
Nm

j
, t ≥ t∗. (2)

This proves the result. Figure 7 compares the theoretical prediction and the converged distribution obtained
experimentally via simulation.

Equation (2) allows us to approximate the actual storage space that is required for the views of the nodes.
We focus only on the items that rank lower thanm. The highest rankingm items represent a small constant

12

factor. The sum of all entries with a rank higher thanm stored in the system is
N∑

j=m

Nm

j
≈

∫ N

m

Nm

j
dj = Nm(lnN − lnm) = Nm ln

N

m
= O(N logN). (3)

Therefore each view storesO(logN) entries on the average. Note that this result is independentof the
number of iterations executed, and it is also independent ofthe actual form of the functionsn(j, t); recall
that the only assumption we made was that they are monotonically increasing.

Finally, we note thatNm/j = Nmj−1 is technically a power law distribution, as it follows the form
j−γ . Power laws are very frequently observed in complex evolving networks [3]. The phenomenon is often
due to some form of “the rich get richer” effect. One can link our results to the study of other complex
networks, for example, social networks. All nodes start with a random constant-size set of news items, and
they gossip always only them most interesting ones that they currently know. This dynamics results in a
power law distribution of news items, with the most interesting news being known to everyone. Furthermore,
each participant learns only aboutO(logN) news items from the overallO(N) news items available.

5.4.2 Empirical Validation

We verify experimentally that the prediction in (2) holds for T-MAN when different ranking methods are
employed. This would support as a consequence the claim thatEquation (3) characterizes the storage com-
plexity of the protocol.

We need to generalizen(j) since ranking can now depend on the base node. Letn(j) be the number of
nodes that know about the node with rankj according to their own ranking of the entire network. Figure8
shows the values ofn(j) for three ranking graphs at three different times. Althoughthe experiments reported
in Figure 8 were performed without a tabu list, further experiments (not shown) show that tabu lists have no
observable effect on the distribution of ranks in the views.They only speed up convergence of the protocol
as discussed earlier.

In Figure 8 we can observe that the ring fulfills the assumptions of Section 5.4.1 best: then(j) values
that have not stopped growing have the same value at each timepoint, which means they indeed grow at the
same rate. The largest deviation can be observed in the case of the random graph. There, the growth of the
n(j) values slows down smoothly which implies that the assumption they grow at the same rate does not
hold. This results in a slight “overshoot” where the observed values are slightly higher than those predicted.

Note that in the case of the binary tree, the predicted valuesmatch closely the observed ones even
though the topology is not symmetric. This further underlines the robustness of the prediction. Of course,
the more central nodes need more storage capacity, the prediction holds only on average. However, in our
preliminary experiments (not shown), we have seen that setting a reasonable hard limit on the view size
that is significantly larger thanm (for example, 1000 items) does not result in any significant difference in
performance. For this reason we opted for the simplified discussion and we omit hard limits on the view
size in this paper.

6 Experimental Results

In the previous section we considered the most basic versionof the protocol to shed light on its convergence
properties and storage complexity. This section is concerned with developing additional techniques that
allow for the practical application of the protocol; in particular, we address two important problems: how to
start and how to stop the protocol. We also present an extensive empirical analysis under different parameter
settings and different failure scenarios, introduced by a brief discussion of the simulation environment and
the figures of merit analyzed in this paper.

13

 10

 100

 1000

 10000

 1 10 100 1000 10000

n(
 j)

j

after cycle 2

after cycle 4

after cycle 10

observed
predicted

(a) Ring

 10

 100

 1000

 10000

 1 10 100 1000 10000

n(
 j)

j

after cycle 2

after cycle 4

after cycle 10

observed
predicted

(b) Binary Tree

 10

 100

 1000

 10000

 1 10 100 1000 10000

n(
 j)

j

after cycle 2

after cycle 4

after cycle 10

observed
predicted

(c) 4-Out Random

Figure 8: Experimental and predicted values ofn(j) for three different ranking graphs. Experiments were
run withN = 10000, m = 20 andψ = 10, without a tabu list.

6.1 A Practical Implementation

So far we assumed that the protocol is started at all nodes at once, in a synchronous fashion, and we were not
dealing with termination at all. We also assumed that at all nodes the initial set of known peers is a random
sample from the network. In this section, we replace these unrealistic assumptions with practically feasible
solutions.

6.1.1 Peer Sampling Service

The peer sampling service provides each node with continously up-to-date random samples of the entire
population of nodes. Such samples fulfill two purposes: theyenable the random initialization of theT-MAN

view, as discussed in Section 4, and make it possible to implement a starting service as well, allowing for
the deployment of various gossip based broadcast and multicast protocols.

14

In this paper we consider an instantiation of the peer sampling service based on theNEWSCAST proto-
col [12], chosen for its low cost, extreme robustness and minimal assumptions. The basic idea ofNEWSCAST

is that each node maintains a local set of random node addresses: the (partial)view. Periodically, each node
sends its view to a random member of the view itself. When receiving such a message, a node keeps a fixed
number of freshest addresses (based on timestamps), selected from those locally available in the view and
those contained in the message.

Each node sends one message to one other node during a fixed time interval. Implementations exist in
which these messages are small UDP messages containing approximately 20-30 IP addresses, along with
the ports, timestamps, and descriptors such as node IDs. Thetime interval is typically long, in the range of
10 s. The cost is therefore small, similar to that of heartbeat messages in many distributed architectures. The
protocol provides high quality (i.e., sufficiently random)samples not only during normal operation (with
relatively low churn), but also during massive churn and even after catastrophic failures (up to 70% nodes
may fail), quickly removing failed nodes from the local views of correct nodes.

6.1.2 Starting and Terminating the Protocol

We implemented a simple starting mechanism based on well-known broadcast protocols. The content of the
broadcast message may be a simple “wake up” specifyingwhento build a predefined network, or it may
include additional information specifyingwhat network to build (e.g., by providing the implementation of
a specific ranking function). To simplify our simulation environment, we adopt the first approach; technical
issues related to the second one may be easily solved in a realimplementation.

The following terminology is used when discussing the starting mechanism. We say that a node isactive
if it is aware of and explicitly participating in a specific instance ofT-MAN; if the node is not aware that a
protocol is being executed, it is calledinactive.

Initially, there is only one active node, theinitiator, activated by an external event (e.g., a user’s request).
An inactive node may become active by exchanging information with nodes that are already active. When
a node becomes active, it immediately starts executing theT-MAN protocol. The final goal is to activate all
nodes in the system, i.e., to start the protocol at all nodes.

The actual implementation of the broadcast can take many forms that differ mainly in communication
overhead and speed.

Flooding As soon as a node becomes active for the first time, it sends a “wake up” message to a small set
of random nodes, obtained from the peer sampling service. Subsequently, it remains silent.

Anti-Entropy, Push-only Periodically, each active node selects a random peer and sends a “wake-up” mes-
sage [7].

Anti-Entropy, Push-Pull Periodically, each node (active or not) exchanges its activation state with a ran-
dom peer. If either of them was active, they both become active [7].

As described above, a node becomes active as soon as it receives a message from another active node.
Note, however, that messages belonging to the starting protocol are not the only source of activation; a
node may also receive aT-MAN message, from a node that has already started to execute the protocol. This
message also activates the recipient node.

As is well known, flooding is fast and effective but very expensive due to message duplications. In
comparison, the most important advantage of the other two approaches is the dramatically lower commu-
nication overhead per unit time. The overhead can further bereduced to almost zero, due to the fact that
the starting service messages can be piggybacked, for example, on NEWSCASTmessages that implement the
peer sampling service.

15

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400

pr
ob

ab
ili

ty
 (

%
)

Delay

 0

 20

 40

 60

 80

 100

 0 100 200 300 400

cu
m

m
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Delay

Figure 9: Probability distribution of end-to-end delays asreported in the King data set [9].

After the target graph has been built, the protocol does not need to run anymore and therefore must be
terminated. Clearly, detecting global convergence is difficult and expensive: what we need is a simple local
mechanism that can terminate the protocol at all nodes independently.

We propose the following mechanism. Each node monitors its own local view. If no changes (i.e., node
additions) are observed for a specified period of time (δidle), it suspends its active thread. We call this state
suspended. If a view change occurs when a node is suspended (due to an incoming message initiated by
another node that is still active), the node switches again to the active state, and resets its timer that measures
idle time.

6.2 Simulation Environment

All the experiments are event-based simulations, performed usingPEERSIM , an open-source simulator de-
signed for large-scale P2P systems and publicly available at SourceForge [21]. The applied transport layer
emulates end-to-end delays between pairs of nodes based on the traces of the King data set [9]. Delays
reported in these traces range from 1 ms to 400 ms, and the probability distribution is as shown in Figure 9.

The following parameters are fixed in the experiments: the size of the tabu list is 4, and the peer selection
parameter (ψ) is 1. If different values are not explicitly mentioned, themessage size (m) is 20, the cycle
length (∆) is 1 s, and the value ofδidle is set to 4 s. Each experiment is repeated 50 times with different
random seeds. Plots show the average of the observed measures, along with error bars; when graphically
feasible, individual experiments are displayed as separate dots with a small random translation.

6.3 Ranking Methods

To emphasize the robustness ofT-MAN to the actual target graph being built, we performed all experiments
on two different tasks: building a sorted ring, and buildinga binary tree. These two graphs have very
different topologies: the ring has a large (linear) diameter while the tree has a small (logarithmic) one.
Besides, as pointed out in Section 5.3, in the tree some nodesare more central than others, while in the ring
all nodes are equal from this point of view.

In the previous sections, we applied the concept of a rankinggraph to (implicitly) define the ranking
method. This approach is not practical, so we need to define explicit and locally computable ranking meth-
ods.

16

6.3.1 Sorted Ring

Creating a sorted ring is very useful, for example, for the decentralized computation of the ranking of
nodes [19] or jump-starting distributed hash tables, such as CHORD [25]. The latter application is further
discussed in Section 7.

We assume that the node profile is an element of a collection, over which a total ordering relation is
defined. In particular, we work with 60-bit integers as node profiles that are initialized at random for each
node. We want the target graph to be a ring, in which the node profiles are ordered, (except one pair where
the largest and smallest values meet) to close the ring.

To achieve this target graph, the output of the ranking method RANK(x, y1, . . . , yk) is defined as follows.
First we construct a sorted ring (as defined above) out of the set of input profilesy1, . . . , yk and the base
nodex, and assign a rank value to all nodes: the minimal hop count from x in this ring. The output of the
ranking method is an ordered list of the input profiles according to these assigned rank values. Note that this
is adirection-dependentranking method, that cannot be induced by a distance metric over the node profiles.
For simplicity, we will callT-MAN with this ranking methodSORTED RING.

6.3.2 Binary Tree

The second topology we consider is an undirected rooted binary tree. To achieve a well controlled target
graph for the sake of experimental comparison, the node profiles are defined as follows. If there areN
nodes, then we assign the integers1, . . . , N to the nodes in some arbitrary order. The node with value 1 is
the root. Using the binary representation of these integers, the node0a2 . . . am has two children:a2 . . . am0
anda2 . . . am1. Numbers starting with 1 belong to leafs.

It is easy to calculate the shortest path length in this tree between two arbitrary nodes, based on the two
node profiles. This notion of distance is used to define the ranking function required byT-MAN to build the
tree:RANK(x, y1, . . . , yk) sorts the input profilesy1, . . . , yk according to distance from the base nodex. For
simplicity, we will call T-MAN with this ranking methodTREE.

6.4 Performance Measures

We are interested both in the effectiveness (speed and quality) and efficiency (cost) of the protocol. We
evaluate our protocols using the following performance measures: convergence time, target links found,
termination timeandcommunication costs.

convergence time The time needed to obtain theperfecttarget graph. In the case ofSORTED RING, each
node must know at least its first successor and predecessor inthe sorted ring. ForTREE, each node
different from the root must know its parent, and non-leaf nodes must know their children.

target links found The number of links in the target graph that are actually found by T-MAN at a certain
time, typically at termination time. This allows for a more fine-grained assessment of performance
than convergence time.

termination time The total time needed to complete (start, execute and stop) the protocol atall nodes. This
may be considerably longer than convergence time, although, as we will see, typically only few nodes
are still active after reaching convergence.

communication cost The number of messages exchanged. Note that all messages ever exchanged are of
the same size.

17

 5

 10

 15

 20

 25

 30

210 211 212 213 214 215 216 217 218

C
on

ve
rg

en
ce

 T
im

e
(s

)

Network Size

Anti-Entropy (Push)
Anti-Entropy (Push-Pull)

Flooding
Synchronous start

(a) SORTED RING

 5

 10

 15

 20

 25

 30

210 211 212 213 214 215 216 217 218

C
on

ve
rg

en
ce

 T
im

e
(s

)

Network Size

Anti-Entropy (Push)
Anti-Entropy (Push-Pull)

Flooding
Synchronous start

(b) TREE

Figure 10: Convergence time as a function of size, using different starting protocols.

The unit of time will be cycles or seconds, depending on whichis more convenient (note that cycle
length defaults to 1 s). We also note that convergence time isnot defined if the protocol terminates before
converging. In this case, we use the number of identified target links as a measure.

6.5 Evaluating the Starting Mechanism

Figure 10 shows the convergence time forSORTED RING and TREE, using the starting protocols described
in Section 6.1.2. The cycle length of the anti-entropy versions was the same as that ofT-MAN, and the
flooding protocol used 20 random neighbors at all nodes. The case of synchronous start is also shown for
comparison. Note that these figures do not represent a directmeasure of the performance of well-known
starting protocols; rather, convergence time plotted hererepresents the overall time needed to both start the
protocol and reach convergence, withT-MAN and the broadcast protocol running concurrently.

In the case of flooding, “wake-up” messages quickly reach allnodes and activate the protocol; almost
no delay is observed compared to the synchronous case. Anti-entropy mechanisms result in a few seconds
of delay. In the experiments that follow, we adopt the anti-entropy, push-pull approach, as it represents a
good trade-off between communication costs and delay. Notehowever that (unlike the push approach) the
push-pull approach assumes that at least the starting service was started at all nodes already.

6.6 Evaluating the Termination Mechanism

We experimented with various settings forδidle ranging from 2 s to 12 s. Figure 11 shows both convergence
time (bottom three curves) and termination time (top three curves) for different values ofδidle, for SORTED

RING andTREE, respectively. In both cases, termination time increases linearly withδidle. This is because,
assuming the protocol has converged, each additional cycleto wait simply adds to the termination time.

For small values convergence was not always reached, especially for TREE. For SORTED RING, all runs
converged except the case whenδidle = 2 andN = 216, when 76% of the runs converged. ForTREE, all
runs converged withδidle > 5 and no runs converged for(δidle = 2,N = 213), (δidle = 2,N = 216), and
(δidle = 3, N = 216). Even in these cases, the quality of the target graph at termination time was almost
perfect, as shown in Figure 12. In the worst of our experiments, we observed that no more than 0.1% of the

18

 10

 20

 30

 40

 50

 2 3 4 5 6 7 8

T
im

e
(s

)

δidle (s)

size = 216

size = 213

size = 210

(a) SORTED RING

 10

 20

 30

 40

 50

 2 3 4 5 6 7 8

T
im

e
(s

)

δidle (s)

size = 216

size = 213

size = 210

(b) TREE

Figure 11: Convergence time (bottom curves) and termination time (top curves) as a function ofδidle.

 99.9

 99.91

 99.92

 99.93

 99.94

 99.95

 99.96

 99.97

 99.98

 99.99

 100

 2 4 6 8 10 12

T
ar

ge
t L

in
ks

 F
ou

nd
 (

%
)

δidle (s)

size=210

size=213

size=216

Figure 12: Quality of the targetTREE graph at termination time as a function ofδidle

target links were missing at termination. This may be sufficient for most applications, especially considering
that the target graphs will never be constructed perfectly in a dynamic scenario, where nodes are added and
removed continously. Nevertheless, from now on, we discardthe parameter combinations that do not always
converge.

Apart from longer executions, an additional consequence ofchoosing large values ofδidle is a higher
communication cost. However, since not all nodes are activeduring the execution, the overall number of
messages sent per node on average is less than one quarter of the number of cycles until global termination.
To understand this better, Figure 13 shows how many nodes areactive during the construction ofSORTED

RING andTREE, respectively. The curves show both an exponential increase in the number of active nodes
when starting, and an exponential decrease when stopping. The period of time in which all nodes are active
is relatively short.

These consideration suggests the use of higher values forδidle, at the cost of a larger termination time and
a larger number of exchanged messages. The chosen value ofδidle (4 s) represents a good trade-off between
the desire of obtaining a perfect target graph and the consequently larger cost in time and communication.

19

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

ac
tiv

e
no

de
s

(%
)

Time (s)

size=210

size=213

size=216

(a) SORTED RING

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

ac
tiv

e
no

de
s

(%
)

Time (s)

size=210

size=213

size=216

(b) TREE

Figure 13: Proportion of active nodes during execution.

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 0.5 1 1.5 2 2.5 3 3.5 4

T
er

m
in

at
io

n
T

im
e

(c
yc

le
s)

Cycle Length (s)

(a) SORTED RING

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 0.5 1 1.5 2 2.5 3 3.5 4

T
er

m
in

at
io

n
T

im
e

(c
yc

le
s)

Cycle Length (s)

(b) TREE

Figure 14: Termination time as a function of cycle length.

6.7 Parameter Tuning

Cycle Length If a faster execution is desired, one can always decrease thecycle length. However, after
some point, decreasing cycle length does not pay off becausemessage delay becomes longer than the cycle
length and eventually the network will be congested byT-MAN messages. Figure 14 shows the behavior of
T-MAN with a cycle length varying between 0.2 s and 4 s. The figure shows the number of cycles required to
terminate the protocol. Small cycle lengths require a larger number of cycles, while after a given threshold
(around 1 s), the number of cycles required to complete a protocol is almost constant. The reason for this
behavior is that with short cycles, multiple cycles may be executed before a message exchange is concluded,
thus wasting bandwidth in sending and receiving old information multiple times.

20

 10

 20

 30

 40

 50

 60

 5 10 15 20 25 30

T
er

m
in

at
io

n
T

im
e

(c
yc

le
s)

Message Size

(a) SORTED RING

 10

 20

 30

 40

 50

 60

 5 10 15 20 25 30

T
er

m
in

at
io

n
T

im
e

(c
yc

le
s)

Message Size

(b) TREE

Figure 15: Termination time as a function of message size.

Message Size In Section 5, we have examined the effect of the message size parameter (m) in detail. Here
we are interested in the effect of message size on termination time. Figure 15 shows that by increasing the
size of messages exchanged bySORTED RING termination time slightly increases after aroundm = 20. The
reason is that a node becomes suspended only after the local view remains unchanged for a fixed number
of cycles, but increasing the message size has the effect of increasing the number of cycles in which view
changes might occur, thus delaying termination. The results forTREE have more variance, which might have
to do with the unbalanced nature of the topology, as discussed in Section 5.3.

6.8 Failures

The results discussed so far were obtained in static networks, without considering any form of failure. Here,
we consider two sources of failure: message losses and node crashes. Since in this paper we consider only
the overlayconstructionproblem, and notmaintenance, we do not explicitly consider scenarios involving
node churn. Instead, we model churn through nodes leaving, and do not allowing joining nodes to participate
in an ongoing construction. Furthermore, since we do not have a leave protocol, leaving nodes are identical
to crashing nodes from out point of view.

Message Loss While a simple solution could be to adopt a reliable, connection-oriented transport protocol
like TCP, it is more attractive to rely on a lightweight but perhaps unreliable transport. In this case, we need
to demonstrate thatT-MAN can cope well with message loss. Figure 16 shows thatT-MAN is highly resilient
to message loss and so a datagram-oriented protocol like UDPis a perfectly suitable choice, as message
losses only slowing down the protocol slightly. Many message exchanges are either never started or never
completed, thus requiring more cycles to terminate the protocol execution. Thequalitydoes not suffer much
either. In bothSORTED RINGandTREE, around 1% of the target links may be missing, as shown by Figure 17.
Note that the mean message loss ratio for geographic networks like the Internet is around 2% [13], an order
of magnitude smaller than the maximum message loss ratio tested in our experiments.

Node Crashes Figure 18 shows the behavior ofT-MAN with a variable failure rate, measured as the total
number of nodes leaving the network per second per node. We experimented with values ranging from 0

21

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20

T
er

m
in

at
io

n
tim

e
(s

)

Message loss (%)

size = 210

size = 213

size = 216

(a) SORTED RING

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20

T
er

m
in

at
io

n
tim

e
(s

)

Message loss (%)

size = 210

size = 213

size = 216

(b) TREE

Figure 16: Termination time as a function of message loss rate.

 98.6

 98.8

 99

 99.2

 99.4

 99.6

 99.8

 100

 0 5 10 15 20

T
ar

ge
t L

in
ks

 F
ou

nd
 (

%
)

Message loss (%)

size = 210

size = 213

size = 216

(a) SORTED RING

 98.6

 98.8

 99

 99.2

 99.4

 99.6

 99.8

 100

 0 5 10 15 20

T
ar

ge
t L

in
ks

 F
ou

nd
 (

%
)

Message loss (%)

size = 210

size = 213

size = 216

(b) TREE

Figure 17: Target links found by the termination time as a function of message loss rate.

to 10−2, which is two order of magnitude larger than the value of10−4 suggested as the typical behavior
of some P2P networks [5]. The results show that bothSORTED RING and TREE are robust in normal sce-
narios, withTREE being considerably more reliable in the range of extreme failure rates. This is due to the
unbalanced nature of the topology as discussed in Section 5.3.

7 Bootstrapping Chord

After analyzing the behavior ofT-MAN on relatively basic examples, in this section we present a more
complex application: rapidly bootstrappingCHORD-like networks [25]. We call this protocolT-CHORD.

22

 98

 98.5

 99

 99.5

 100

 0 0.002 0.004 0.006 0.008 0.01

T
ar

ge
t L

in
ks

 F
ou

nd
 (

%
)

Node failures per node per second

size=216

size=213

size=210

(a) SORTED RING

 98

 98.5

 99

 99.5

 100

 0 0.002 0.004 0.006 0.008 0.01

T
ar

ge
t L

in
ks

 F
ou

nd
 (

%
)

Node failures per node per second

size=216

size=213

size=210

(b) TREE

Figure 18: Target links found by the termination time as a function of failure rate.

7.1 A Brief Introduction to Chord

CHORD is an example of a key-based overlay routing protocol. In such protocols, subsets of the key space are
assigned to nodes, and each node has a routing table that it uses to route messages addressed by a specific
key towards the node that is responsible for that key. These routing protocols are used as a component
in the implementation of thedistributed hash tableabstraction, where (key, object) pairs are stored over a
decentralized collection of nodes and retrieved through the routing protocol.

We provide a simplified description ofCHORD, necessary to understandT-CHORD. Nodes are assigned
randomt-bit IDs; keys are taken from the same space. The ID lengtht must be large enough to make
the probability of two nodes or two keys having the same ID negligible. Nodes are ordered in an sorted
ring as described in Section 6.3.1. The way this ring is constructed naturally inspires afollows relation
over the entire ID (and key) space: we say thata follows b if (a − b + 2t) mod 2t < 2t−1; otherwise,a
precedesb. We also define a notion of distance, again, inspired by the sorted ring, as follows:d(a, b) =
min(|a− b|, 2t − |a− b|). Thesuccessorof an arbitrary numberi (that is, not necessarily existing node ID)
is the node with the smallest ID that followsi, as defined above. We denote the successor ofi by succ1(i).
The concepts of predecessor,jth successor, andjth predecessor are defined similarly. Keyk is under the
responsibility of nodesucc1(k).

Each node maintains a routing table that has two parts:leavesandfingers. Leaves define anr-regular
lattice, where each noden is connected to itsr nearest successorssucc1(n) . . . succr(n). Fingers are long
range links: for each noden, its jth finger is defined assucc1(n+2j), with j ∈ [0, t−1]. Routing inCHORD

works by forwarding messages following the successor direction: when receiving a message targeted at key
k, a noden forwards it to its leaf or finger that precedes (or is equal to)and is closest tosucc1(k), the
intended recipient of the message.

Due to the fingers, the number of nodes that need to be traversed to reach a destination node isO(logN)
(with high probability), whereN is the size of the network [25]. Leaves, on the other hand, areused to
improve the probability of delivering a message in case of failures, and to avoid that the ring can be broken
into disjoint partitions.

23

7.2 The T-Chord Protocol

In the context ofCHORD, our overlay construction problem translates to initializing the routing tables of all
nodes simultaneously from scratch. The existing join protocol is not designed to handle the massive con-
currency involved in a jump-starting process, when all the nodes are trying to join at the same time [25]. On
the other hand, naive approaches where nodes are forced to join the overlay in some specified order results
in at least linear time needed to construct the network (not to mention the serious problem of synchronizing
the operations).

For constructing the leaf set, we simply applyT-MAN and the ranking method we used to createSORTED

RING in the previous sections, using node ID-s as node profiles.
Constructing the finger set involves a slight extension to the basicT-MAN protocol. Instead of applying

a ranking method specific to fingers, we simply piggyback the ring-building messages: when sending a
message, each node appends a limited set of node addresses, that it selects from its own view, and that
represents the best approximation of the ideal finger set of the recipient of the message. Each messages thus
consists of two parts: one specific to the leaf set and the other specific to the finger set. We fix the size of
these two parts to be equal. If the part assigned to the fingersis smaller than the required number of fingers,
the node sends the fingers that are closest to the recipient node.

When receiving a message, as before, the node simply merges it with its current view. At any time, the
actual finger set is then constructed by each node locally from nodes in its current view. We also note that
we obtained very good preliminary results even without appending extra finger nodes to the messages, and
simply relying on the local views that result from pure ring construction. However, if finger candidates are
also included in the messages, we achieve a noticeable improvement. Furthermore, this approach can be
generalized to other target graphs as well, such asPASTRY [23], as shown in [11]. All the other components,
that is, the peer sampling service, the starting service andthe termination mechanism are applied as before.

7.3 Experimental Results

First, we modify slightly the definition of some performancemeasures for this application. While the con-
cept of termination time remains unchanged, convergence isdefined as the time needed to obtain routing
tables, that are sufficiently correct to route messages without errors (i.e., without messages failing to reach
their destination). In other words, in a converged network we now allow for the possibility of having sub-
optimal routing tables (with missing leaves or fingers) provided routing works without error. Note that if
the ring is complete, then all messages are guaranteed to be delivered, so according to this new measure,
convergence occurs no later than the convergence of the ring.

The default parameters are the same as forSORTED RING and TREE. Note however that the applied
message size of 20 now means that 10 entries are reserved for the leaf set construction and 10 for the
fingers. For this reason, convergence is expected to take longer than with 20 entries assigned to a single
target graph.

Figure 19(a) shows the convergence time for different starting protocols and for a variable network
size. Convergence now takes longer than the values shown in Figure 10 due to the decreased message
size (10 instead of 20) relative to each part of the routing table. Figure 19(b) compares the quality of the
converged routing tables obtained byT-CHORD with the idealCHORD overlay described in [25], measured
as the average number of hops needed to deliver messages. Theperformance ofT-CHORD is slightly worse
due to potentially missing routing table entries, but approximates that of the perfectCHORD network closely.

Figure 19(c) presents termination times for different values of parameterδidle. For small values ofδidle

and for large networks, we found that the protocol never reaches convergence. Nevertheless, Figure 19(d)
shows that even for small values ofδidle, the number of messages never delivered to the correct destination
is smaller than 1%, which means that the obtained overlay is agood approximation ofCHORD. However,

24

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

210 211 212 213 214 215 216 217 218

C
on

ve
rg

en
ce

 T
im

e
(s

)

Network Size

Anti-Entropy (Push)
Anti-Entropy (Push-Pull)

Flooding
Synchronous start

(a)

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

210 211 212 213 214 215 216 217 218

H
op

s

Network Size

T-Chord
Chord

(b)

 20

 25

 30

 35

 40

 45

 50

 55

 2 3 4 5 6 7 8

T
er

m
in

at
io

n
T

im
e

(s
)

δidle (s)

size = 216

size = 213

size = 210

(c)

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 2 3 4 5 6 7 8

D
H

T
 D

el
iv

er
y

F
ai

lu
re

 R
at

e
(%

)

δidle (s)

size=216

size=213

size=210

(d)

 8

 10

 12

 14

 16

 18

 20

 22

 24

 2 3 4 5 6 7 8

M
es

sa
ge

s

δidle (s)

size = 216

size = 213

size = 210

(e)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.002 0.004 0.006 0.008 0.01

D
H

T
 d

el
iv

er
y

fa
ilu

re
 r

at
e

(%
)

Node failures per node per second

size=216

size=213

size=210

(f)

Figure 19: Experimental results withT-CHORD

25

for δidle = 8, all our test runs resulted in 100% successful message delivery, so we adopt this value for the
protocol. The slight disadvantage is a larger number of messages exchanged and a slower termination time.

Figure 19(e) shows the average number of messages sent by a node in the network until termination. This
is significantly lower than the termination time, which could be expected based on our findings discussed
before (see Figure 13).

Finally, Figure 19(f) shows the behavior ofT-CHORD in a faulty environment. Similar toSORTED RING

andTREE, the variable failure rate, measured as the total number of nodes leaving the network per second
per node, ranges from 0 to10−2. An increasing number of routed messages get lost, although, as mentioned
previously, the upper end of the failure rate range can be considered extreme. For normal failure rates, the
performance is only slightly degraded.

8 Conclusions

In this paper we have presentedT-MAN, a lightweight gossip-based protocol for constructing various overlay
networks. The target network is given by the ranking method,which is a parameter of the protocol.T-MAN

is robust to the target network: it exhibits good performance that is mostly invariant over a wide range of
target networks such as rings and trees. The protocol is simple and robust to failure scenarios which makes
it attractive for practical applications.

In closing, we note thatT-MAN has been successfully applied for constructing thePASTRY overlay net-
work [11]. We do not discuss this particular application here due to space limitations. In this paper we
have chosen to focus on overlay construction as opposed to overlay maintenance, which we have explored
elsewhere [10]. Our overlay maintenance techniques involve limited local view sizes and periodic removal
of old entries from the view. In addition, random samples from the network are constantly injected into the
local view.

The most important future development involves characterizing the performance of the protocol theoret-
ically, based on the target network. In this paper we have presented numerous observations derived mostly
from heuristic and empirical considerations that outline possible directions for such a theoretical framework.

References
[1] Karl Aberer, Anwitaman Datta, Manfred Hauswirth, and Roman Schmidt. Indexing data-oriented overlay networks. In

Proceedings of 31st International Conference on Very LargeDatabases (VLDB), Trondheim, Norway, August 2005. ACM.

[2] Lada A. Adamic, Rajan M. Lukose, Amit R. Puniyani, and Bernardo A. Huberman. Search in power-law networks.Physical
Review E, 64:046135, 2001.

[3] Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks.Reviews of Modern Physics, 74(1):47–
97, January 2002.

[4] Dana Angluin, James Aspnes, Jiang Chen, Yinghua Wu, and Yitong Yin. Fast construction of overlay networks. InSeventeenth
Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 145–154, July 2005.

[5] Miguel Castro, Manuel Costa, and Antony Rowstron. Performance and dependability of structured peer-to-peer overlays. In
Proceedings of the 2004 International Conference on Dependable Systems and Networks (DSN’04), Washington, DC, USA,
2004. IEEE Computer Society.

[6] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and Scott Shenker. Making gnutella-like p2p systems scal-
able. InProceedings of ACM SIGCOMM 2003, pages 407–418, 2003.

[7] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker, Howard Sturgis, Dan Swinehart, and Doug
Terry. Epidemic algorithms for replicated database maintenance. InProceedings of the 6th Annual ACM Symposium on
Principles of Distributed Computing (PODC’87), pages 1–12, Vancouver, British Columbia, Canada, August 1987. ACM
Press.

[8] Patrick Th. Eugster, Rachid Guerraoui, Sidath B. Handurukande, Anne-Marie Kermarrec, and Petr Kouznetsov. Lightweight
probabilistic broadcast.ACM Transactions on Computer Systems, 21(4):341–374, 2003.

26

[9] Krishna P. Gummadi, Stefan Saroiu, and Steven D. Gribble. King: Estimating latency between arbitrary internet end hosts.
In Internet Measurement Workshop (SIGCOMM IMW), 2002.

[10] Márk Jelasity and Ozalp Babaoglu. T-Man: Gossip-based overlay topology management. In Sven A. Brueckner, Giovanna
Di Marzo Serugendo, David Hales, and Franco Zambonelli, editors, Engineering Self-Organising Systems: Third Interna-
tional Workshop (ESOA 2005), Revised Selected Papers, volume 3910 ofLecture Notes in Computer Science, pages 1–15.
Springer-Verlag, 2006.

[11] Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. The bootstrapping service. InProceedins of the 26th International
Conference on Distributed Computing Systems Workshops (ICDCS WORKSHOPS), Lisboa, Portugal, 2006. IEEE Computer
Society. International Workshop on Dynamic Distributed Systems (IWDDS).

[12] Márk Jelasity, Spyros Voulgaris, Rachid Guerraoui, Anne-Marie Kermarrec, and Maarten van Steen. Gossip-based peer
sampling.ACM Transactions on Computer Systems, 25(3):8, August 2007.

[13] Sunil Kalidindi and Matthew J. Zekauskas. Surveyor: Aninfrastructure for Internet performance measurements. InProceed-
ings of INET’99, San Jose, CA, USA, 1999.

[14] Yehuda Koren. Embedder.http://www.research.att.com/˜yehuda/index_programs. html .

[15] Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Maniatis, Timothy Roscoe, and Ion Stoica. Implementing
declarative overlays. InProceedings of the twentieth ACM symposium on Operating systems principles (SOSP’05), pages
75–90. ACM Press, 2005.

[16] Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker. Search and replication in unstructured peer-to-peer networks. In
Proceedings of the 16th ACM International Conference on Supercomputing (ICS’02), 2002.

[17] Laurent Massoulié, Anne-Marie Kermarrec, and Ayalvadi J. Ganesh. Network awareness and failure resilience in self-
organising overlays networks. InProceedings of the 22nd Symposium on Reliable Distributed Systems (SRDS 2003), pages
47–55, Florence, Italy, 2003.

[18] Alberto Montresor. A robust protocol for building superpeer overlay topologies. InProceedings of the 4th IEEE Interna-
tional Conference on Peer-to-Peer Computing (P2P’04), pages 202–209, Zurich, Switzerland, August 2004. IEEE Computer
Society.

[19] Alberto Montresor, Márk Jelasity, and Ozalp Babaoglu. Decentralized ranking in large-scale overlay networks. Technical
Report UBLCS-2004-18, University of Bologna, Department of Computer Science, Bologna, Italy, December 2004.http:
//www.cs.unibo.it/pub/TR/UBLCS/2004/2004-18.pdf .

[20] Alberto Montresor, Márk Jelasity, and Ozalp Babaoglu. Chord on demand. InProceedings of the 5th International Conference
on Peer-to-Peer Computing (P2P 2005), pages 87–94, Konstanz, Germany, August 2005. IEEE.

[21] PeerSim. http://peersim.sourceforge.net/.

[22] Sean Rhea, Brighten Godfrey, Brad Karp, John Kubiatowicz, Sylvia Ratnasamy, Scott Shenker, Ion Stoica, and HarlanYu.
OpenDHT: A public DHT service and its uses. InProceedings of ACM SIGCOMM 2005, pages 73–84. ACM Press, 2005.

[23] Antony Rowstron and Peter Druschel. Pastry: Scalable,distributed object location and routing for large-scale peer-to-peer
systems. In Rachid Guerraoui, editor,Middleware 2001, volume 2218 ofLecture Notes in Computer Science, pages 329–350.
Springer-Verlag, 2001.

[24] Ayman Shaker and Douglas S. Reeves. Self-stabilizing structured ring topology p2p systems. InProceedings of the Fifth
IEEE International Conference on Peer-to-Peer Computing (P2P 2005), pages 39–46, Konstanz, Germany, August 2005.
IEEE Computer Society.

[25] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. Chord: A scalable peer-to-peerlookup
service for internet applications. InProceedings of the 2001 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications (SIGCOMM), pages 149–160, San Diego, CA, 2001. ACM, ACM Press.

[26] Robbert van Renesse, Kenneth P. Birman, and Werner Vogels. Astrolabe: A robust and scalable technology for distributed
system monitoring, management, and data mining.ACM Transactions on Computer Systems, 21(2):164–206, May 2003.

[27] Spyros Voulgaris, Anne-Marie Kermarrec, Laurent Massoulié, and Maarten van Steen. Exploiting semantic proximity in peer-
to-peer content searching. InProceedings of 10th IEEE International Workshop on Future Trends of Distributed Computing
Systems (FTDCS 2004), pages 238–243, 2004.

[28] Spyros Voulgaris and Maarten van Steen. An epidemic protocol for managing routing tables in very large peer-to-peer net-
works. InProceedings of the 14th IFIP/IEEE International Workshop on Distributed Systems: Operations and Management,
(DSOM 2003), number 2867 in Lecture Notes in Computer Science. Springer, 2003.

27

[29] Spyros Voulgaris and Maarten van Steen. Epidemic-style management of semantic overlays for content-based searching. In
José C. Cunha and Pedro D. Medeiros, editors,Proceedings of Euro-Par, number 3648 in Lecture Notes in Computer Science,
pages 1143–1152. Springer, 2005.

[30] Ben Y. Zhao, Ling Huang, Anthony D. Joseph Jeremy Stribling, and John D. Kubiatowicz. Exploiting routing redundancy
via structured peer-to-peer overlays. InProceedings of the 11th IEEE International Conference on Network Protocols (ICNP
2003), pages 246–257, 2003.

28

